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Abstract

Semantic segmentation of nighttime images plays an

equally important role as that of daytime images in au-

tonomous driving, but the former is much more challenging

due to poor illuminations and arduous human annotations.

In this paper, we propose a novel domain adaptation net-

work (DANNet) for nighttime semantic segmentation with-

out using labeled nighttime image data. It employs an ad-

versarial training with a labeled daytime dataset and an

unlabeled dataset that contains coarsely aligned day-night

image pairs. Specifically, for the unlabeled day-night im-

age pairs, we use the pixel-level predictions of static object

categories on a daytime image as a pseudo supervision to

segment its counterpart nighttime image. We further design

a re-weighting strategy to handle the inaccuracy caused

by misalignment between day-night image pairs and wrong

predictions of daytime images, as well as boost the predic-

tion accuracy of small objects. The proposed DANNet is the

first one-stage adaptation framework for nighttime seman-

tic segmentation, which does not train additional day-night

image transfer models as a separate pre-processing stage.

Extensive experiments on Dark Zurich and Nighttime Driv-

ing datasets show that our method achieves state-of-the-art

performance for nighttime semantic segmentation.

1. Introduction

Aiming to label each pixel of a given image to an object

category, semantic segmentation is a fundamental computer

vision task and plays an important role in many applications

such as autonomous driving [11], medical imaging [5] and

human parsing [49]. With the advancement of deep learn-

ing and computing power, the state-of-the-art performance

of semantic segmentation for natural scene images taken

at the daytime has been significantly improved in recent
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Figure 1. Visual comparison of the nighttime semantic segmen-

tation results between the state-of-the-art transfer-based approach

“MGCDA” [35] and our proposed DANNet.

years [10, 17]. Many researchers have started to segment

more challenging images under various kinds of degrada-

tions, such as those taken in foggy weather [34] or at the

nighttime [33]. In this paper, we focus on semantic segmen-

tation of nighttime images, which has wide and important

applications in autonomous driving.

With many indiscernible regions and visual hazards [47],

e.g., under/over exposure and motion blur, it is usually dif-

ficult even for human to build high-quality pixel-level an-

notations of the nighttime scene images as ground truth,

which, however, is a prerequisite for training many deep

neural networks for semantic image segmentation. To han-

dle this problem, several domain adaptation methods have

been proposed to transfer the semantic segmentation models

from daytime to nighttime without using labels in the night-

time domain. For example, in [8, 33, 35], an intermediate

twilight domain is taken as a bridge to build the adaptation

between daytime to nighttime. In [33, 30, 37, 26, 35], an

image transferring network is trained to stylize nighttime or

daytime images and construct synthetic datasets. All these

methods require an additional pre-processing stage of train-

ing an image transfer model between daytime and night-

time. This is not only time-consuming but also making the
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second stage closely rely on the first one. Especially, it is

difficult to generate a transferred image that shares the ex-

actly same semantic information with the original images

when the domain gap is large.

In this paper, we propose a novel one-stage domain

adaptation network (DANNet) based on adversarial learn-

ing for nighttime semantic segmentation (shown in Fig-

ure 1) by using the newly released Dark Zurich dataset [33],

which contains unlabeled day-night scene image pairs that

are coarsely aligned using GPS recordings. The pro-

posed DANNet performs a multi-target adaptation from

Cityscapes data to Dark Zurich daytime (Dark Zurich-D)

and nighttime data (Dark Zurich-N). Specifically, we first

adapt the model from Cityscapes, which contains large-

scale training data with labels, to Dark Zurich-D since they

are all taken at the daytime. Then, the prediction of Dark

Zurich-D is used as a pseudo supervision for Dark Zurich-

N in the network training. We apply an image relighting

subnetwork to make the intensity distribution of the images

from different domains to be close. Following [38], we in-

corporate a weight-sharing semantic segmentation network

to make predictions for the relighted images and perform an

adversarial learning in the output space to ensure very close

layout across different domains. We further design a re-

weighting strategy to handle the inaccuracy caused by mis-

alignment between day-night image pairs and wrong pre-

dictions of daytime images, as well as boost the prediction

accuracy of small objects. We conduct extensive experi-

ments on Dark Zurich and Nighttime Driving datasets to

justify the effectiveness of the proposed DANNet for night-

time semantic segmentation. The main contributions of our

work are summarized in the following:

