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Abstract

As a popular entertainment art form, manga enriches the

line drawings details with bitonal screentones. However,

manga resources over the Internet usually show screen-

tone artifacts because of inappropriate scanning/rescaling

resolution. In this paper, we propose an innovative two-

stage method to restore quality bitonal manga from de-

graded ones. Our key observation is that the aliasing in-

duced by downsampling bitonal screentones can be utilized

as informative clues to infer the original resolution and

screentones. First, we predict the target resolution from

the degraded manga via the Scale Estimation Network (SE-

Net) with spatial voting scheme. Then, at the target reso-

lution, we restore the region-wise bitonal screentones via

the Manga Restoration Network (MR-Net) discriminatively,

depending on the degradation degree. Specifically, the orig-

inal screentones are directly restored in pattern-identifiable

regions, and visually plausible screentones are synthesized

in pattern-agnostic regions. Quantitative evaluation on

synthetic data and visual assessment on real-world cases

illustrate the effectiveness of our method.

1. Introduction

Manga, also known as Japanese comics, is a popular

entertainment art form. One of the key differences be-

tween manga and other illustration types is the use of

screentones, regular or stochastic black-and-white patterns

to render intensity, textures and shadings (Figure 1(a)).

Although furnishing impressive visual impact, the existence

of screentones makes it tricky to resample manga images.

For instance, when being undersampled, the bitonal regu-

lar patterns may get ruined and present incoherent visual

effects (Figure 1(c)). Unfortunately, it is common to see

such screentone artifacts from the manga images over the

Internet (e.g. Manga109 [16]), probably due to the poor

∗Equal contributions.
†Corresponding author.

(a) Standard manga (b) Blow-up (c) Degraded manga

Figure 1: The screentones in the manga image with insuf-

ficient resolution are blurry while the desired screentones

should be sharply bitonal. The image comes from the

Manga109 dataset [16]. Akuhamu c©Arai Satoshi

scanners or storage limitation in the old days. In this

background, we are motivated to restore these low-quality

legacy mangas and show their original appearances.

Unlike natural images dominating with low-frequency

components, manga images mainly consist of regular high-

frequency patterns that are pickier at the representing res-

olution. Specifically, for a quality bitonal manga image

of resolution T , it is generally impossible to present the

screentones in a both bitonal and perceptually consistent

manner on the resolution S 6= Tk ∈ {kT |k = 1, 2, 3, ..., n}.

That means, to restore a manga image, we first need to

figure out a target resolution that is able to present the

potential target screentones, and then restore the screen-

tones from the degraded ones at that scale. Apparently,

this tricky requirement excludes the feasibility of existing

Single Image Super-Resolution (SISR) methods [3, 5, 8]

and image restoration methods [15, 30, 2, 19]. Instead, our

key idea is inspired by an interesting observation that the

aliasing caused by downsampling the bitonal screentones is

usually distinctive on the downscaling factor and screentone

type, as illustrated in Figure 2. These may serve as

informative clues to infer the original screentones and their

associated resolution.

To this end, we propose an innovative two-stage manga

restoration method. First, we utilize the Scale Estimation

Network (SE-Net) to predict the target resolution from the

degraded screentones. There are usually multiple screen-
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Figure 2: Our observation. (a) Aliasing from screentone

downscaling is visually distinctive, depending on the scale

factor and screentone type. (b) Statistic of scale prediction

error on a synthetic dataset (degraded scale ranges 1.0 ∼
4.0). A prediction error below 0.02 is achieved over 91%

samples, indicating the strong correlation between aliasing

property and the applied downscaling factors.

tones within a single manga image, and each of them

may contribute differently to the prediction accuracy. This

is effectively tackled through our proposed spatial voting

scheme based on confidence. At the predicted resolution

scale, we restore the region-wise bitonal screentones via

the Manga Restoration Network (MR-Net). Considering

the different degradation degrees, the manga image is re-

stored with two parallel branches: the original screentones

are restored for pattern-identifiable regions, and random

screentones are synthesized under intensity conformity for

pattern-agnostic regions. Specifically, this region-wise

classification is determined adaptively through a learned

confidence map. Separately, the two networks are trained

over the mixture dataset of synthetic manga and real ones,

in a semi-supervised manner.

