
Style-based Point Generator with Adversarial Rendering for

Point Cloud Completion

Chulin Xie1∗ Chuxin Wang2∗ Bo Zhang3 Hao Yang3 Dong Chen3 Fang Wen3

1University of Illinois at Urbana-Champaign 2University of Science and Technology of China
3Microsoft Research Asia

chulinx2@illinois.edu wcx0602@mail.ustc.edu.cn {zhanbo,haya,doch,fangwen}@microsoft.com

Abstract

In this paper, we proposed a novel Style-based Point

Generator with Adversarial Rendering (SpareNet) for point

cloud completion. Firstly, we present the channel-attentive

EdgeConv to fully exploit the local structures as well as the

global shape in point features. Secondly, we observe that

the concatenation manner used by vanilla foldings limits its

potential of generating a complex and faithful shape. En-

lightened by the success of StyleGAN, we regard the shape

feature as style code that modulates the normalization lay-

ers during the folding, which considerably enhances its ca-

pability. Thirdly, we realize that existing point supervisions,

e.g., Chamfer Distance or Earth Mover’s Distance, cannot

faithfully reflect the perceptual quality of the reconstructed

points. To address this, we propose to project the com-

pleted points to depth maps with a differentiable renderer

and apply adversarial training to advocate the perceptual

realism under different viewpoints. Comprehensive experi-

ments on ShapeNet and KITTI prove the effectiveness of our

method, which achieves state-of-the-art quantitative perfor-

mance while offering superior visual quality.

1. Introduction

As the 3D scanning devices such as depth camera and

LiDAR become ubiquitous, point clouds get easier to ac-

quire and have recently attracted a surge of research interest

in the vision and robotics community. However, raw points

directly captured by those devices are usually sparse and

incomplete due to the limited sensor resolution and occlu-

sions. Hence, it is essential to infer the complete shape from

the partial observation so as to facilitate various downstream

tasks [12] such as classification and shape manipulation as

required in real-world applications.

∗Equal contribution. Authors did this work during the internship at

Microsoft Research Asia.

Due to the irregularity and unorderedness of point

clouds, one workaround is to leverage intermediate repre-

sentations, e.g., depth map [15] or voxels [35], that are

more amenable to neural networks. However, the represen-

tation transform may result in information loss, so the de-

tailed structures can not be well preserved. With the emer-

gence of point-based networks [25, 26, 29, 32, 12], predom-

inant methods [37, 39, 11, 33, 21, 28, 5, 31, 17, 41] nowa-

days digest the partial inputs directly and estimate the com-

plete point clouds in an end-to-end manner. These methods

typically follow the encoder-decoder paradigm and adopt

permutation invariant losses [8], e.g., Chamfer Distance or

Earth Mover’s Distance, for regressing the groundtruth.

Ideally, the point completion network should simultane-

ously meet the following needs: 1) The output is desired to

faithfully preserve the detailed structures of the partial in-

put; 2) The network has a strong imaginative power to infer

the global shape from the partial clue; 3) the local struc-

ture should be sharp, accurate, and free from the corruption

by the noise points. Nonetheless, existing methods fail to

achieve the above goals because of the neglecting of the

global context during the feature extraction, the insufficient

capability of modeling the structural details, and the lack of

perceptual metrics for measuring the visual quality.

In this paper, we propose Style-based Point generator

with Adversarial REndering, i.e., the SpareNet, to circum-

vent the above issues. We have made improvements from

encoder, generator, and loss function, and proposed 3 new

modules: channel-attentive EdgeConv, Style-based Point

Generator, and Adversarial Point Rendering. Firstly, while

previous works employ PointNet or PointNet++ to learn

point-wise or local features, we propose channel-attentive

EdgeConv (Section 3.1), which not only considers the local

information within the k-nearest neighbors but also wisely

leverages the global context by aggregating the global fea-

tures and weighting the feature channel attention for each

point accordingly. The fusion of local and global context

4619

𝑀×3 𝐶 𝑔E𝑋 𝒈 G 𝑁×3𝑌𝑐 R 𝑁×3𝑌𝑟1 R 𝑁×3𝑌𝑟2 = 𝑌
Renderer 𝝅

𝑌𝑔𝑡𝑁×
3

D D

Point Domain Losses

Style-based Point Generation Refinement with Adversarial Point Rendering

SpareNet

𝑌𝑔𝑡𝑋 𝑌𝑐 𝑌 𝑌𝑔𝑡

Renderer 𝝅
Image Domain Losses

D

Figure 1: The architecture of SpareNet. An encoder E encodes the partial points X into a shape code g, leveraged by a style-

based generator G to synthesize a coarse completion Yc, which is recurrently improved with refiner R into the final result Y .