• We propose a multi-target domain adaptation network,

DANNet, for nighttime semantic segmentation via ad-

versarial learning. DANNet consists of an image re-

lighting network and a semantic segmentation net-

work, as well as two discriminators. To the best of our

knowledge, the proposed DANNet is the first one-stage

adaptation framework for nighttime semantic segmen-

tation.

• We demonstrate that the segmentation of Dark Zurich-

D images can provide pseudo supervision for segment-

ing the corresponding Dark Zurich-N images, by con-

sidering only static object categories. In particular,

it is shown that the specially designed probability re-

weighting strategy can significantly enhance the seg-

mentation of small objects.

• Experiments on Dark Zurich-test and Nighttime Driv-

ing datasets show that the proposed DANNet achieves

a new state-of-the-art performance of nighttime se-

mantic segmentation. Ablation study also verifies the

effectiveness of each component in DANNet.

2. Related Work

Domain adaptation for semantic segmentation Domain

adaptation methods are developed to transfer knowledge

learned from source domains to target domains which share

similar objects yet different data distributions. Recently, do-

main adaptation has been applied to help semantic segmen-

tation. In [16], Hoffman et al. proposed a novel fully con-

volutional domain adversarial learning approach with cat-

egory constraints [27] for semantic segmentation. Tsai et

al. [38] later developed a multi-level adversarial network to

perform domain adaptation in the output space.

Instead of using adversarial learning techniques, image

translation and style transfer [52] from source images to

target ones, or vice versa, have been widely used for do-

main adaptation [15, 44]. Previous works have shown that

domain-invariant representations can be obtained in the pro-

cess of image translation between the source and target do-

mains [36, 53, 1]. Several recent works [21, 43, 19] made

use of self-training strategies by iteratively predicting and

fine-tuning a set of pseudo labels in multiple rounds of net-

work training. Another line of researches [50, 22] adopted

the curriculum-style learning by first learning easy prop-

erties in the target domain and then using it to regularize

the semantic segmentation model. However, most of these

general-purpose domain adaptation approaches cannot han-

dle well the significant adaptation gap between the daytime

and the nighttime images and therefore could not achieve

satisfactory performance in nighttime semantic segmenta-

tion [33]. Specifically, all the above methods focus on the

domain adaptation for synthetic-to-real (i.e., GTA5 [29] or

SYNTHIA [31] to Cityscapes) or cross-city images (i.e.,

Cityscapes to Cross-City [6]), which are all daytime to day-

time adaptations. In this paper, we instead focus on the

adaptation between the daytime and the nighttime domains

with significantly different illumination patterns [33].

Nighttime semantic segmentation Recently, Dai et

al. [8] leveraged an intermediate twilight domain to pro-

gressively adapt semantic models trained in daytime scenes

to nighttime. Sakaridis et al. [33, 35] further extended it

to a guided curriculum adaptation framework, which uses

both the stylized synthetic images and the unlabeled real

images to exploit the cross-time-of-day correspondence of

the scene images. However, such gradual adaptation ap-

proaches usually need to train multiple semantic segmen-

tation models, e.g., three models in [33] for three different

domains respectively, which is highly inefficient. Following

works along this line [30, 37, 26] also train some additional

image transfer models, e.g., CycleGAN [52], to perform the

day-to-night or night-to-day image transfer before training

the semantic segmentation models. For these methods, the

performance of later adaptation and semantic segmentation

is highly dependent on the image transfer model pre-trained
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Figure 2. The architecture of the proposed DANNet. Three input images Is, Itd, and Itn are from the source domain S (Cityscapes)

