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Abstract

In this work, we propose TediGAN, a novel framework

for multi-modal image generation and manipulation with

textual descriptions. The proposed method consists of three

components: StyleGAN inversion module, visual-linguistic

similarity learning, and instance-level optimization. The

inversion module maps real images to the latent space

of a well-trained StyleGAN. The visual-linguistic similar-

ity learns the text-image matching by mapping the image

and text into a common embedding space. The instance-

level optimization is for identity preservation in manipu-

lation. Our model can produce diverse and high-quality

images with an unprecedented resolution at 10242. Us-

ing a control mechanism based on style-mixing, our Tedi-

GAN inherently supports image synthesis with multi-modal

inputs, such as sketches or semantic labels, with or with-

out instance guidance. To facilitate text-guided multi-

modal synthesis, we propose the Multi-Modal CelebA-HQ,

a large-scale dataset consisting of real face images and

corresponding semantic segmentation map, sketch, and

textual descriptions. Extensive experiments on the in-

troduced dataset demonstrate the superior performance

of our proposed method. Code and data are available

at https://github.com/weihaox/TediGAN.

1. Introduction

How to create or edit an image of the desired content

without tedious manual operations is a difficult but mean-
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He is wearing 
heavy makeup.

This young man 
has red hair.

This woman is 
smiling. She has 
short black hair.

He is a young man. He is old. He is wearing eyeglasses.
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Figure 1. Our TediGAN is the first method that unifies text-guided

image generation and manipulation into one same framework,

leading to naturally continuous operations from generation to ma-

nipulation (a), and inherently supports image synthesis with multi-

modal inputs (b), such as sketches or semantic labels with or with-

out instance (texts or real images) guidance.

ingful task. To make image generation and manipulation

more readily and user-friendly, recent studies have been fo-

cusing on the image synthesis conditioned on a variety of

guidance, such as sketch [9, 37], semantic label [11, 36], or

textual description [26, 39]. Despite the success of its label

and sketch counterparts, most state-of-the-art text-guided

image generation and manipulation methods are only able

to produce low-quality images [28, 8]. Those aiming at

generating high-quality images from texts typically design

a multi-stage architecture and train their models in a pro-

gressive manner. To be more specific, there are usually

three stages in the main module, and each stage contains

a generator and a discriminator. Three stages are trained at

the same time, and progressively generate images of three

different scales, i.e., 642 → 1282 → 2562. The initial

image with rough shape and color would be refined to a

high-resolution one. However, the multi-stage training pro-

cess is time-consuming and cumbersome, making the afore-
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Figure 2. Projecting Multi-Modal Embedding into the W Space of

StyleGAN. Taking visual and linguistic embedding for example,

the left illustrates visual-linguistic similarity learning, where the

visual embedding w
v and linguistic embedding w

l are expected

to be close enough. The right demonstrates text-guided image ma-

nipulation. Given a source image and a text guidance, we first

get their embedding w
v and w

l in W space through correspond-

ing encoders. We then perform style mixing for target layers and

get the target latent code w
t. The final wt∗ is obtained through

instance-level optimization. The edited image can be generated

from the StyleGAN generator.

mentioned methods unfeasible for higher resolution. Fur-

thermore, the pretrained text-image matching model they

used fails to exploit attribute-level cross-modal information

and leads to mismatched attributes when generating images

from texts [39, 19, 47, 5], or undesired changes of irrelevant

attributes when manipulating images [8, 26, 20, 21].

Recent progress on generative adversarial networks

(GANs) has established an entirely different image gener-

ation paradigm that achieves phenomenal quality, fidelity,

and realism. StyleGAN [16], one of the most notable GAN

frameworks, introduces a novel style-based generator archi-

tecture and can produce high-resolution images with un-

matched photorealism. Some recent work [16] has demon-

strated that the intermediate latent space W of StyleGAN,

inducted from a learned piece-wise continuous mapping,

yields less entangled representations and offers more fea-

sible manipulation. The superior characteristics of W space

appeal to numerous researchers to develop advanced GAN

inversion techniques [38, 2, 1] to invert real images back

into the StyleGAN’s latent space and perform meaningful

manipulation. The most popular way [45, 29] is to train an

additional encoder to map real images into the W space,

which leads to not only faithful reconstruction but also se-

mantically meaningful editing. Furthermore, it is easy to in-

troduce the hierarchically semantic property of the W space

to any GAN model by simply learning an extra mapping

network before a fixed, pretrained StyleGAN generator. We

thoroughly investigated the existing GAN inversion meth-

ods, and found all is about how to map images into the latent

space of a well-trained GAN model. The other modalities

like texts, however, have not received any attention.

