
Exploring Heterogeneous Clues for Weakly-Supervised

Audio-Visual Video Parsing

Yu Wu1,2, Yi Yang2*

1Baidu Research 2ReLER, University of Technology Sydney

yu.wu-3@student.uts.edu.au; yi.yang@uts.edu.au

Abstract

We investigate the weakly-supervised audio-visual video

parsing task, which aims to parse a video into temporal

event segments and predict the audible or visible event

categories. The task is challenging since there only exist

video-level event labels for training, without indicating the

temporal boundaries and modalities. Previous works take

the overall event labels to supervise both audio and visual

model predictions. However, we argue that such overall la-

bels harm the model training due to the audio-visual asyn-

chrony. For example, commentators speak in a basketball

video, but we cannot visually find the speakers. In this pa-

per, we tackle this issue by leveraging the cross-modal cor-

respondence of audio and visual signals. We generate re-

liable event labels individually for each modality by swap-

ping audio and visual tracks with other unrelated videos. If

the original visual/audio data contain event clues, the event

prediction from the newly assembled data would still be

highly confident. In this way, we could protect our models

from being misled by ambiguous event labels. In addition,

we propose the cross-modal audio-visual contrastive learn-

ing to induce temporal difference on attention models within

videos, i.e., urging the model to pick the current temporal

segment from all context candidates. Experiments show we

outperform state-of-the-art methods by a large margin.

1. Introduction

We humans explore and perceive the sounding environ-

ments with sensory streams, including visual, auditory, tac-

tile, etc. Among these simultaneous sensory streams, vision

and audio are two fundamental streams that widely convey

massive information in our daily life.

Audio-visual comprehension [23, 40, 9, 39, 50] is more

robust in identifying the ongoing events compared to those

vision models [45, 34]. For example, occlusions and blind
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Figure 1. Examples of the audio-visual video parsing task. Col-

ored rectangles indicate the ground truth events. Taking the visual

and audio data as input, we aim at identifying the audible and vis-

ible events and their temporal location. Note that the visual and

audio events might be asynchronous.

spots are common in egocentric videos and web videos,

where the object of interest is outside of the field-of-view

(FoV). In such situations, auditory signals could provide re-

liable clues for video understanding.

Existing audio-visual research works [1, 5, 7, 10, 12, 19,

6, 21, 27, 31, 53, 54, 57] usually assume audio and visual

data are always correlated and temporally aligned. How-

ever, this alignment might not always hold in practice. We

may find lots of videos whose sound originates outside of

the scene view. Despite the nonalignment, audio signals are

still important in understanding the events, such as out-of-

screen motorcycle racing. In this paper, we focus on the

audio-visual video parsing (AVVP) task [39], which aims at

providing a detailed analysis of auditory, visual, and audio-

visual events in videos without such alignment assumptions.

As shown in Fig. 1, the target of AVVP is to recognize event

categories in each sensory modality and localize them tem-

porally in videos.

Due to exhausting labeling cost, Tian et al. [39] proposed

the weakly-supervised learning for the AVVP task, which

only requires sparse labeling on the presence or absence of
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event categories for training. The weakly supervised labels

only indicate which event occurs in the video, without de-

tailed modalities and temporal boundaries. The weak la-

bels are more comfortable to annotate and can be boosted

with automatic annotation (tags) for web videos. To solve

the challenging issue, Tian et al. [39] proposed introducing

cross-modal and self-modal attention to obtain aggregated

features. The model is optimized in the Multimodal Multi-

ple Instance Learning (MMIL) way, which regards overall

event labels as the optimization targets for both audio and

visual predictions.

However, audio and visual content are naturally different

sensory streams. Visual data are captured by specific cam-

era views, while audio signals collected by microphones

could perceive all audible events of the scenes. Unlike other

weakly supervised learning tasks, some event information

may only exist in a single modality (either audio signals

or visual signals). It would be irrational to optimize both

modality predictions to be close to the overall event labels.

For example, in a basketball match video, there might be

commentators speaking, but we cannot find them visually

(see Fig. 1). It harms the visual model optimization if we

follow the universal weakly supervised learning way.