and two target domains Td and Tn (Dark Zurich-D and Dark Zurich-N), respectively. They go through a weight-sharing image relighting

network which can make their distributions to be close to each other using the light loss Llight. All the outputs are fed into a weight-

sharing segmentation network to obtain the predictions. For the predictions from Is, a semantic segmentation loss Lseg is computed using

the ground truth from the source dataset. Besides, the predictions from Itd for the categories of static objects provide weak supervision

for the corresponding categories from Itn, reflected by a static loss Lstatic. Note that the composition of the relighting network and the

semantic segmentation network forms the generator G. Two discriminators Dd and Dn are proposed to distinguish outputs from the source

domain S or the target domains Td and from the source domain S or the target domains Tn, respectively.

in the pre-processing stage.

Vertens et al. [39] proposed to leverage the thermal in-

frared images as a complementary input to the RGB images

for nighttime semantic segmentation since thermal radia-

tion is not very sensitive to the illumination changes. In [9],

a two-stage adversarial training method was proposed for

semantic segmentation of rainy night scenes by performing

domain adaptation between day-night near scene pairs. Dif-

ferent from all the above methods, the DANNet proposed

in this paper performs a one-stage end-to-end adversarial

learning for training the nighttime semantic segmentation

network without using any other image modalities.

3. Proposed Method

3.1. Framework overview

Our method involves a source domain S and two tar-

get domains Td and Tn, where S, Td, and Tn represent

Cityscapes (daytime), Dark Zurich-D (daytime), and Dark

Zurich-N (nighttime), respectively. Note that only the

source domain S of Cityscapes has ground-truth semantic

segmentation in training. The proposed DANNet proceeds

the domain adaptation from S to Td and S to Tn simultane-

ously and it consists of three different modules: an image

relighting network, a semantic segmentation network, and

two discriminators, as illustrated in Figure 2.

3.2. Network architecture

All modules of the proposed DANNet are elaborated in

detail below.

Image relighting network Inspired by [18], we design an

image relighting network to make the intensity distributions

of the images from different domains to be close such that

the later semantic segmentation network is less sensitive

to illumination changes. The relighting network takes the

scene images Is, Itd and Itn from the three domains, and

generates the relighted images Rs, Rtd and Rtn, respec-

tively. The relighting network shares weights for all input

images from the three domains, see Figure 3 for the detailed

structure of this network.

Semantic segmentation network We select and test three

popular semantic segmentation networks in our method:

Deeplab-v2 [3], RefineNet [23] and PSPNet [51]. Note that

the common backbone is ResNet-101 [14] in all of them.

For this module, we share weights for all the input images

from the three domains. The semantic segmentation net-

work takes Rs, Rtd and Rtn as the inputs and produces

segmentation predictions (category-likelihood map) Ps, Ptd

and Ptn for the three domains, respectively. The composi-

tion of the image relighting network and the semantic seg-

mentation network forms the generator G of the proposed

DANNet.
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Transposed convolutionReLU2D Convolution Batch Normlization Tanh

Figure 3. The structure of the image relighting network. It consists of four convolutional layers, three residual blocks and two transposed

convolutional layers, and each convolutional layer is followed by a batch normalization layer. The output from the last layer is then added

to the input images to obtain the relighted image.

Discriminators As done in [38], the discriminators are

designed to distinguish whether the segmentation predic-

tion comes from the source domain or either of the target

domains by performing adversarial learning in the output

space. We modified the architecture in [28] following [38]

by utilizing all fully convolutional layers. Particularly, it in-

cludes 5 convolutional layers with the channel numbers of

{64, 128, 256, 256, 1}, and a kernel size of 4×4. The stride

is 2 for the first two convolutional layers and 1 for the rest.

Since we have two target domains Td and Tn, we design

two discriminators Dd and Dn to distinguish whether the

output is from S or Td and from S or Tn, respectively. The

two discriminators share the same structures yet the weights

and are jointly trained.