In this paper, for the first time, we propose a GAN in-

version technique that can map multi-modal information,

e.g., texts, sketches, or labels, into a common latent space

of a pretrained StyleGAN. Based on that, we propose a very

simple yet effective method for Text-guided diverse image

generation and manipulation via GAN (abbreviated Tedi-

GAN). Our proposed method introduces three novel mod-

ules. The first StyleGAN inversion module learns the inver-

sion where an image encoder can map a real image to the

W space, while the second visual-linguistic similarity mod-

ule learns linguistic representations that are consistent with

the visual representations by projecting both into a common

W space, as shown in Figure 2. The third instance-level

optimization module is to preserve the identity after edit-

ing, which can precisely manipulate the desired attributes

consistent with the texts while faithfully reconstructing the

unconcerned ones. Our proposed method can generate di-

verse and high-quality results with a resolution up to 10242,

and inherently support image synthesis with multi-modal

inputs, such as sketches or semantic labels with or without

instance (texts or real images) guidance. Due to the uti-

lization of a pretrained StyleGAN model, our method can

provide the lowest effect guarantee, i.e., our method can al-

ways produce pleasing results no matter how uncommon

the given text or image is. Furthermore, to fill the gaps in

the text-to-image synthesis dataset for faces, we create the

Multi-Modal CelebA-HQ dataset to facilitate the research

community. Following the format of the two popular text-

to-image synthesis datasets, i.e., CUB [34] for birds and

COCO [22] for natural scenes, we create ten unique descrip-

tions for each image in the CelebA-HQ [15]. Besides real

faces and textual descriptions, the introduced dataset also

contains the label map and sketch for the text-guided gener-

ation with multi-modal inputs.

In summary, this work has the following contributions:

• We propose a unified framework that can generate di-

verse images given the same input text, or text with

image for manipulation, allowing the user to edit the

appearance of different attributes interactively.

• We propose a GAN inversion technique that can map

multi-modal information into a common latent space

of a pretrained StyleGAN where the instance-level

image-text alignment can be learned.

• We introduce the Multi-Modal CelebA-HQ dataset,

consisting of multi-modal face images and correspond-

ing textual descriptions, to facilitate the community.

2. Related Work

Text-to-Image Generation. There are basically two cat-

egories of GAN-based text-to-image generation methods.
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a smiling young woman with short blonde hair he is young and wears beard a young woman with long black hair

Figure 3. Diverse High-Resolution Results from Text. Our method can achieve text-guided diverse image generation and manipulation up

to an unprecedented resolution at 10242.

The first category produces images from texts directly by

one generator and one discriminator. For example, Reed et

al. [28] propose to use conditional GANs to generate plausi-

ble images from given text descriptions. Tao et al. [32] pro-

pose a simplified backbone that generates high-resolution

images directly by Wasserstein distance and fuses the text

information into visual feature maps to improve the image

quality and text-image consistency. Despite the plainness

and conciseness, the one-stage models produce dissatisfied

results in terms of both photo-realism and text-relevance in

some cases. Thus, another thread of research focuses on

multi-stage processing. Zhang et al. [42] stack two GANs

to generate high-resolution images from text descriptions

through a sketch-refinement process. They further pro-

pose a three-stage architecture [43] that stacks multiple gen-

erators and discriminators, where multi-scale images are

generated progressively in a course-to-fine manner. Xu et

al. [39] improve the work of [43] from two aspects. First,

they introduce attention mechanisms to explore fine-grained

text and image representations. Second, they propose a

Deep Attentional Multimodal Similarity Model (DAMSM)

to compute the similarity between the generated image and

the sentence. The subsequent studies basically follow the

framework of [39] and have proposed several variants by in-

troducing different mechanisms like attention [19] or mem-

ory writing gate [47]. However, the multi-stage frameworks

produce results that look like a simple combination of visual

attributes from different image scales.

Text-Guided Image Manipulation. Similar to text-to-

image generation, manipulating given images using texts

also produces results that contain desired visual attributes.