In this paper, we propose to tackle the challenging task

by exploring heterogeneous clues. We alleviate the modal-

ity uncertainty issue and generate reliable event labels indi-

vidually for each modality without additional annotations.

To achieve the goal, we exchange the audio and visual track

of a training video with other unrelated videos. Our moti-

vation is that the newly assembled video’s prediction would

still be highly confident if the visual/audio signals do con-

tain clues of the target event. Otherwise, the event infor-

mation is not visible/audible in the corresponding modality.

In this way, we could obtain precise modality-aware event

labels and protect models from being misled by the ambigu-

ous overall labels. To the best knowledge of ours, we are the

first that swap audio and visual tracks with other videos to

assess the modality uncertainty.

In addition, we also propose to induce temporal differ-

ence within videos in a contrastive learning manner. Previ-

ous methods obtain enhanced modality features by leverag-

ing all temporal contexts of the whole video. We argue that

these might harm the model performance since it obscures

the temporal difference within an event video. Since we

do not have temporal annotations in training, inspired by

self-supervised learning [16, 51], we propose to introduce

contrastive learning to introduce temporal difference into

aggregated features. We urge the attention model to pick

the correct temporal cross-modal segment features from all

candidate distractors. Thus the aggregated feature would

be more likely the information that happens at this segment

instead of all context features, leading to better temporal lo-

calization performances. To summarize, our contributions

are as follows:

• We propose to address the modality uncertainty is-

sue by exchanging audio and visual tracks with other

videos. Thus we can obtain accurate modality-aware

event supervision instead of ambiguous overall labels.

• We further introduce temporal heterogeneous con-

strain into the attention model via contrastive learning,

which alleviates the ambiguous temporal boundaries

issues in the weakly-supervised AVVP task.

• Experiments show our method significantly outper-

forms the state-of-the-art methods by a large margin

on all evaluation metrics. Specifically, we improve

the segment-level audio-visual parsing accuracy from

48.9% to 55.1% on the LLP dataset.

2. Related Work

We first discuss the joint modeling of audio-visual

modalities, and then discuss the temporal action localiza-

tion for video understanding. Finally, we discuss our fo-

cus’s related progress, the audio-visual video parsing, and

the event localization problem.

2.1. AudioVisual Representation Learning

Many works focus on joint learning for vision and au-

dio signals. Most works [1, 2, 27, 28, 21, 58] assume that

audio and visual data are synchronized and thus treat the au-

dio and visual learning in a self-supervision way. Aytar et

al. [2] propose SoundNet by designing a visual teacher net-

work to learn audio representations from unlabeled videos.

Owens et al. [28] leverage ambient sounds as supervision

to learn visual representations. Arandjelovic and Zisser-

man [1] propose to learn both visual and audio represen-

tations in an unsupervised manner through an audio-visual

correspondence task. Some works [21, 27] learn such vi-

sual and audio representation by the audio-visual tempo-

ral synchronization task. Besides audio-visual represen-

tations learning, there are many audio-visual applications

such as sound separation [5, 7, 10, 11, 12, 53, 54, 57], sound

source localization [27, 31, 40], audio-visual action recog-

nition [13, 20], audio-visual navigation [3, 8], audio-visual

video captioning [30, 37, 38, 46], and audio-visual event

localization [23, 40, 41, 50].

2.2. Video Understanding and Action Localization

Deep learning methods have achieved promising perfor-

mance in understanding video content [35, 45, 47]. Si-

monyan et al. [35] proposed Two-Stream to utilize both

RGB frames and optical flow as the 2D CNN input to mod-

eling appearance and motion, respectively. Temporal Seg-

ment Networks (TSN) [45] extended the two-stream CNN

by extracting features from multiple temporal segments.
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Tran et al. [42] proposed a 3D CNN to learn the spatial-

temporal information.

Different from the action recognition task, action local-

ization [34, 22, 32, 56, 25, 55, 52] aims at localizing actions

within untrimmed videos. Previous supervised methods for

action localization [32, 34, 56] usually first generate action

proposal candidates and then predict the action based on

these proposals. The proposal-classification methods usu-

ally filter out the background frames at the proposal stage

via a binary actionness classifier.