3.3. Probability reweighting

Due to the fact that the numbers of pixels for differ-

ent object categories are imbalanced in the source domain,

network training can usually converge more easily by pre-

dicting a pixel to be a category of large-size object, such as

road, building, and tree, in training discriminators. In this

case, it is quite difficult to correctly predict the pixels of

small objects which have relatively fewer annotations in the

dataset, such as pole, sign, and light. To address this prob-

lem, we propose a re-weighting strategy to the predicted

category-likelihood maps. Specifically, for each category

k ∈ C, we first define a weight

w′
k = − log(ak), (1)

where ak is the proportion of all the valid pixels that are

labeled as category k in the source domain. Clearly the

smaller the value of ak, the larger the value of w′
k and the

use of such a weight can help segment the categories of

smaller-size objects. We use the logarithm to prevent from

overweighting small-size object categories. In our experi-

ment, we further normalize this weight by

wk =
w′

k − w

σ(w)
· std+ avg, (2)

where w and σ(w) are the mean and standard deviation

of w′
k, k ∈ C, respectively. The parameters std and avg

are two positive constants we pre-select to shift the value

range of wk to be mainly positive. During training, we set

std = 0.05 and avg = 1.0 empirically. We then multi-

ply each normalized weight wk with the corresponding cat-

egory channel of the predicted likelihood map P , where

P ∈ {Ptd, Ptn}. Thus, the final semantic segmentation re-

sult F is obtained by employing an argmax operation on the

multiplication result.

3.4. Objective functions

In this subsection, we introduce all the objective func-

tions involved in the proposed end-to-end DANNet training,

including the light loss, the semantic segmentation loss, the

static loss, and the adversarial loss.

Light Loss The light loss is proposed to ensure that the

intensity distributions of the outputs Rs, Rtd and Rtn after

the image relighting network are close to each other. The

light loss is a combination of three loss functions: the total

variation loss Ltv , the exposure control loss Lexp, and the

structural similarity loss Lssim.

The total variation loss Ltv [32] is widely used in image

denoising [48] and image synthesis [41] to make images

smoother. In this paper, we apply such a loss function to re-

move rough textures such as noises to facilitate the semantic

segmentation. The loss Ltv is defined by

Ltv =
1

N
‖(∇x(I −R))2 + (∇y(I −R))2‖1, (3)

where I ∈ {Is, Itd, Itn} represents the input images, R ∈
{Rs, Rtd, Rtn} is the output of the relighting network, N

is the number of pixels in I , ∇x and ∇y represent intensity

gradients between neighboring pixels along the x and y di-

rections, respectively, and ‖ ·‖1 is the L1 norm that sums up

over all the pixels.

To obtain the similar lighting effects in the day and night

scenarios, we apply the following exposure loss Lexp pro-

posed in [13] to control the exposure level:

Lexp =
1

M
‖ϕ(R)− E‖1, (4)

where ϕ is a 32 × 32 average pooling function and M rep-

resents the number of pixels in ϕ(R). Different from [13],
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the value of E is dynamically set to be the average intensity

value of the nighttime image for each training iteration.

The structural similarity loss Lssim [42] is widely used

for image reconstruction [12, 2]. Here we apply this loss

function to ensure that the generated relighted images R

could maintain the structure of original images I . The loss

Lssim is defined by

Lssim =
1

2N
‖1− SSIM(I, R)‖1. (5)

As in [12], we use a simplified SSIM (structural similarity

index measure) with a 3×3 block filter in this loss function.

Finally, by combining all the three loss terms, our light

loss Llight is defined by

Llight = αtvLtv + αexpLexp + αssimLssim, (6)

where αtv, αexp, and αssim are set to 10, 1, and 1, respec-

tively in all experiments.

Semantic segmentation loss We adopt the widely used

weighted cross-entropy loss for training the semantic image

segmentation in the source domain:

Lseg = −
1

N |C|

∑

k∈C

‖wkGT (k) · log(P (k)
s )‖1, (7)

where P
(k)
s is the k-th channel of the prediction Ps from

the source images, wk is the weight defined in Eq. (2), and

GT (k) is the one-hot encoding of the ground truth for the

k-th category.