Differently, the modified results should only change certain

parts and preserve text-irrelevant contents of the original

images. For example, Dong et al. [8] propose an encoder-

decoder architecture to modify an image according to a

given text. Nam et al. [27] disentangle different visual at-

tributes by introducing a text-adaptive discriminator, which

can provide finer training feedback to the generator. Li

et al. [20] introduce a multi-stage network with a novel

text-image combination module to produce high-quality re-

sults. Similar to text-to-image generation, the text-based

image manipulation methods with the best performance are

basically based on the multi-stage framework. Different

from all existing methods, we propose a novel framework

that unifies text-guided image generation and manipulation

methods and can generate high-resolution and diverse im-

ages directly without multi-stage processing.

Image-Text Matching. One key of text-guided image

generation or manipulation is to match visual attributes with

corresponding words. To do this, current methods usu-

ally provide explicit word-level training feedback from the

elaborately-designed discriminator [20, 21]. There is also

a rich line of work proposed to address a related direc-

tion named image-text matching, or visual-semantic align-

ment, aiming at exploiting the matching relationships and

making the corresponding alignments between text and im-

age. Most of them can be categorized into two-branch

deep architecture according to the granularity of represen-

tations for both modalities, i.e., global [17, 24, 23] or lo-

cal [14, 13, 18] representations. The first category em-

ploys deep neural networks to extract the global features of

both modalities, based on which their similarities are mea-

sured [24]. Another thread of work performs instance-level

image-text matching [25, 18, 31], learning the correspon-

dences between words and image regions [13].

3. The TediGAN Framework

We first learn the inversion, i.e., training an image en-

coder to map the real images to the latent space such that

all codes produced by the encoder can be recovered at both

the pixel-level and the semantic-level. We then use the hier-

archical characteristic of W space to learn the text-image

matching by mapping the image and text into the same

joint embedding space. To preserve identity in manipula-

tion, we propose an instance-level optimization, involving

the trained encoder as a regularization to better reconstruct

the pixel values without affecting the semantic property of

the inverted code.

3.1. StyleGAN Inversion Module

The inversion module aims at training an image encoder

that can map a real face image to the latent space of a fixed
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(a) AttnGAN (b) ControlGAN (c) DM-GAN        (d) DF-GAN              (e)  Ours        

This man has 
bags under eyes
and big nose. 
He has no beard.

This woman is 
young and has 
blond hair.

She has wavy 
hair, high 
cheekbones, and 
oval face. She is 
wearing lipstick. 

Figure 4. Comparison of Text-to-Image Generation on Our Multi-modal CelebA-HQ dataset.

StyleGAN model pretrained on the FFHQ dataset [16]. The

reason we invert a trained GAN model instead of training

one from scratch is that, in this way, we can go beyond

the limitations of a paired text-image dataset. The Style-

GAN is trained in an unsupervised setting and covers much

higher quality and wider diversity, which makes our method

able to produce satisfactory edited results with images in

the wild. In order to facilitate subsequent alignment with

text attributes, our goal for inversion is not only to recon-

struct the input image by pixel values but also to acquire

the inverted code that is semantically meaningful and inter-

pretable [30, 40].

Before introducing our method, we first briefly establish

problem settings and notations. A GAN model typically

consists of a generator G(·) : Z → X to synthesize fake im-

ages and a discriminator D(·) to distinguish real data from

the synthesized. In contrast, GAN inversion studies the re-

verse mapping, which is to find the best latent code z∗ by in-

verting a given image x to the latent space of a well-trained

GAN. A popular solution is to train an additional encoder

Ev(·) : X → Z [46, 3] (subscript v means visual). To be

specific, a collection of latent codes z
s are first randomly

sampled from a prior distribution, e.g., normal distribution,

and fed into G(·) to get the synthesis xs as the training pairs.