We have evaluated our method on our synthetic testset

and some real-world cases. Quantitative evaluation demon-

strates that our restored manga images achieve high PSNR

and SSIM on synthetic data. Meanwhile, qualitative evalua-

tion of real-world cases evidences the potential for practical

usage. In summary, this paper has the contributions:

• The first manga restoration method that restores the

bitonal screentones at a learned resolution.

• A manga restoration network that restores the region-

wise screentones adaptively based on a learned confi-

dence map.

While our current method is tailored for the manga restora-

tion problem, our proposed framework has the potential

to be extended to natural images containing the regular

textures. For example, the checkerboard artifact resulted

from undersampling the regular textures should share a

similar property as the screentones.

2. Related Work

2.1. Manga Screening

Attempts have been made to generate screentone manga

automatically from grayscale/color images or line drawings.

Qu et al. [18] applied a variety of screentones to segments

based on the similarity between texture, color, and tone to

preserve the visual richness. However, the method failed

to restore bitonal manga from the degraded version as the

degraded screentones maybe significantly differ from the

original patches. Li et al. [13] presented an effective

way to synthesize screen-rich manga from line drawings.

Tsubota et al.[22] synthesize manga images by generating

pixel-wise screentone class labels and further laying the

corresponding screentones from database. However, these

methods are highly dependent on the screentone set and

cannot generate the original bitonal screentones. In con-

trast, our method attempts to recover the original version

of the degraded manga by learning the degradation rules of

screentones with generalization to real-world cases.

2.2. Single Image SuperResolution

As a classic vision task, Single Image Super-Resolution

(SISR) aims at reconstructing the high-resolution (HR)

version from the low-resolution (LR) images. Traditional

methods mainly leverage dictionary learning [29] or

database retrieval[1, 4, 21] to reconstruct the high-

frequency details for the low-resolution input. However,

due to the limited representation capability of hand-crafted

features and lack of semantic level interpretation, these

methods struggle to achieve photorealistic results.

Recently, as deep learning techniques on the rise, the

state-of-the-art SISR has been updated continuously by

these data-driven approaches. Given pairs of LR and HR

images, some studies [3] attempt to solve it as a regression

problem that maps LR images to their corresponding HR

images. Many follow-ups reached a more accurate HR

image by designing better network architectures, such as

VDSR [9], SRResNet[12], LapSRN [11], or more powerful

loss functions, like EDSR[14]. However, these methods

tend to generate blurry results as they failed to recover the

lost high-frequency signal that has little correlation with

the LR image. To recover these lost details, some ap-

proaches [12, 5, 24] adopt generative adversarial networks

(GANs) [6] to generate stochastic details. SRGAN [12]

attempts to recover the lost details by adopting a discrimina-

tor to tell what kind of high-frequency details look natural.

As a step further, a super-resolution method of arbitrary

scale [8] is proposed to reconstruct the HR image with

continuous scale factor, which is the most related work to

our method. However, all these methods, mainly working

on natural images, never consider the scale suitability when

recovering the high-resolution images. This is just the
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Figure 3: System overview. Given the degraded manga image, the SE-Net first estimates the scalar that is required to upscale,

and then the MR-Net restores the manga image at the predicted resolution scale.

intrinsic difference between SISR and our problem. Indeed,

our method attempts to first obtain a proper resolution from

the degraded screentones which then helps to restore the

bitonal nature.

3. Scale-Awared Manga Restoration

Given a degraded manga image, we aim to restore the

bitonal screentones to be as conformable as possible to the

original version. As illustrated in Figure 3, it is formulated

by a two-stage restoration framework including restorative

scale estimation and manga screentone restoration. The

detailed network architectures are provided in the supple-

mentary material.

3.1. Problem Formulation

Let Igt be the original bitonal manga image. Generally,

the degraded image Ix can be modeled as the output of the

following degradation:

Ix = (Igt ⊗ κ) ↓ sgt +Nς , (1)

where {κ, sgt, ς} parameterizes the degradation process.