Static loss Based on the fact that the daytime image share

similarities with its corresponding nighttime counterpart

when considering only the static object categories, we here

introduce a static loss to provide pixel-level pseudo super-

vision for the static object categories, e.g., road, sidewalk,

wall, fence, pole, light, sign, vegetation, terrain and sky, in

the nighttime images.

Given the segmentation predictions Ptd ∈ R
H×W×C

and Ptn ∈ R
H×W×C , we only consider the channels cor-

responding to the static categories for calculating this loss.

Let us denote CS as the total number of the categories of

static objects, then it holds that PS
td ∈ R

H×W×CS

and

PS
tn ∈ R

H×W×CS

.

We first apply Eq. (2) to calculate the re-weighted pre-

diction Ftd as the pseudo label. Following [45, 4], we then

employ the focal loss [24] to remedy the imbalance among

different categories of training samples. Finally, the static

loss Lstatic is defined by

Lstatic = −
1

N
‖(1− PS

tn)
γ log(p)‖1, (8)

where N is the total number of valid pixels in the segmen-

tation ground truth, γ is the focusing parameter (set to 1 in

all experiments), and p is the likelihood map for the correct

category. Different from the focal loss in [24], we compute

p at each pixel i in a 3× 3 local region for category c by

p(c, i) = max
j

(o(c, j) · PS
tn(c, i)), (9)

where o is the one-hot encoding of the semantic pseudo

ground truth Ftd, and j represents each position of the 3×3
region centered at i.

Adversarial loss We employ two discriminators for ad-

versarial learning, which are used to distinguish whether the

output is from the source domain or one of the two target do-

mains, i.e., S or Td and S or Tn. We adopt the least-squares

loss function [25] to make both predictions Ptd and Ptn to

be close to Ps. Specifically, we define the combination of

these two adversarial losses (Ladv) as:

Ladv = (Dd(Ptd)− r)2 + (Dn(Ptn)− r)2, (10)

where Ptd = G(Itd), Ptn = G(Itn), and r is the label

for the source domain which has the same resolution as the

output of discriminators. Thus, the total loss Ltotal of the

generator (G) is defined by combining Llight, Lseg , Lstatic

and Ladv:

min
G

Ltotal = β1Llight + β2Lseg + β3Lstatic + β4Ladv, (11)

where β1, β2, β3, and β4 are set to 0.01, 1, 1 and 0.01 re-

spectively in all experiments.

The generator and the corresponding discriminators are

trained alternatively and the objective functions of the dis-

criminators Ds and Dn are defined respectively by:

min
Dd

Ld =
1

2
(Dd(Ps)− r)2 +

1

2
(Dd(Ptd)− f)2, (12)

min
Dn

Ln =
1

2
(Dn(Ps)− r)2 +

1

2
(Dn(Ptn)− f)2, (13)

where f is the label for the target domains with the same

resolution as the output of discriminators.

4. Experiments

4.1. Datasets and evaluation metrics

For all experiments, we use the mean of category-wise

intersection-over-union (mIoU) as the evaluation metric,

and the higher the better. The following datasets are used

for model training and performance evaluation:

Cityscapes [7] The Cityscapes dataset contains 5,000

frames taken in street scenes with pixel-level annotations

of a total of 19 categories, and both the original images and

annotations have a resolution of 2, 048 × 1, 024 pixels. In

total, there are 2,975 images for training, 500 images for

validation and 1,525 images for testing. In this paper, we
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use the Cityscapes training set in the training stage of the

proposed DANNet for adversarial learning.