The introduced encoder Ev(·) takes xs and z
s as inputs and

supervisions respectively and is trained with

min
ΘEv

LEv
= ||zs − Ev(G(zs))||22, (1)

where || · ||2 denotes the l2 distance and ΘEv
represents the

parameters of the encoder Ev(·).
Despite of its fast inference, the aforementioned proce-

dure simply learns a deterministic model with no regard

to whether the codes produced by the encoder align with
the semantic knowledge learned by G(·). The supervision
by only reconstructing z

s is not powerful enough to train
Ev(·), and G(·) is actually not fully used to guide the train-
ing of Ev(·), leading to the incapability of inverting real
images. To solve these problems, we use a totally different
strategy to train an encoder for GAN inversion as in [45].
There are two main differences compared with the conven-
tional framework: (a) the encoder is trained with real im-
ages rather than with synthesized images, making it more
applicable to real applications; (b) the reconstruction is at
the image space instead of latent space, which provides se-
mantic knowledge and accurate supervision and allows inte-
gration of powerful image generation losses such as percep-
tual loss [12] and LPIPS [44]. Hence, the training process
can be formulated as

min
ΘEv

LEv
= ||x−G(Ev(x))||

2

2 +λ1||F (x)−F (G(Ev(x)))||
2

2

−λ2E[Dv(G(Ev(x)))],

(2)

min
ΘDv

LDv
=E[Dv(G(Ev(x)))]−E[Dv(x)]+

λ3

2
E[||∇xDv(x)||

2

2],

(3)

where ΘEv
and ΘDv

are learnable parameters, λ1, λ2, and

λ3 are the hyper-parameters, and F (·) denotes the VGG fea-

ture extraction model.

Through the learned image encoder, we can map a real

image into the W space. The obtained code is guaranteed to

align with the semantic domain of the StyleGAN generator

and can be further utilized to mine cross-modal similarity

between the image-text instance pairs.
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He has brown hair. He has no beard.

This woman wears 
earrings. She has 
oval face and high 
bones. She is smiling.

She wears eyeglasses.
She has oval face and 

long black hair. She 
is wearing earrings.

This old woman has 

big lips, pale skin, 
and gray hair. 
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Figure 5. Qualitative Comparison of Image Manipulation using Natural Language Descriptions.

3.2. Visual­Linguistic Similarity Learning

Once the inversion module is trained, given a real im-

age, we can map it into the W space of StyleGAN. The

next problem is how to train a text encoder that learns the

associations and alignments between image and text. In-

stead of training a text encoder in the same way as the im-

age encoder or the aforementioned DAMSM, we propose a

visual-linguistic similarity module to project the image and

text into a common embedding space, i.e., the W space, as

shown in Figure 2. Given a real image and its descriptions,

we encode them into the W space by using the previously

trained image encoder and a text encoder. The obtained la-

tent code is the concatenation of L different C-dimensional

w vectors, one for each input layer of StyleGAN. The multi-

modal alignment can be trained with

min
ΘEl

LEl
= ||

L∑

i=1

pi(w
v

i −w
l

i)||
2

2, (4)

where ΘEl
represents the parameters of the text encoder

El(·) and subscript l means linguistic; w
v,wl ∈ WL×C

are the obtained image embedding and text embedding;

w
v = f(Ev(x)) is the projected code of the image em-

bedding z in the input latent space Z using a non-linear

mapping network f : Z → W ; wl shares a similar defini-

tion; wv and w
l are with the same shape L×C, meaning to

have L layers and each with a C-dimensional latent code;

and pi is the weight of i-th layer in the latent code.

Compared with DAMSM, our proposed module is

lightweight and easy to train. More importantly, this mod-

ule achieves instance-level alignment [35], i.e., learning

correspondences between visual and linguistic attributes,

by leveraging the disentanglability of StyleGAN. The text

encoder is trained with the proposed visual-linguistic sim-

ilarity loss together with the pairwise ranking loss [17, 8],

which is omitted from Equation 4.

3.3. Instance­Level Optimization

One of the main challenges of face manipulation is the

identity preservation. Due to the limited representation ca-

pability, learning a perfect reverse mapping with an en-

coder alone is not easy. To preserve identity, some recent

methods [33, 29] incorporate a dedicated face recognition

loss [7] to measure the cosine similarity between the out-

put image and its source. Different from their methods, for

text-guided image manipulation, we implement an instance-

level optimization module to precisely manipulate the de-

sired attributes consistent with the descriptions while faith-

fully reconstructing the unconcerned ones. We use the in-

verted latent code z as the initialization, and the image en-

coder is included as a regularization to preserve the latent

code within the semantic domain of the generator. To sum-

marize, the objective function for optimization is

z
∗ = argmin

z

||x−G(z)||22 + λ′

1||F (x)− F (G(z))||22

+ λ′

2||z− Ev(G(z))||22,

(5)

where x is the original image to manipulate, λ′

1 and λ′

2 are

the loss weights corresponding to the perceptual loss and

the encoder regularization term, respectively.