Igt⊗κ denotes the convolution between a blur kernel κ and

the image Igt, ↓ sgt denotes the downsampling operation

with the scale factor sgt. Without losing generality, Nς de-

scribes other potential noises induced by scanning process

or lossy image format like JPEG, which overall is modelled

as additive noises with standard deviation ς .

This seems very similar to the formula adopted in super-

resolution [26], but the problem is crucially different due to

the special nature of manga restoration. As introduced in

Section 1, it is impossible to recover the original bitonal

screentones from degraded ones unless it is represented

with appropriate resolution. To tackle this problem, we

need to: (i) figure out the target resolution by estimating the

desired scale factor: sy = g(Ix) → sgt; (ii) perform the

manga screentone restoration at the estimated resolution,

which is a comprehensive deconvolution and denoising pro-

cess: Iy = f(Ix, sy) → Igt. It makes sense because of the

distinctive correlation between Igt and Ix that conditions

on sgt and the screentone type, as observed in Figure 2. In

particular, we try to model the functions g(·) and f(·) by

training two neural networks respectively.

3.2. Restorative Scale Estimation

Based on the degraded manga image, we utilize the Scale

Estimation Network (SE-Net) to estimate the downscaling

scalar that has been applied to the original bitonal manga

image. This is a prerequisite of the subsequent manga

restoration that requires a screentone-dependent restorative

resolution.

Scale Estimation Network (SE-Net). The SE-Net takes

the degraded image Ix as input and outputs the estimated

scale factor sy for further restoration. Figure 3 shows

the abstract structure of the SE-Net, which cascades four

downsample modules and an adaptive pooling layer. As

a common case, a single manga image contains multiple

screentone regions and each of them degrades to some

different extent depending on the screentone pattern types,

as shown in Figure 4. Consequently, these screentone

regions might be informative differently to infer the down-

scaling factor sgt, which motivates us to adopt the Convo-

lutional Block Attention Module (CBAM)[27] to focus on

deterministic regions and ignore noisy ambiguous regions.

Since the attention of CBAM is performed in the feature

domain along both channel and spatial dimensions, the

intermediate feature maps are adaptively optimized with

sufficient flexibility along with these downsample modules.
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(a) Bitonal manga (b) 98% (c) 83%

(d) 67% (e) 50% (f) 25%

Figure 4: Manga degradation with different downscaling

factors. Different screentones will have different degrada-

tions with the same downscaling factor. The screentones

on background are degraded to plain region which gives

no clue for restoration with 50% resolution while the

screentones on foreground still retains informative patterns.

Besides, to get the scalar output, we perform the adaptive

pooling on the feature maps, where a global spatial pooling

and a fully-connected layer are combined.

Loss Function. The SE-Net is trained with the loss func-

tion comprised of two terms: scale loss Lscl and consistency

loss Lcons.

LSE = Lscl + αLcons, (2)

where α = 0.1 balances the magnitude of the two terms.

Scale loss. Given degraded image Ix, the scale loss Lscl

is to encourage the SE-Net to generate a scale factor sy
which is as close as possible to the ground truth sgt.

Lscl = ‖sy − sgt‖1, (3)

Consistency loss. When only trained on synthetic data

based on Lscl, we find that it cannot generalize well to real-

world cases. For example, on a scanned manga book, the

predicted scale factors for different images from the same

volume or even for different patches from the same image

can be substantially different. Thus, we further introduce a

consistency loss Lcons to enforce the SE-Net to generate a

consistent scale factor for the patches from the same manga

image. Actually, this loss term benefits in two aspects: on

the one hand, it stabilizes the network training by further

introducing extra supervision; on the other, it enables semi-

supervised training on the mixture data of synthetic manga

and real-world manga and thus promotes the generalization

performance on real-world cases.

Lcons = ‖sy −
1

M

M∑

i=1

siy‖1, (4)

where siy denotes the predicted scale factor from the i-th of

M patches cropped from the same degraded image Ix.

3.3. Discriminative Restoration

Based on the estimated scale factor, we utilize the Manga

Restoration Network (MR-Net) to restore the screentones

for the target manga image. According to the screentone

degradation degrees, the MR-Net restores the manga image

discriminatively on different regions: reconstruct the orig-

inal screentones for pattern-identifiable regions while syn-

thesizing plausible screentones for pattern-agnostic regions.