There are also weakly-supervised works [24, 26, 29, 36,

44] proposed for action localization. These methods usually

use Multiple Instance Learning (MIL) for training without

temporal boundary annotations. Wang et al. [44] proposed

UntrimmedNet composed of a classification module and a

selection module. Nguyen et al. [26] introduced a sparsity

regularization for video-level classification. Shou [33] ex-

plored score contrast in the temporal dimension for weakly

supervised localization. Unlike the weakly supervised ac-

tion localization task, we focus on localizing events in

audio-visual video parsing, which contains motionless or

even out-of-screen sound sources.

2.3. AudioVisual Video Parsing

Audio-visual video parsing [39] (AVVP) aims at pro-

viding a detailed analysis of auditory and visual events in

videos. It parses unconstrained videos into a set of video

events associated with event categories, boundaries, and

modalities. Early related works [23, 37, 50] focus on a simi-

lar task, i.e., audio-visual event localization, which localizes

a visible and audible event/action in a video. AVE [40] is

an audio-guided visual attention mechanism to adaptively

learn which visual regions to look for the corresponding

sounding object or activity. Lin et al. [23] propose inte-

grating audio and visual features to a global feature in a

sequence-to-sequence manner. Wu et al. [50] leverage the

global event feature as the reference when localizing an

event. In [39], Tian et al. propose a hybrid attention net-

work and optimize the model in the Multi-modal Multi-

ple Instance Learning (MMIL) way, i.e., taking the over-

all video-level label as the optimization targets for both au-

dio and visual model predictions. However, we argue that

such overall labels harm the model training due to the audio-

visual asynchrony. Different from these methods, we gen-

erate reliable event labels individually for each modality to

protect models from being misled by the ambiguous over-

all labels. In addition, we also induce temporal differences

among segments by audio-visual contrastive learning.

3. Method

In this section, we introduce our method in detail. We

begin with the preliminaries of the problem statement and

introduce the baseline framework for this task. Then we

illustrate the modality-aware event label refinement and our

contrastive learning for audio-visual video parsing.

3.1. Preliminaries

Problem statement. In the AVVP task, each video may

contain multiple visible or audible events. For a T -seconds

audio-visual video sequence S = {Vt, At}Tt=1
, A is the au-

dio track and V is the visual counterpart at the t-th segment.

Each segment lasts for one second long. For evaluation, the

targets are to predict the event labels for each segment and

each modality. For the t-th video segment (Vt, At), the tar-

get yt = (yat , y
v
t , y

av
t ) is a multi-class event label. Note

there may exist zero or many events that are happening at

the t-th moment. yat , yvt , and yavt are audio, visual, and

audio-visual event labels, respectively. The audio-visual

events yavt occur only when events are both audible and vis-

ible at the same time.

For training, we only have access to weakly-supervised

labels. Specifically, we only know events that show up in

the video sequence S , but do not have precise labels such

as the events occurring time and modalities. Therefore,

the temporal and multi-modal uncertainty in the weakly-

supervised AVVP problem makes it very challenging.

Data process. Pre-trained audio and visual deep models are

applied to obtain visual representations {fvt }Tt=1
and audio

representations {fat }Tt=1
at the segment level (one second

per segment), respectively. Following [39, 40, 50], the local

feature extractor is fixed, and we build our method on top of

these local features. The extracted audio and visual features

are used as input for the following modeling.

Feature aggregation. Previous work [39] proves the effec-

tiveness of feature aggregation upon the local input features.

Thus we also enhance the input features by leveraging con-

text information via self-attention and cross-attention mech-

anism. Denote att(·) to be the scaled dot-product con-

ducted on the query, keys, and values,

att(q,K,V) = Softmax(
qKT

√
d

)V, (1)

where d is the dimensionality of the feature vector q. The

aggregated feature can be obtained by,

f̂at = fat + att(fat ,F
a,Fa) + att(fat ,F

v,Fv), (2)

f̂vt = fvt + att(fvt ,F
v,Fv) + att(fvt ,F

a,Fa), (3)

where Fa = (fa
1
, ..., faT ) and Fv = (fv

1
, ..., fvT ) are the au-

dio and visual features sequence from the same video S ,

respectively. Compared to the original input features, the

aggregated features f̂at and f̂vt are promoted by gathering

event information across the entire video content.