3.4. Control Mechanism

Attribute-Specific Selection. The two different tasks,

i.e., text-to-image generation and text-guide image manipu-
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Figure 6. Control Mechanism of Our TediGAN Framework. Dif-

ferent layer in the StyleGAN generator represents different at-

tributes. Changing the value of a certain layer would change the

corresponding attributes of the image. Since the texts and images

are mapped into the common latent space, we can synthesize im-

ages with certain attributes by selecting attribute-specific layers.

The control mechanism mixes layers of the style code w
s by par-

tially replacing corresponding layers of the content wc. When w
s

is a randomly sampled latent code, it is the text-to-image genera-

tion and when w
s is the image embedding, it performs text-guided

image manipulation.

lation, are unified into one framework by our proposed con-

trol mechanism. Our mechanism is based on the style mix-

ing of StyleGAN. The layer-wise representation of Style-

GAN learns disentanglement of semantic fragments (at-

tributes or objects). In general, different layer wi represents

different attributes and is fed into the i-th layer of the gen-

erator. Changing the value of a certain layer would change

the corresponding attributes of the image. As shown in Fig-

ure 2, given two codes with the same size wc,ws ∈ W L×C

denoting content code and style code, this control mecha-

nism selects attribute-specific layers and mixes those layers

of w
s by partially replacing corresponding layers of w

c.

For text-to-image generation, the produced images should

be consistent with the textual description, thus w
c should

be the linguistic code, and randomly sampled latent code

with the same size acts as w
s to provide diversity (results

are shown in Figure 7). For text-guided image manipula-

tion, wc is the visual embedding while w
s is the linguis-

tic embedding, the layers for mixing should be relevant to

the text, for the purpose of modifying the relevant attributes

only and keeping the unrelated ones unchanged.

Supported Modality. The style code w
s and content

code w
c could be sketch, label, image, and noise, as shown

in Figure 6, which makes our TediGAN feasible for multi-

modal image synthesis. The control mechanism provides

high accessibility, diversity, controllability, and accurate-

ness for image generation and manipulation. Due to the

control mechanism, as shown in Figure 1, our method inher-

ently supports continuous operations and multi-modal syn-

thesis for sketches and semantic labels with descriptions. To

produce the diverse results, all we need to do is to keep the

layers related to the text unchanged and replace the others

with the randomly sampled latent code. If we want to gener-

ate images from other modality with text guidance, take the

sketch as an example, we can train an additional sketch im-

age encoder Evs in the same way as training the real image

encoder and leave the other parts unchanged.

Layerwise Analysis. The pre-trained StyleGAN we used

in most experiments is to generate images of 256 × 256

(i.e., size 256), whose has 14 layers of the intermediate vec-

tor. For a synthesis network trained to generate images of

512 × 512, the intermediate vector would be of shape (16,

512) (and (18, 512) for 1024 × 1024), where the number of

the layers L is determined by 2 log2 R−2 and R is the image

size. In general, layers in the generator at lower resolutions

(e.g., 4 × 4 and 8 × 8) control high-level styles such as eye-

glasses and head pose, layers in the middle (e.g., as 16 × 16

and 32 × 32) control hairstyle and facial expression, while

the final layers (e.g., 64 × 64 to 1024 × 1024) control color

schemes and fine-grained details. Based on empirical obser-

vations, we list the attributes represented by different layers

of a 14-layer StyleGAN in Table 1. The layers from 11-

14 represent micro features or fine structures, such as stub-

ble, freckles, or skin pores, which can be regarded as the

stochastic variation. High-resolution images contain lots of

facial details and cannot be obtained by simply upsampling

from the lower-resolutions, making the stochastic variations

especially important as they improve the visual perception

without affecting the main structures and attributes of the

synthesized image.

Table 1. The Empirical Layerwise Analysis of a 14-layer Style-

GAN Generator. The 13-th and 14-th layers are omitted since there

is basically no visible difference.

n-th attribute n-th attribute

1 eye glasses 7 hair color

2 head pose 8 face color

3 face shape 9 age

4 hair length, nose, lip 10 gender

5 cheekbones 11 micro features

6 chin 12 micro features

4. Experiments

4.1. Experiments Setup

Datasets and Baseline Models. To achieve text-guided

image generation and manipulation, the first step is to build

a dataset that contains photo-realistic facial images and cor-

responding descriptions. We introduce the Multi-Modal

CelebA-HQ dataset, a large-scale face image dataset that
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He has bread and black hair.