Manga Restoration Network (MR-Net). The MR-Net

takes the degraded manga image Ix and the desired scale

factor sgt as input, while output the confidence map Mc and

the restored manga image Iy . Figure 3 shows the abstract

structure of the MR-Net, which employs the Residual

Attention Module (RAM) [23] as backbone unit to capture

the screentone clue and restore the screentone regularity.

Specifically, the attention features of the first RAM are

further transformed to a single-channel confidence map

Mc that is used to selectively introduce noises to the

feature maps. The intuition is that the output manga

image will be generated through two paths implicitly, i.e.

reconstruction path and synthesis path, and the random

noises are injected to add external variation for the regions

under the charge of the synthesis path. The second RAM

further prepare the features for spatial upsampling, which is

implemented by the convex interpolation block [20] with

learned neighborhood interpolative coefficients. Specifi-

cally, we interpolate a target pixel from N known neigh-

boring pixels {p1, p2, ..., pN} by computing the weighted

sum:
∑N

i=1 αipi, where
∑N

i=1 αi = 1 and ∀αi ≥ 0. Then,

the upsampled feature maps are transformed to the restored

manga image by the rest layers.

Loss Function. The optimization objective of the MR-

Net comprises five terms: pixel loss Lpix, confidence

loss Lconf , binarization loss Lbin, intensity loss Litn and

homogeneity loss Lhom, written as:

LMR = Lpix + φLconf + ωLbin + κLitn + γLhom, (5)

The empirical coefficients φ = 0.5, ω = 0.5, κ = 0.5 and

γ = 0.02 are used in our experiment.

Pixel loss. The pixel loss Lpix ensures the restored

manga image Iy to be as similar as possible with the ground

truth Igt on those pattern-identifiable regions and helps the

network to reconstruct the original bitonal image. Here,

we measure their similarity with the Mean Absolute Error

(MAE), as defined in

Lpix = ‖Mc ⊙ |Iy − Igt|‖1, (6)
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where ⊙ denotes element-wise multiplication and | · |
denotes the operation to take the element-wise absolute

value. The loss attention mechanism avoids overfitting

to low-confidence regions, potentially focusing less on

ambiguous regions.

Confidence loss. The confidence loss Lconf encourages

the model to extract as many pattern-identifiable regions

as possible. Sometimes, it is quite ambiguous to visually

detect whether certain screentone degradation is pattern-

identifiable or not. Instead, we formulate it as a confidence

map Mc that is learned adaptively. Based on the prior that

most degraded screentones are restorable, we encourage the

model to restore as much as possible screentones through

Lconf = 1.0− ‖Mc‖1. (7)

Here, the confidence map Mc has 1 represent pattern-

identifiable regions and 0 indicates pattern-agnostic regions.

Binarization loss. To generate manga with bitonal

screentones, we introduce the binarization loss Lbin to

encourage the network to generate black-and-white pixels,

which is defined as

Lbin = ‖||Iy − 0.5| − 0.5|‖1. (8)

Intensity loss. The intensity loss Litn ensures that the

generated manga image Iy visually conforms to the inten-

sity of the target image Igt. According to the low-frequency

pass filter nature of Human Visual System (HVS), we

compute this loss as:

Litn = ‖G(Iy)−G(Igt)‖1, (9)

where G is a Gaussian blur operator with the kernel size

of 11 × 11. Specially, when calculating the intensity loss

on the real-world cases, we resize the input to the target

resolution and further smooth it with a Gaussian filter,

which is still qualified guidance to constrain the intensity

similarity. In practice, this loss benefits in two folds. For

the ambiguous regions that are insufficient to restore the

original screentones, we can still leverage this loss term

to generate screentones with similar tonal intensity. In

addition, it allows the training on real-world manga data to

promote generalization performance.

Homogeneity loss. The screentone homogeneity loss

aims to impose the homogeneity within each screentone

region. With the previous loss, we observe that the restored

manga images sometimes have inconsistent screentones

even in the same homogeneous regions. To alleviate this

problem, we encourage the screentone features within each

region to be similar through the homogeneity loss Lhom.