Dark Zurich [33] The Dark Zurich dataset consists of

2,416 nighttime images, 2,920 twilight images and 3,041

daytime images for training, which are all unlabeled with

a resolution of 1, 920 × 1, 080. Images in these three do-

mains can be coarsely aligned by using GPS-based nearest

neighbor assignment to compensate the translation in each

direction and the zoom in/out factors. In this paper, we only

use 2,416 night-day image pairs in training of the proposed

DANNet (without using the twilight images). The Dark

Zurich dataset also contains another 201 annotated night-

time images including 50 for validation (Dark Zurich-val)

and 151 for testing (Dark Zurich-test), for quantitative eval-

uation. Note that the Dark Zurich-test serves as an online

benchmark whose ground truth are not publicly available.

In our experiments, by submitting the segmentation results

to the online evaluation website we get the performance of

the proposed DANNet on Dark Zurich-test against the an-

notated ground truths.

Nighttime Driving [8] The Nighttime Driving test set

contains 50 nighttime images of resolution 1, 920 × 1, 080
from diverse visual scenes. All these 50 images have been

annotated at the pixel level using the same 19 Cityscapes

category labels. In our experiments, we only use Nighttime

Driving test set for method evaluation.

4.2. Experimental settings

We implement the proposed DANNet using PyTorch on

a single Nvidia 2080Ti GPU. Following [3], we train our

network using the Stochastic Gradient Descent (SGD) op-

timizer with a momentum of 0.9 and a weight decay of

5 × 10−4. The base learning rate is set to 2.5 × 10−4 and

then we employ the poly learning rate policy to decrease it

with a power of 0.9. The batch size is set to 2. We use Adam

optimizer [20] for training the discriminators with β being

set to (0.9, 0.99). The learning rate of the discriminators is

set to 2.5×10−4 and follows the same decay strategy as for

the generator. In addition, we apply random cropping with

the crop size of 512 on the scale between 0.5 and 1.0 for

Cityscapes dataset, with the crop size of 960 on the scale

between 0.9 and 1.1 on Dark Zurich dataset, and random

horizontal flipping in the training. To make the training eas-

ier to converge, we use the semantic segmentation models

that are pre-trained on Cityscapes for 150,000 epochs and

report the performance of different segmentation models on

the validation set of Cityscapes and Dark Zurich in Table 1.

4.3. Comparison with stateoftheart methods

Comparison on Dark Zurich-test We first compare our

DANNet with some existing state-of-the-art methods, in-

cluding MGCDA [35], GCMA [33], DMAda [8] and sev-

Table 1. The mIoU performance of the pre-trained semantic seg-

mentation models on the validation set of Cityscapes and Dark

Zurich.

Method Cityscapes-val Dark Zurich-val

RefineNet [23] 65.20 15.16

DeepLab-v2 [3] 65.67 12.14

PSPNet [51] 63.37 12.28

eral other domain adaptation approaches [38, 40, 21] on

Dark Zurich-test, and the results on the mIoU performance

are reported in Table 2. Among these methods, MGCDA,

GCMA, and DMAda share the same baseline RefineNet

while the rest are based on Deeplab-v2 and they use the

common ResNet-101 backbone [14] and the nighttime im-

ages in Dark Zurich-test as inputs during testing. Our DAN-

Nets with either DeepLab-v2, RefineNet or PSPNet all per-

form better than or tie to existing methods on this dataset,

and the one with PSPNet achieves the best performance

among all, with a 2.7% improvement of the overall mIoU

over the highest score obtained by all existing methods (by

MGCDA). We also observe that our DANNet significantly

outperforms other methods on quite a few categories, such

as road, sidewalk, and sky, which indicates that our method

handles the large day-to-night domain gap very well even

in discernible regions. Sample visualization results on Dark

Zurich-val in Figure 4 also verify such observation.

Comparison on Night Driving We report the perfor-

mance of the proposed DANNet and the same set of com-

parison methods on Night Driving test set in Table 3, with

sample visualization results presented in Figure 5. It is

worth to mention that Night Driving dataset is not labeled

as elaborately as Dark Zurich-test as shown in Figure 5, and

many categories that our DANNet predicts well (see Ta-

ble 2), such as building and vegetation, are not annotated

in this test set. We also notice that the category of sky is

only labeled in 2 out of the 50 images in Night Driving test

set. Even with these issues, our DANNet with PSPNet still

achieves the second best performance (MGCDA gets the

best) on this dataset.