Adversarial point rendering is applied to advocate the perceptual realism of completed points under different views.

enriches the learnt representation, so the network is more

powerful to characterize fine structures of the input.

Further, we claim that the vanilla folding module [37]

in conventional methods, which outputs the 3D shapes by

morphing the 2D surfaces through multilayer perceptrons

(MLP), has limited modeling capability due to the improper

usage of the features, i.e., the features are tiled and con-

catenated to each location of the 2D lattice. Drawn by the

success of StyleGAN [19] in image synthesis, we boost the

folding capability by regarding the learnt features as style

codes, which can be used to modulate the feature normal-

ization within the folding MLPs. The resulting style-based

generator, as elaborated in Section 3.2, shows considerably

improved capability of modeling structural details.

Last but not least, in order to generate visually-pleasing

results, we propose to project the generated point clouds to

view images (Section 3.3), whose realism is further exam-

ined by adversarial discriminators. Since the renderer we

use is differentiable, the gradient from the discriminators

will guide the network to learn the completion with high

perceptual quality when viewed at different angles. We con-

duct extensive experiments on ShapeNet [4] and KITTI [9]

datasets, and our SpareNet performs favorably over state-

of-the-art methods both quantitatively and qualitatively.

2. Related Work

Point cloud processing. Pioneer works [25, 40] propose

max-pooling to aggregate the features of individual points

to ensure permutation invariance. Such aggregation, how-

ever, neglects the contextual relationships among different

points, resulting in the representation incapable to charac-

terize the fine structures. To amend this, [26] hierarchically

groups the points and extracts features for the local context.

Inspired by the tremendous success of 2D convolution, a

surge of conv-based methods [16, 36, 10, 3, 20, 29, 32] has

recently emerged, which generalizes the convolution to ir-

regular coordinate space. Meanwhile, graph-based meth-

ods [32, 30] regard the point clouds as graph structures

where points are treated as nodes, and their local connectiv-

ity is denoted by edges. In [32], the EdgeConv is proposed

to process the k-nearest neighbor graph and dynamically

models the locality according to not only the coordinate dis-

tance but also the semantic affinity. While these networks

are powerful to characterize the local structure, they fail to

simultaneously consider the global shape, i.e., the local fea-

ture extraction is unaware of the global information.

Point cloud reconstruction. To hallucinate the complete

3D coordinates, previous works design point decoders in

various forms: multilayer perceptrons (MLPs) [5], hierar-

chical structures like a tree [28] or a multi-level pyramid

[17], or through iterative refinement [31].

While some works resort to proxy representations other

than points for shape completion, like volumetric grids

[6, 35] or depth maps [15], FoldingNet [37] uses 2D mani-

folds to represent 3D point clouds, which also inspires oth-

ers to model the target point clouds as non-linear foldings

of 2D grids. PCN [39] predicts the folding of a single 2D

patch, whereas AtlasNet [11] and MSN [21] generate the

output with multiple patches. Recently, SA-Net [33] pro-

poses a hierarchical folding that progressively hallucinates

the detailed structures. Instead of improving the folding

mechanism, SFA-Net [41] addresses the information loss

during the global feature extraction. Albeit effective, these

folding-based methods feed the partial features to folding

modules via concatenation, but we claim that such a con-

catenation manner would impair the capacity of the fold-

ings. In comparison, our style-based point generator greatly

enhances the capacity for modeling structural details.