Multiple Instance Learning. The event prediction of each

segment and modality is based on the aggregated features.
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Figure 2. Our modality-aware label refining (MA) pipeline. Our model aggregates feature by self- and cross-modality attention, and then

predicts the event labels for each modality. The figure’s left shows the prediction on normal training videos, which would have relatively

high confidence in their event predictions. We then exchange audio and visual tracks of these two unrelated videos (whose labels are not

disjoint). The newly assembled videos are further input to the model for checking prediction confidences (right figure). We believe the

confidences should still be high if the remaining visual/audio track does contain the target event. Otherwise, the event is not visible/audible

in this modality. In this way, we could obtain modality-aware event labels and protect models from being misled by the ambiguous overall

labels. In the case shown in the figure, we filter out the “Speech” event that is not visible in the original basketball video.

Since there might be multiple events happening at the same

segment, we use a Sigmoid function on the classifier to out-

put probability for each event category. We denote pat and

pvt to be the event predictions on the audio and visual fea-

tures at the t-th segment, respectively. However, we could

only access a video-level weak label ȳ instead of accu-

rate audio and visual segment-level labels in the weakly-

supervised training. Following [39], we use the attentive

MIL pooling method to predict video-level event probabil-

ity. Specifically, the video-level event probability p̄a and p̄v

are obtained by the weighted average of all segment-level

predictions. For our baseline, we optimize the video-level

probability p̄a and p̄v to be close to the overall event labels

ȳ using the binary cross-entropy loss function.

3.2. Exchanging Audio and Visual Tracks

The above baseline could be used to train a decent model

for weakly-supervised AVVP. However, it may induce se-

vere label noise due to the modality uncertainty. Many

events may only exist in one modality (either audio signals

or visual signals) since audio and visual content are natu-

rally different information sources. Optimizing both modal-

ity predictions (i.e., p̄a and p̄v) to be close to the overall

labels would inevitably introduce noise in training.

Motivated by the natural correlation between audio and

visual content, we propose alleviating the modality uncer-

tainty issue by exchanging audio and visual tracks with

other videos. As shown in Fig. 2, we first assess modal-

ity uncertainty and then generate modality-aware event la-

bels for each modality individually. Finally, we re-train our

model from scratch based on these refined labels.

Exchanging channels. Our target is to localize the target

event between modalities, i.e., whether a modality contains

the target events or not. To achieve the goal, we lever-

age other videos to assess the target video without requir-

ing additional annotations. Suppose we have two audio-

visual videos that have disjoint video-level event labels, i.e.,

Si = (V i, Ai) and Sj = (V j , Aj), but ȳi 6= ȳj . Taking

the video Si = (V i, Ai) as our target video, we exchange

the visual channel and audio tracks of these two videos and

form a new “video” by,

Ŝi
j = (V i, Aj), (4)

Ŝj
i = (V j , Ai), (5)

where Ŝi
j denotes the new “video” formed by the visual con-

tent from the video Si and the audio track from the video

Sj . Since the video-level event labels ȳj guarantee there is

no event ȳi existing in any modality of video Sj , we could

safely conclude that both V j and Aj are unrelated to the
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target event ȳi. Thus for the newly assembled data Ŝi
j and

Ŝj
i , the only clues about the event information yi are from

the content of i-th video Si, i.e., either from V i, Ai or both.