This woman has black long hair and wears earrings. She is smiling.

Figure 7. Diverse Text-to-image Generation.

Table 2. Quantitative Comparison of Text-to-Image Generation.

We use FID, LPIPS, accuracy (Acc.), and realism (Real.) to com-

pare the state of the art and our method on the proposed Multi-

modal CelebA-HQ dataset. ↓ means the lower the better while ↑
means the opposite.

Method FID ↓ LPIPS ↓ Acc. (%) ↑ Real. (%) ↑

AttnGAN [39] 125.98 0.512 14.2 20.3

ControlGAN [19] 116.32 0.522 18.2 22.5

DFGAN [32] 137.60 0.581 22.8 25.5

DM-GAN [47] 131.05 0.544 19.5 12.8

TediGAN 106.37 0.456 25.3 31.7

has 30,000 high-resolution face images, each having a high-

quality segmentation mask, sketch, and descriptive text. We

evaluate our proposed method on text and image partitions,

comparing with state-of-the-art approaches AttnGAN [39],

ControlGAN [19], DM-GAN [47], and DFGAN [32] for

image generation, and comparing with ManiGAN [20] for

image manipulation using natural language descriptions.

All methods are retrained with the default settings on the

proposed Multi-Modal CelebA-HQ dataset.

Evaluation Metric. For evaluation, there are four im-

portant aspects: image quality, image diversity, accuracy,

and realism [19, 21]. The quality of generated or manip-

ulated images is evaluated through Fréchet Inception Dis-

tance (FID) [10]. The diversity is measured by the Learned

Perceptual Image Patch Similarity (LPIPS) [44]. For im-

age generation, the accuracy is evaluated by the similarity

between the text and the corresponding generated image.

For manipulation, the accuracy is evaluated by whether the

modified visual attributes of the synthetic image are aligned

with the given description and text-irrelevant contents are

preserved. The accuracy and realism are evaluated through

a user study, where the users are asked to judge which one

is more photo-realistic, and more coherent with the given

texts. We test accuracy and realism by randomly sampling

50 images with the same conditions and collect more than

20 surveys from different people with various backgrounds.

Table 3. Quantitative Comparison of Text-Guided Image Manipu-

lation. We use FID, accuracy (Acc.), and realism (Real.) to com-

pare with the state of the art ManiGAN [20].

CelebA Non-CelebA

Method ManiGAN [20] Ours ManiGAN [20] Ours

FID ↓ 117.89 107.25 143.39 135.47

Acc. (%) ↑ 40.9 59.1 12.8 87.2

Real. (%) ↑ 36.2 63.8 21.7 78.3

4.2. Comparison with State­of­the­Art Methods

4.2.1 Text-to-Image Generation

Quantitative Comparison. In our experiments, we eval-

uate the FID and LPIPS on a large number of samples gen-

erated from randomly selected text descriptions. To eval-

uate accuracy and realism, we generate images from 50

randomly sampled texts using different methods. In a user

study, users are asked to judge which one is the most photo-

realistic and most coherent with the given texts. The results

are demonstrated in Table 2. Compared with the state-of-

the-arts, our method achieves better FID, LPIPS, accuracy,

and realism values, which proves that our methods can gen-

erate images with the highest quality, diversity, photoreal-

ism, and text-relevance.

Qualitative Comparison. Most existing text-to-image

generation methods, as shown in Figure 4, can generate

photo-realistic and text-relevant results. However, some at-

tributes contained in the text do not appear in the generated

image, and the generated image looks like featureless paint

and lacks details. This “featureless painterly” look [16]

would be significantly obvious and irredeemable when gen-

erating higher resolution images using the multi-stage train-

ing methods [39, 19, 47]. Furthermore, most existing solu-

tions have limited diversity of the outputs, even if the pro-

vided conditions contain different meanings. For example,

“has a beard” might mean a goatee, short or long beard, and

could have different colors. Our method can not only gen-

erate results with diversity but also realise the expectation

to change where you want by using the control mechanism.