3. The SpareNet

The overview architecture of SpareNet is exhibited in

Figure 1. Given a partial and low-res point cloud X as in-

4620

𝑀×𝐶 𝑖
𝑛

𝑀×𝐶 𝑜
𝑢𝑡𝑘-NN 𝑀×𝑘

×𝐶 𝑖𝑛
MLP 𝑀×𝑘

×𝐶 𝑜𝑢𝑡
AvgPool 𝐶 𝑜𝑢𝑡 MLP +

Sigmoid 𝐶 𝑜𝑢𝑡

Linear 𝑀×𝐶 𝑜
𝑢𝑡

MaxPool

+ ReLU𝑃𝑖𝑛 𝑃𝑜𝑢𝑡
𝜼𝑒𝑖𝑗𝐅1 𝐅2

𝐅3

Figure 2: The structure of the Channel-Attentive EdgeConv.

put, SpareNet first completes X with a coarse point cloud

Yc through an encoder and a generator: the encoder E em-

beds X into a shape code g, the style-based generator G

exploits the shape code g and synthesizes the coarse output

Yc. In addition, SpareNet adopts a refinement part that em-

ploys adversarial point rendering to further refine the coarse

points Yc and outputs a final complete and high-res point

cloud Y with improved visual quality.

3.1. Channel-Attentive EdgeConv

We devise the Channel-Attentive EdgeConv (CAE) to si-

multaneously integrate both local and global context from

point features. It is inspired by the EdgeConv [32] that cap-

tures a local context and the Squeeze-and-Excitation blocks

[14] for capturing a global context. Our point encoder E

heavily relies on the CAE blocks.

Let Pin be the input of a CAE block. Suppose it has M
points with feature dimension Cin. For each point pi ∈ Pin,

we first find its k-nearest neighbors in Pin with respect to

the Euclidean distance defined in the Cin-dimensional fea-

ture space (k = 8 in experiments). Denote these neighbors

as {qji , 1 ≤ j ≤ k}, we have k directional edges on pi, with

each edge represented as (pi, q
j
i − pi). Then we use a mul-

tilayer perceptron (MLP) (denoted as F1) to compute a new

feature eji = F1(pi, q
j
i − pi) from each edge.

In order to leverage a global context from the k-NN

graph, we feed the global average of all edge features

{eji , 1≤i≤M, 1≤j≤k} into a second MLP (denoted as F2)

to calculate a gating vector η:

η = σ ◦ F2





1

kM
×

M,k
∑

i,j

eji



 , (1)

where σ represents sigmoid. We re-calibrate every edge

feature eji by multiplying it with η. Finally, for each point,

we reduce its k edge features into a new point feature

through maximum pooling and ReLU activation. We also

add an additional linear layer F3 that skip-connects the out-

put with the input to make the block residual.

Unlike the T-net presented in [25] that predicts an affine

transformation to apply on point coordinates, we predict a

gating vector that applies on edge features, in order to lever-

age both the local and global context for feature activation.

𝐶𝑔

𝑛×2 𝑛×𝐶 1Style-

based
Linear 𝑛×3𝑛×𝐶 2Style-

based 𝑛×𝐶 3Style-

based

𝑛×2 𝑛×𝐶 1Style-

based
Linear 𝑛×3𝑛×𝐶 2Style-

based 𝑛×𝐶 3Style-

based

… … …… 𝑁×3

Style-based Folding Layer

Linear BN CAE𝑛×𝐶 𝑛×𝐶𝑛×𝐶 𝑖𝑛

𝑌𝑐𝑠

𝒈

Linear

C

𝐶 𝐶𝛾𝒈 𝛽𝒈
𝒈𝑃𝑖𝑛 𝑃𝑜𝑢𝑡
𝒉𝑖𝑛 ഥ𝒉𝑖𝑛 𝒉𝑜𝑢𝑡

0,1 2

0,1 2

Generator G

……

Figure 3: The styled-based folding and the generator G.

Our point encoder E is built with four sequential CAE

blocks. The input X is fed into the first one and passes

through all the rest, resulting in four point features with dif-

ferent dimensions and different receptive fields. We con-

catenate them together and compress the feature dimension

through a final MLP. The output shape code g is derived

as a concatenation of two global poolings of the above re-

sult: a maximum pooling and an average pooling. It has a

dimension of Cg , which is set to 4, 096 in our experiments.