Assessing modality uncertainty. We assume that the

newly assembled video’s prediction would still be highly

confident if the visual/audio signals do contain clues of the

target event. In other words, the event information is likely

to be missed in the remaining modality if the prediction is

low on the assembled videos. Denote the base model to be

φ(·), we obtain the event predictions for these assembled

videos by,

pvâ, p
a
â = φ(V i, Aj)/Ec, (6)

pvv̂, p
a
v̂ = φ(V j , Ai)/Ec, (7)

where pvâ indicates the event prediction based on aggregated

visual features for the video with changed audio, and pvv̂
means the event prediction based on aggregated visual fea-

tures for the video with changed vision. Ec is the normal-

ized error rate of the target event category c according to

training predictions. The intuition is that the misaligned la-

bels are more likely to happen if we found it hard to opti-

mize the corresponding event categories (training accuracy

on event category c is lower). We believe the predictions pvâ
and paâ indicate the reliability of event labels for the visual

track in video Si. Similarly, pvv̂ and pav̂ are used to validate

the reliability of event labels for the audio track.

Refining modality-aware event labels. By assessing each

modality’s confidence, we could further refine the event la-

bels and have different event labels for the two modalities.

We reassign the event label and remove unrelated labels for

each modality if the confidences are lower than a thresh-

old 0.5, since the sigmoid prediction ranges from 0 to 1.

Specifically, we would discard the event labels for visual

modality if pvâ < 0.5 and p̂aâ < 0.5. Similarly, we would

also remove the event labels for audio modality if p̂vv̂ < 0.5
and p̂av̂ < 0.5. We could roughly estimate whether the event

happens visually or audibly through modality-aware labels.

3.3. Learning Temporal Heterogeneous Clues

We further induce the temporal difference in the atten-

tion model. Although the self-modality and cross-modality

attention (Eqn. (2) and (3)) lead to a more comprehensive

understanding by leveraging audio-visual contexts, how-

ever, we argue that these might harm the model performance

since it obscures the temporal difference within an event

video. It is necessary to introduce the temporal difference

during the weakly-supervised training.

Since we do not have temporal annotation for each seg-

ment, we propose to leverage contrastive learning to alle-

viate the issue. Contrastive learning [4, 49] is popular in

self-supervised learning. We design a proxy task that urges

the attention model to pick the correct temporal segment

from all distractor segments, which prevents the aggregated

model from being dominated by a few segment features.

We use Noise Contrastive Estimation (NCE) [15, 16, 51]

to encourage the aggregated feature f̂at to be close to the

low-level visual feature fvt at the same timestamp, while is

far away from visual features at other temporal segments.

Thus, the only positive target is the ground truth feature fvt .

We then build a set of candidates as distractors containing

the same video’s visual features but at different time steps,

i.e., fvt′ where t′ 6= t. These candidates are hard to distin-

guish since they are very close to the ground truth frame

feature fvt .

With the positive target and these distractors, we can add

auxiliary supervision to the model with contrastive learn-

ing. We first calculate the cosine similarity between the

predicted feature and the candidates, fvj
Tf̂at . Here we en-

force all vectors to be L2-normalized feature embeddings,

i.e., ||fvj || = 1, ||f̂at || = 1. Thus we have the following

objective function at the time step t,

Lc = − log
exp(fvt

Tf̂at /τ)
∑

j exp(f
v
j
Tf̂at /τ)

(8)

where τ is a temperature parameter that controls the concen-

tration level of the distribution. Higher τ leads to a softer

probability distribution. We set τ = 0.2 in our experiments.

By combining the binary cross-entropy loss and the

above contrastive loss, the attention model may not be dom-

inated by some temporal segments. The aggregated feature

would be more likely the information that happens at this

segment instead of all context features, leading to better

temporal localization performances.

4. Experiments

4.1. Experiment Setup

The Look, Listen and Parse (LLP) Dataset [39] contains

11,849 YouTube video clips and 25 event categories. It

covers a wide range of daily life scenes, including human

activities, animal activities, music performances, and vehi-

cle sounds. The detailed events categories, including man

speaking, dog barking, playing guitar, and frying food etc.,

lasts 10 seconds with both audio and video tracks. There are

7,202 videos that contain events from more than one event

categories and per video has averaged 1.64 different event

categories. For the weakly-supervised AVVP task, there

are 10,000 videos for training, containing weak labels only

(video-level event annotations on the presence or absence

of different video events). To evaluate AVVP performance,

the 1,849 validation and test videos have fully annotated

labels, i.e., individual audio and visual events with second-

wise temporal boundaries.