4.4. Ablation study

To demonstrate the effectiveness of different compo-

nents of the proposed DANNet, we train several model vari-

ants for 35,000 epochs and test them on Dark Zurich-val.

The performance results are reported in Table 4. Adapta-

tion to Dark Zurich-N using AdaptSegNet [38] serves as

the baseline and DANNet is the full model. We observe that

coarsely aligned Dark Zurich-D is quite important although

it is unlabeled, and the pseudo labels drawn from the predic-

tions on Dark Zurich-D also play a key role in our network,

without which the mIoU decreases by 13.78%. Both the

image relighting network and the corresponding loss Llight

can enhance the performance. We also see that the spe-
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Table 2. The per-category results on Dark Zurich-test by current state-of-the-art methods and our DANNet. Cityscapes→DZ-night denotes

the adaptation from Cityscapes to Dark Zurich-night. The best results are presented in bold, with the second best results underlined.
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RefineNet [23]-Cityscapes 68.8 23.2 46.8 20.8 12.6 29.8 30.4 26.9 43.1 14.3 0.3 36.9 49.7 63.6 6.8 0.2 24.0 33.6 9.3 28.5

DeepLab-v2 [3]-Cityscapes 79.0 21.8 53.0 13.3 11.2 22.5 20.2 22.1 43.5 10.4 18.0 37.4 33.8 64.1 6.4 0.0 52.3 30.4 7.4 28.8

PSPNet [51]-Cityscapes 78.2 19.0 51.2 15.5 10.6 30.3 28.9 22.0 56.7 13.3 20.8 38.2 21.8 52.1 1.6 0.0 53.2 23.2 10.7 28.8

AdaptSegNet-Cityscapes→DZ-night [38] 86.1 44.2 55.1 22.2 4.8 21.1 5.6 16.7 37.2 8.4 1.2 35.9 26.7 68.2 45.1 0.0 50.1 33.9 15.6 30.4

ADVENT-Cityscapes→DZ-night [40] 85.8 37.9 55.5 27.7 14.5 23.1 14.0 21.1 32.1 8.7 2.0 39.9 16.6 64.0 13.8 0.0 58.8 28.5 20.7 29.7

BDL-Cityscapes→DZ-night [21] 85.3 41.1 61.9 32.7 17.4 20.6 11.4 21.3 29.4 8.9 1.1 37.4 22.1 63.2 28.2 0.0 47.7 39.4 15.7 30.8

DMAda [8] 75.5 29.1 48.6 21.3 14.3 34.3 36.8 29.9 49.4 13.8 0.4 43.3 50.2 69.4 18.4 0.0 27.6 34.9 11.9 32.1

GCMA [33] 81.7 46.9 58.8 22.0 20.0 41.2 40.5 41.6 64.8 31.0 32.1 53.5 47.5 75.5 39.2 0.0 49.6 30.7 21.0 42.0

MGCDA [35] 80.3 49.3 66.2 7.8 11.0 41.4 38.9 39.0 64.1 18.0 55.8 52.1 53.5 74.7 66.0 0.0 37.5 29.1 22.7 42.5

DANNet (DeepLab-v2) 88.6 53.4 69.8 34.0 20.0 25.0 31.5 35.9 69.5 32.2 82.3 44.2 43.7 54.1 22.0 0.1 40.9 36.0 24.1 42.5

DANNet (RefineNet) 90.0 54.0 74.8 41.0 21.1 25.0 26.8 30.2 72.0 26.2 84.0 47.0 33.9 68.2 19.0 0.3 66.4 38.3 23.6 44.3

DANNet (PSPNet) 90.4 60.1 71.0 33.6 22.9 30.6 34.3 33.7 70.5 31.8 80.2 45.7 41.6 67.4 16.8 0.0 73.0 31.6 22.9 45.2

Input image GCMA [33] MGCDA [35] DANNet (PSPNet) Semantic GT

Figure 4. Visualization comparison of our DANNet with some existing state-of-the-art methods on three samples from Dark Zurich-val.