Here, we measure the screentone difference in the domain

of ScreenVAE map [28] that represents the screentone pat-

tern as a smooth and interpolatable 4D vector and enables

the pixelwise metrics (e.g. MSE) to be effective. In

particular, we formulate the homogeneity loss Lhom as:

Lhom =
1

N

N∑

i=1

‖SPi(Φ(Iy))− µ(SPi(Φ(Iy)))‖2, (10)

where Φ(·) extract the ScreenVAE map of a manga image,

SPi denotes the the i-th superpixel that is achieved by seg-

menting on the ground truth manga Igt, and µ(·) computes

the mean value.

4. Experimental Results

4.1. Implementation details

Data Preparation. Manga109 [16] is a public manga

dataset, containing a total of about 20000 pieces of de-

graded image. However, the resolution of the manga

images is low. Currently, there is no high-resolution

public manga dataset which we can directly use as ground

truth. Fortunately, Li et al.[13] proposed an effective

manga synthesis method, which fills in line drawings with

diverse screentones. To prepare paired training data, we

synthesized 3000 pieces of bitonal manga images with the

resolution of 2048×1536, and simulate various degradation

through the random combination of: (i) downsampling with

multiple scale factors s ∈ [1.0, 4.0]; (ii) JPEG compression

with different quality factors q ∈ [50, 100]; (iii) Gaussian

noise with varied standard deviation N (0.0, 5.0 ∼ 15.0).

Training Scheme. To favor the model generalization on

real-world cases, we apply a semi-supervised strategy to

train the SE-Net and the MR-Net separately, i.e. both paired

synthetic data and unpaired real-world data are used for

training. In particular, for the synthetic data, all the losses

are used, i.e. Lscl and Lcons in the first stage, and Lpix,

Lconf , Lbin, Litn, and Lhom in the second stage. For the

Manga109 which has no ground truth available, only Lcons

(stage 1) and Lconf , Lbin, Litn (stage 2) are used.

We trained the model using PyTorch framework [17] and

trained on Nvidia TITANX GPUs. The network weights

are randomly initialized using the method of [7]. During

training, the models are optimized by Adam solver [10]

with β1 = 0.9 and β2 = 0.999. The learning rate is

initialized to 0.0001.

4.2. Scale Estimation Accuracy

We evaluate the accuracy of our Scale Estimation Net-

work (SE-Net) on synthetic data with different rescaling

ranges. As tabulated in Table 1, the accuracy decreases

as the scale factor increases, because lower-resolution gen-

erally means severe degradation and hence involves more

ambiguity for information inference. The average accuracy

of the whole range [1, 4] is 0.9896. In other words,
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Table 1: Accuracy evaluation of the estimated scale factor

on synthetic data.

Methods Upscaling Range Estimation Accuracy

w/o CBAM

[1,2] 0.9550

(2,3] 0.9538

(3,4] 0.9514

[1,4] 0.9542

w CBAM

[1,2] 0.9823

(2,3] 0.9936

(3,4] 0.9929

[1,4] 0.9896

Table 2: Scale prediction on the images from the same

volume that shares the same ground-truth scale factor.

Synthetic data (sgt = 2) Real data

µ(sy) σ(sy) µ(sy) σ(sy)
w/o Lcons 2.0483 0.1893 1.7995 0.4247

w Lcons 2.0472 0.1217 1.2845 0.1346

for a degraded image with downscaling factor of T , our

estimated scale factor is expected to be (1 ± 0.0104)T .

In addition, we study the effectiveness of the CBAM and

our consistency loss respectively. We construct baseline

module of the CBAM by removing the attention block,

resulting in a simple residual block. We can observe that

the CBAM improves the performance obviously, since the

attention mechanism facilitates the network to focus on the

informative regions while ignoring ambiguous regions.

Besides, we explore the role of the consistency loss

Lcons, which is mainly motivated to stabilize the training

and generalize to real-world manga data. As the result

shown in Table 2, it makes a significant improvement in

the prediction stability but negligible accuracy gain on

synthetic data. This is because the scale loss Lscl can

guarantee a sufficiently high accuracy already. In contrast,

it indeed causes a stable numerical result on real-world data.