Evaluation Metrics. We evaluate our method by pars-

ing all types of events (audio, visual, and audio-visual
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events) under both segment-level and event-level metrics.

F-scores are used as the metrics to evaluate the predic-

tions. The segment-level metrics evaluate segment-wise

event prediction performance. Besides segment-level per-

formance, the event-level results are also reported to in-

dicate the performance in real applications. For comput-

ing event-level F-score results, we extract events by con-

catenating consecutive positive snippets in the same event

categories and compute the event-level F-score based on

mIoU = 0.5 as the threshold. In addition, we also evaluate

the overall audio-visual scene parsing performance of our

method by computing aggregated results, i.e., “Type@AV”

and “Event@AV”. Specifically, Type@AV computes aver-

aged audio, visual, and audio-visual event evaluation re-

sults, while Event@AV computes the F-score considering

all audio and visual events for each sample rather than di-

rectly averaging results from different event types.

Implementation Details. We use the same visual features

and audio features as previous works for a fair comparison.

We use both the ResNet-152 [17] model pre-trained on Im-

ageNet and 18 layer deep R(2+1)D [43] model pre-trained

on Kinetics-400 to extract visual representations. We de-

code videos at 8 fps and input each segment (lasting one

second) to obtain the 2D and 3D visual features. We regard

the concatenation of the two visual features as the low-level

visual feature. For the audio signals, we use the VGGish

network [18] pre-trained on AudioSet [14] to extract 128-D

features. We use Adam optimizer to train the framework

with a mini-batch size of 16 and a learning rate of 3×10−4.

We train 40 epochs and drop the learning by a factor of 10
after 10 epochs. Our training pipeline includes three stages.

First, we optimize a base model for audio-visual scene pars-

ing using MIL and our proposed contrastive learning. Sec-

ond, we freeze the model and evaluate each video by swap-

ping its audio and visual tracks with other unrelated videos.

Finally, we re-train the model from scratch using modality-

aware labels. We name the final model as “MA” to distin-

guish it from the base model.

4.2. Comparison with Stateoftheart Results

We compare our model MA with weakly-supervised

sound detection method TALNet [48], temporal action lo-

calization methods STPN [26] and CMCS [24], and state-

of-the-art audio-visual event parsing methods including

AVE [40], AVSDN [23], and HAN [39]. All the models,

including ours, are trained for fair comparisons using the

LLP training dataset only, including the same training data

and pre-processed audio/visual features.

Table 1 shows the performances of our method MA and

state-of-the-art methods on the LLP test set. It can be seen

from the table that our method outperforms the state-of-

the-art methods by a large margin on all audio-visual video

parsing subtasks for both the segment-level and event-level

Event type Methods Segment-level Event-level

Audio-visual

AVE [40] 35.4 31.6

AVSDN [23] 37.1 26.5

HAN [39] 48.9 43.0

MA (Ours) 55.1 (+6.2) 49.0 (+6.0)

Audio

TALNet [48] 50.0 41.7

AVE [40] 47.2 40.4

AVSDN [23] 47.8 34.1

HAN [39] 60.1 51.3

MA (Ours) 60.3 (+0.2) 53.6 (+2.3)

Visual

STPN [26] 46.5 41.5

CMCS [24] 48.1 45.1

AVE [40] 37.1 34.7

AVSDN [23] 52.0 46.3

HAN [39] 52.9 48.9

MA (Ours) 60.0 (+7.1) 56.4 (+7.5)

Type@AV

AVE [40] 39.9 35.5

AVSDN [23] 45.7 35.6

HAN [39] 54.0 47.7

MA (Ours) 58.9 (+4.9) 53.0 (+5.3)

Event@AV

AVE [40] 41.6 36.5

AVSDN [23] 50.8 37.7

HAN [39] 55.4 48.0

MA (Ours) 57.9 (+2.5) 50.6 (+2.6)

Table 1. Comparisons with the state-of-the-art methods of the

audio-visual video parsing task on the LLP test dataset. Note that

we use the same input features as the compared methods.

metrics. Specifically, on the audio-visual event prediction,

our MA beats the state-of-the-art method HAN [39] by 6.2

points (from 48.9% to 55.1%) at the segment level, and

6.0 points (from 43.0% to 49.0%) at the event level. The

most significant improvement is found for visual event pars-

ing, which validates our motivation that previous methods

are suffered from the ambiguous overall labels of invisible

events. The comparison with the state-of-the-art methods

demonstrates that our model is able to predict significantly

better event categories with accurate temporal locations.