Table 3. Comparison of our DANNet with some existing state-of-

the-art methods on Nighttime Driving test set [8].

Method mIoU

RefineNet [23]-Cityscapes 32.75

DeepLab-v2 [3]-Cityscapes 25.44

PSPNet [51]-Cityscapes 27.65

AdaptSegNet-Cityscapes→DZ-night [38] 34.5

ADVENT-Cityscapes→DZ-night [40] 34.7

BDL-Cityscapes→DZ-night [21] 34.7

DMAda [8] 36.1

GCMA [33] 45.6

MGCDA [35] 49.4

DANNet (RefineNet) 42.36

DANNet (DeepLab-v2) 44.98

DANNet (PSPNet) 47.70

cially designed loss Lstatic is better than directly applying

the cross entropy or focal loss to calculate the static loss.

In addition, the re-weighting strategy is verified to be

useful and can further boost the performance. As shown

in Figure 6, this strategy helps segment the small objects.

We find that the selection of the value std is also impor-

tant in applying the re-weighting strategy. We test differ-

ent std values and the performance curve of the proposed

DANNet on Dark Zurich-val is shown in Figure 7, and the

quantitative comparison result for each category is provided

in the supplemental material. The optimal performance is

achieved when setting std = 0.16 during testing. By di-

rectly applying the commonly-used weights provided by

OCNet [46], it only achieves 35.05 mIoU on DZ-val dataset,

which is less than that of our DANNet. In general, the full

settings of our DANNet bring about an additional 10% per-
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Input image GCMA [33] MGCDA [35] DANNet (PSPNet) Semantic GT

Figure 5. Visualization comparison of our DANNet with some existing state-of-the-art methods on three samples from Night Driving-test.

Table 4. Ablation study on several model variants of our DANNet

(PSPNet) on Dark Zurich-val.

Method mIoU

GCMA [33] 26.65

MGCDA [35] 26.10

AdaptSegNet-Cityscapes→DZ-night [38] 20.19

w/o Dark Zurich-D 22.78

w/o relighting network & Llight 34.14

w/o Llight 35.05

w/o Lstatic 20.48

w/ Cross Entropy Loss in Lstatic 33.61

w/ Focal Loss in Lstatic 36.49

w/o re-weighting on pseudo labels 32.71

w/o re-weighting on prediction 32.22

w/o pretrained segmentation model 30.74

DANNet 36.76

formance increase over the state-of-the-art approaches on

Dark Zurich-val.

5. Conclusion

In this paper, we have proposed a novel end-to-end neu-

ral network DANNet for unsupervised nighttime semantic

segmentation, which performs an adaptation from a labeled

daytime dataset to unlabeled day-night image pairs. In our

DANNet, an image relighting network with a special light

loss function is first used to make the intensity distribu-

tions of the images from different domains to be close to

each other. Then the unlabeled Dark Zurich-D data is used

to bridge the domain gap between the labeled daytime im-

ages (Cityscapes) and the unlabeled nighttime images (Dark

Zurich-N). By leveraging the similar illumination patterns

Image Semantic GT

w/o re-weighting w/ re-weighting

Figure 6. Visualization results of w/ and w/o the re-weighting strat-

egy on a sample from Dark Zurich-val by our DANNet (PSPNet).

Figure 7. Ablation study on the value of std in the re-weighting

strategy on Dark Zurich-val by our DANNet (PSPNet).

between Dark Zurich-D and Cityscapes and coarse align-

ment of static categories between Dark Zurich-D and Dark

Zurich-N, our DANNet performs multi-target domain adap-

tation as well as a re-weighting strategy to boost the perfor-

mance for small objects. Experimental results demonstrated

the effectiveness of each of the designed components and

showed that our DANNet achieves the state-of-the-art per-

formance on Dark-Zurich and Night Driving test datasets.
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