4.3. Manga Restoration Quality

Comparison with Baselines. After obtaining a proper

scale factor, we can restore the manga image through

the Manga Restoration Network (MR-Net). To evaluate

the performance, we compare it with three typical super-

resolution approaches: EDSR[14] which is a regression-

based method, SRGAN[12] which is a GAN-based method,

and MetaSR[8] which is a method of arbitrary scale. The

first two methods are trained with our dataset with a given

scale factor (×2). MetaSR and our MR-Net are trained with

scale factors ranged in [1, 4]. As most of screentones in our

synthetic data lose their regularity when ×3 downscaled,

we evaluate the performance on a synthetic dataset with the

scale factors ranged in [1, 3]. On those degraded images

with scale factors T 6= 2, the evaluation on EDSR[14]

(a) Degraded

manga

(b) Confidence

map

(c) Ours (d) Grouth truth

Figure 5: Manga restoration results with synthetic data.

Some ambiguous regions are degraded into a plain regions

which has no clue to restore the original version.

and SRGAN[12] is performed by rescaling their results to

the expected resolution. In particular, to avoid reference

ambiguity, we quantitatively evaluate the restoration quality

only on pattern-identifiable regions, as shown in Figure 5.

We report experiment results in Table 3 using PSNR,

SSIM[25] and SVAE. SVAE evaluates the screentone sim-

ilarity between the generated results and the ground truth.

It is achieved by comparing the ScreenVAE map [28]

which is a continuous and interpolative representation for

screentones. We can find that our model outperforms

EDSR[14], SRGAN[12] and MetaSR[8] when the scale

factor is various. Anyhow, our method can not achieve

superiority over SRGAN[12] at scale factor of 2 when

SRGAN is trained to handle exactly the ×2 scale while

our model is trained for various target scales. However,

as mentioned earlier, the model trained with fixed scale is

infeasible to solve our problem in practical scenarios. When

combined with our SE-Net, MetaSR[8] can be roughly

regarded as a reasonable baseline of our MR-Net. Note

that our key concept is the scale-aware manga restoration,

and the comparison with MetaSR that is provided with the

ground-truth scale factors, is just to verify the structure

effectiveness of the MR-Net. The quantitative results

shown in Table 3 illustrates the superiority of our MR-

Net structure that adopts a flexible attention mechanism and

discriminative restoration strategy.

Figure 6 compares the visual results on typical synthetic

examples. Our method successfully restores the bitonal

manga image from the degraded screentones. For the region

where the information has totally lost after resampling, our

result generates random but consistent bitonal screentones,

leading to better visual results. Meanwhile, our screentones

are consistent over regions and can be directly binarized

with little information loss.

Evaluation on Real-world Cases To validate the gen-

eralization, we test our method on some real-world cases

(Manga109[16]). Results show that our method can re-

store visually pleasant results with clear screentones from

the real-world degraded manga at the estimated upscaling

resolution, as shown in Figure 7. As one may observe,
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(a) Degraded manga (b) EDSR[14] (c) SRGAN[12] (d) MetaSR[8] (e) Ours (f) Grouth truth

Figure 6: Manga restoration results for synthetic data. Binarized results are shown on the bottom. EDSR[14], SRGAN[12]

and MetaSR[8] may generate blurry screentones while our method can restore the bitonal nature.

(a) Degraded manga (b) EDSR[14](200%) (c) SRGAN[12](200%) (d) MetaSR[8](127%) (e) Ours(127%)

Figure 7: Manga restoration results for real-world case. The screentones are shown on the right. The image comes from the

Manga109 [16]. Akuhamu c©Arai Satoshi

(a) Degraded manga (b) Bitonal manga (c) EDSR[14] (d) SRGAN[12] (e) MetaSR[8] (f) Ours

Figure 8: Manga restoration results for real world case with bitonal nature. (b) is the binarized result under original resolution.

(c) and (d) are restored under 200% resolution while (e) and (f) are resotored under 150% resolution. The image comes from

the Manga109 [16]. HaruichibanNoFukukoro c©Yamada Uduki

Table 3: Restoration accuracy of pattern-identifiable regions.