4.3. Ablation Studies

Effectiveness of Modality-aware Refinement. We con-

duct the ablation studies to show the effectiveness of the

modality-aware refinement. As shown in Table 2, “Base-

line + R” indicates the results of the model trained with

modality-aware refinement. By leveraging clues between

the audio and visual tracks and assigning different labels

for the two modalities, we find the model performance gets

significantly improved. Table 2 shows our model “Baseline

+ R” outperforms the baseline by about 4 points at audio-

visual event parsing evaluation metrics. Specifically, for

the visual event parsing, the model with the modality-aware

refinement significantly improves the performance by 4.6

points (from 52.9% to 57.5%) at the segment-level predic-
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Event type Methods Segment-level Event-level

Audio-visual

Baseline 48.9 43.0

Baseline + C 49.7 43.8

Baseline + R 52.6 45.8

Baseline + C + R 55.1 49.0

Audio

Baseline 60.1 51.3

Baseline + C 61.9 52.8

Baseline + R 59.8 52.1

Baseline + C + R 60.3 53.6

Visual

Baseline 52.9 48.9

Baseline + C 53.1 49.4

Baseline + R 57.5 54.4

Baseline + C + R 60.0 56.4

Type@AV

Baseline 54.0 47.7

Baseline + C 54.9 48.7

Baseline + R 56.6 50.8

Baseline + C + R 58.9 53.0

Event@AV

Baseline 55.4 48.0

Baseline + C 56.2 49.0

Baseline + R 56.6 49.4

Baseline + C + R 57.9 50.6

Table 2. Ablation studies of the proposed modules. Audio-visual

video parsing accuracy (%) are reported on the LLP test dataset.

“C” denotes the proposed contrastive learning for temporal local-

ization. “R” is our modality-aware refinement by exchanging au-

dio and visual channels.

tion and 5.5 points (from 48.9% to 54.4%) at the event level.

It validates that ambiguous video-level labels harm model

training since some events only appear in one modality.

Analysis of Modality Bias in Refinement. We further un-

cover the effect of modality-aware refinement by looking

into modalities. We conduct experiments including 1) only

refining audio labels, 2) only refining visual labels, and 3)

refining both modalities labels. The results are reported in

Table 3. We can find the most significant improvement is

brought by refining event labels for visual parsing predic-

tion. By refining visual parsing labels, we significantly im-

prove the performance on segment-level visual parsing eval-

uation. The reason is that the visual content could only be

captured for specific camera views, whether the object of in-

terest might usually be outside of the field-of-view. In con-

trast, the audio signals are collected by microphones, which

are able to perceive all the event information of the scenes.

Therefore, unmatched event labels are more common for

visual modalities. By refining visual event labels for these

audible but not visible videos, we observe a noticeable per-

formance improvement on all the evaluation metrics except

audio-only parsing.

Besides, we achieve further performance improvement

by refining event labels for both modalities. Compared to

“visual-only”, the model trained with both modality refine-

Modality Audio Visual Audio-Visual Type@AV Event@AV

Audio only 60.5 52.7 51.8 55.0 54.2

Visual only 60.4 59.0 53.5 57.9 57.1

Both 60.3 60.0 55.1 58.9 57.9

Table 3. Analysis of the modality-aware refinement. “Audio” and

“Visual” indicate that we only refine labels for the audio modality

and the visual modality, respectively. Segment-level audio-visual

video parsing results are reported.