To produce diverse results, with the layers related to the text

unchanged, the other layers could be replaced by any values

sampled from the prior distribution. For example, as shown

in the first row of Figure 7, the key visual attributes (women,

black long hair, earrings, and smiling) are preserved, while

the other attributes, like haircuts, makeups, face shapes, and

head poses, show a great degree of diversity. The images in

the second row illustrate more precise control ability. We

keep the layers representing face shape and head pose the

same and change the others. Figure 3 shows high-quality

and diverse results with resolution at 1024 × 1024.
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4.2.2 Text-Guided Image Manipulation

Quantitative Comparison. In our experiments, we eval-

uate the FID and conduct a user study on randomly se-

lected images from both CelebA and Non-CelebA datasets

with randomly chosen descriptions. The results are shown

in Table 3. Compared with ManiGAN [20], our method

achieves better FID, accuracy, and realism. This indicates

that our method can produce high-quality synthetic images,

and the modifications are highly aligned with the given de-

scriptions, while preserving other text-irrelevant contents.

Qualitative Comparison. Figure 5 shows the visual com-

parisons between the recent method ManiGAN [20] and

ours. As shown, the second row is to add earrings and

change the face shape and hair style of the woman, our

method completes this difficult case while ManiGAN fails

to produce required attributes. ManiGAN produces less sat-

isfactory modified results: in some cases, the text-relevant

regions are not modified and the text-irrelevant ones are

changed. Furthermore, since the StyleGAN we used is pre-

trained on a very large face dataset [16], the latent space al-

most covers the full space of facial attributes, which makes

our method robust for real images in the wild. The im-

ages in last two columns are results of out-of-distribution

(Non-CelebA), i.e., images from other face dataset such

as [4, 6, 41], which illustrate that our method is prepared

to produce pleasing results with images in the wild.

5. Ablation Study and Discussion

Instance-Level Optimization. The comparison of with

or without instance-level optimization is shown in Figure 8.

As shown, the inversion results of the image encoder pre-

serve all attributes of the original images, which is suffi-

cient for text-to-image generation since there is no iden-

tity to preserve (Figure 8 (c)). Manipulating a given im-

age according to a text, however, should not change the

unrelated attributes especially one’s identity, which is pre-

served after the instance-level optimization (Figure 8 (d)).

We also compare with a recent inversion-based image syn-

thesis method pSp [29] that incorporates a dedicated recog-

nition loss [7] during training. Despite both preserving the

identity, the optional instance-level optimization provides a

non-deterministic way to refine the final results accordingly.

Visual-Linguistic Similarity. The text encoder is trained

using our visual-linguistic similarity and a very simple pair-

wise ranking loss [17, 8] to align text and image embedding.

Although the learned text embedding can handle near-miss

cases, as shown in Figure 9, we found this plain strategy

sometimes may lead to insufficient disentanglement of at-

tributes and mismatching of image-text alignment, leaving

some room for improvement.

(a)                         (b)                            (c)                          (d) 

Figure 8. Inversion Results. (a) original image; (b) inversion re-

sult of pSp [29]; (c) inversion result of our image encoder (Sec-

tion 3.1); (d) inversion results after optimization (Section 3.3).

He has / has no beard.                     She has brown / black hair.

Figure 9. Illustration of Near-miss Cases.

Potential Issue with StyleGAN. In our experiments,

we found that some unrelated attributes are unwantedly

changed when we manipulate a given image according to

a text description. We thought it might be the problem of

visual-linguistic similarity learning in the first place. How-

ever, when performing layer-wise style mixing on the in-

verted codes of two real images, the interference still oc-

curs. This means some facial attributes remain entangled in

the W space, where different attributes should be orthog-

onal (meaning without affecting other attributes). Another

inherent defect of StyleGAN is that some attributes, such

as hats, necklaces and earrings, are not well represented in

its latent space. This makes our method perform less sat-

isfactorily sometimes when adding or removing jewelry or

accessories through natural language descriptions.

6. Conclusion

We have proposed a novel method for image synthesis

using textual descriptions, which unifies two different tasks

(text-guided image generation and manipulation) into the

same framework and achieves high accessibility, diversity,

controllability, and accurateness for facial image generation

and manipulation. Through the proposed multi-modal GAN

inversion and large-scale multi-modal dataset, our method

can effectively synthesize images with unprecedented qual-

ity. Extensive experimental results demonstrate the superi-

ority of our method, in terms of the effectiveness of image

synthesis, the capability of generating high-quality results,

and the extendability for multi-modal inputs.
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