Resolution sgt = 2 sgt ∈ (1, 2] sgt ∈ (2, 3]
Metric PSNR(↑) SSIM(↑) SVAE(↓) PSNR SSIM SVAE PSNR SSIM SVAE

EDSR[14] 13.1695 0.6992 0.0318 13.9010 0.6206 0.0734 9.3550 0.2615 0.0717

SRGAN[12] 14.8810 0.7829 0.0183 14.8987 0.8132 0.0353 12.5510 0.5418 0.0527

MetaSR[8] 10.029 0.2385 0.1006 12.3722 0.4032 0.0779 8.1153 0.1149 0.1011

Ours 11.5547 0.7101 0.0255 16.8054 0.8485 0.0222 12.0333 0.6214 0.0415
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(a) Degraded

manga

(b) w/o Lpix (c) w/o Lconf (d) w/o Lbin

(e) w/o Litn (f) w/o Lhom (g) Ours (h) Target

Figure 9: Ablation study for individual loss term.

our method can restore better results even with smaller

resolutions. Since EDSR[14] and SRGAN[12] are trained

with specific scale factors, they may not restore the periodic

information for some unseen screentones. MetaSR[8] failed

to restore the bitonal nature. Our method is also friendly

to do binarization, as shown in Figure 8. We can see

that although the regularity can be visually restored by

EDSR[14] and SRGAN[12] under a larger scale factor, the

results cannot be directly binarized which may destroy the

structures. In contrast, our method can generate consistent

screentones without destroying the structures.

Ablation Study for Individual Loss Terms. To verify

the effectiveness of individual loss terms, we conduct ab-

lation studies by visually comparing the generated output

of different trained models without individual loss terms

(Figure 9). The pixel loss Lpix is the essential component

to guarantee to restore the original image. Without the

intensity loss Litn, the pattern-agnostic regions may not

follow the intensity constraint and thus generate unde-

sired screentones. Meanwhile, the homogeneity loss Litn

is important for generating consistent screentones in the

pattern-agnostic regions. In comparison, the combined loss

can help the network to generate bitonal and consistent

screentones for degraded manga images (Figure 9 (g)).

Robustness to Restoration Scale. We argue that manga

restoration requires to conduct at an appropriate resolution

because of the target screentone is bitonal and usually

regular. When the restorative resolution is not matched, the

restored screentones may either cause blurry grayscale in-

tensity or present irregular patterns. To verify the necessity

of the scale estimation, we study the performance of the

MR-Net with different resolutions. As shown in Figure 10,

only the results with ground-truth resolution (Figure 10 (h))

achieve visually pleasant bitonal screentone patterns.

(a) Degraded manga

(b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

Figure 10: Manga restoration results under different

resolutions. (b) is the degraded patch and (c)-(m) are the

restored patches under resolutions ranges 100% ∼ 200%.

4.4. Limitation and Discussion

Our method still suffers from some limitations. Our

model may fail to restore the bitonal screentones for some

real-world cases. This is related to several aspects. Firstly,

there are still gaps between synthetic data and real-world

cases. Although our method improves the generalization in

a semi-supervised manner, we may still fail to generalize to

some unseen patterns. Secondly, in real-world applications,

some degraded manga images are degraded by multiple

times and have some other unconsidered operations, which

are beyond the assumption of our problem setting.

The pattern-agnostic regions are restored with screen-

tones only under the condition of intensity constraint, which

may cause perceptual inconsistency with the contextual

screentones. In our future works, we will try to generate

controllable screentone types with user input. Xie et

al.[28] proposed an effective point-wise representation of

screentones, called ScreenVAE map. We may provide the

ScreenVAE value as a hint for the pattern-agnostic regions

and constrain the generated screentones to have similar

ScreenVAE values, along with intensity constraint.

5. Conclusion

In this paper, we propose a deep learning method for

manga restoration with learned scale factor. Our method

first predicts a suitable scale factor for the low-resolution

manga image. With the predicted scale factor, we further

restore the high-resolution image which has bitonal and

homogeneous screentones. Our method achieves high ac-

curacy on synthetic data and can generate plausible results

on real-world cases.
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