τ Audio Visual Audio-Visual Type@AV Event@AV

0.1 61.3 58.3 54.5 58.4 57.8

0.2 60.3 60.0 55.1 58.9 57.9

0.3 60.5 60.3 54.9 58.7 57.9

0.4 60.3 59.9 55.0 58.5 57.3

Table 4. Analysis on different τ values used in contrastive learn-

ing (Eqn (8)). Smaller τ leads to sharper probability distribution.

Segment-level audio-visual video parsing results are reported.

ment obtain considerable performance gain on all evalua-

tion metrics.

Effectiveness of Cross-modal Contrastive Learning. Ta-

ble 2 also shows the relative improvement brought by the

cross-modal contrastive learning. Compared to the baseline,

our model with the contrastive learning only (“Baseline +

C”) shows an improvement on audio-visual even parsing.

The relative improvement is even more significant when

combining with the modality-aware refinement. By com-

paring the model “Baseline + C + R” and model “Baseline

+ R”, we can find the contrastive learning further improve

the event parsing performance by about 2 points on most

evaluation metrics. It indicates our proposed contrastive

learning could introduce essential temporal differences for

audio-visual video parsing.

Analysis of different τ values. As indicated in Eqn.(8),

τ is a temperature parameter that controls the concentra-

tion level of the distribution. We validate different τ val-

ues used in our experiments. Table 4 shows the comparison

of the segment-level audio-visual video parsing evaluation.

Smaller τ leads to a sharper probability distribution. In ex-

periments, we find the performances get slightly higher as

τ decreases. Overall speaking, our model is not sensitive to

the values of τ used in the contrastive learning (Eqn.(8)). In

all other experiments, we set τ to 0.2.

4.4. Qualitative Results

We visualize the audio-visual video parsing results in

Fig. 3. “Pred” shows the prediction from our models. “GT”

is the ground truth annotation. Overall speaking, our model

could correctly recognize the events happening in the video.

But it makes mistakes on the temporal location of these

events. For example, our model still predicts guitar for the
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Figure 3. Qualitative results on the LLP test set. The upper and bottom figure shows visual and audio event parsing, respectively. “Pred” is

the prediction result from our model, while “GT” indicates the ground truth annotation.

Fire alarm

Speech

Singing

Cheering

Fire alarm

Singing

Figure 4. Examples of our refined labels for the visual modality.

visual event parsing after 2s, although we could not find

such clues of the guitar in the corresponding visual frames.

The reason might be that the context feature aggregation

collects too much information from the audio and video of

other time stamps. For example, the audio clearly indicates

“guitar” at this moment. Compared to the visual parsing,

the audio event parsing prediction is more reliable in gen-

eral. The reason might be that audio is more clear and easy

to be distinguished compared to complex visual frames.

We also show two examples of our modality-aware la-

bel refinement in Fig. 4. By exchanging audio and visual

tracks among training videos, we localized event clues and

found some events do not exist in the visual/audio modality.

The upper case in the figure is a news video about the fire

alarm event. Although the event labels are “fire alarm” and

“speech” for the entire video in training, the model does not

predict the “speech” event given the assembled video with

exchanged channels (consisting of the original visual con-

tent and a new audio track). Through exchanging audio and

visual signals, we could obtain a more accurate event label

for the visual modality, i.e., “fire alarm” only. In this way,

we protect the visual model from being misled by the am-

biguous overall event label “Speech”.

5. Conclusions

We focus on the weakly-supervised audio-visual video

parsing task, which predicts the audible or visible event cat-

egories and their temporal locations. We believe it harms

the model training if we train both audio and visual mod-

els using the same overall labels. We propose to generate

modality-aware event labels by swapping audio and visual

tracks with other unrelated videos. If the predictions on the

new assembled data are not confident at the target event,

there might be no events clues in the original visual/audio

tracks. In this way, we could protect our models from be-

ing misled by ambiguous event labels. Besides, we further

leverage heterogeneous clues temporally and induce tem-

poral difference within videos by audio-visual contrastive

learning. Experiments show we outperform state-of-the-art

methods by a large margin. In conclusion, we found it use-

ful by mining detailed annotations for different modalities.

Inducing temporal difference also improves performance in

the weakly-supervised AVVP task.
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