3.2. Style-based Point Generator

We present a style-based point generator G to generate a

completed point cloud from the shape code g through novel

style-based folding layers. In previous folding methods [37,

39, 11, 21], the shape code is tiled and concatenated with N
2D coordinates all sampled from a unit square [0, 1]2. They

learn a mapping from such combination into the 3D space

using MLP, to emulate the morphing of a 2D grid into a 3D

surface. Under such foldings, the shape code determines

the morphing through the input concatenations ahead but

hardly affects all the layers behind in an effective way. Such

concatenation-based folding induces bottleneck that limits

its capacity to represent different 3D surfaces.

Enlightened by the success of StyleGAN [19] in image

generation, we propose style-based folding to circumvent

these disadvantages in point cloud generation. Figure 3 ex-

hibits the structure of our generator G. Instead of combining

the shape code g with grid coordinates as an input to vanilla

folding MLPs, we directly inject g into the generator G’s

internal layers, to ensure a more extensive information ag-

gregation in point cloud synthesis. We design novel style-

based folding layers to accomplish such injection.

A style-based folding layer transforms the input point

features Pin into new point features Pout under the modu-

lation of the shape code g. In specific, let hin ∈ R
B×M×C

be a mini-batch of point activations that are linearly trans-

formed from Pin, with B being the batch size, M the num-

4621

ber of points and C the dimension of point features. We first

normalize hin to be h̄in ∈ R
B×M×C batch-wisely:

h̄in =
hin − µhin

σhin

, (2)

with µhin
,σhin

∈ R
1×1×C being the means and standard

deviations of hin’s channel-wise activations. In order to

integrate the shape code, we compute new activation hout

by denormalizing the normalized h̄in according to the shape

code g, with the formulation

hout = γg ⊗ h̄in + βg, (3)

where γg and βg are two modulation parameters both trans-

formed from g through linear layers. Finally we append a

CAE block to hout to compute the output Pout.

Same with [11, 21], our generator G employs K (32 in

experiments) surface elements to form a complex shape, as

depicted in Figure 3. For each surface element, the genera-

tor learns a mapping from a unit square [0, 1]2 to a 3D sur-

face through three sequential style-based folding layers and

one linear layer. We sample n = N/K points for each sur-

face element. Finally, the K 3D surfaces (each surface rep-

resented as n = N/K points) are directly merged together

forming the coarse output point cloud Yc with N points.

3.3. Adversarial Point Rendering

After generating a coarse point cloud Yc, we additionally

refine it to acquire a final result Y with improved quality.

But unlike some previous works [21, 31], our refinement

guarantees an advantageous visual quality of our final point

cloud Y by employing a novel adversarial point rendering.

By point rendering, we mean a fully differentiable point

renderer that enables end-to-end rendering from 3D point

cloud to 2D depth maps. The renderer makes it possible that

we can supervise the training not only in the point domain

but also in the image domain. By adversarial, we mean

to adversarially improve the point cloud quality with a dis-

criminator D, which not directly discriminates the 3D point

clouds, but their rendered 2D depth maps. Observing the

success of image-based convolutional networks, we believe

that an image-based convolutional discriminator, combined

with our differentiable point renderer, can better capture ge-

ometric details in point clouds than the point-based discrim-

inators used by [31, 5].

Renderer Let P be a point cloud and v be a camera pose,

the point renderer aims to generate a 2D depth map Iv(P)
whose pixels reflect P ’s geometry that is visible in v.

As shown in Figure 4, we start the rendering pipeline

by projecting every 3D point p = (px, py, pz) ∈ P onto

a projection plane, retrieving a 2D pixel location (p̂vx, p̂
v
y)

and a depth p̂vz (a.k.a. distance from the projection). We

calculate such projection with a projective transformation

Tv , which is derived from camera pose v by combining both

its extrinsic and intrinsic parameters.

𝑣𝑃
𝑝1 𝑝2𝑝3 Ƹ𝑝1𝑣 Ƹ𝑝2𝑣Ƹ𝑝3𝑣

𝑝1
𝑝2𝑝3

(a) (b)

Ψ 𝑑 ⋅, ො𝑝1𝑣Ψ 𝑑 ⋅, ො𝑝3𝑣Ψ 𝑑 ⋅, ො𝑝2𝑣

(c)

× 𝐹𝑝1× 𝐹𝑝2× 𝐹𝑝3
𝐼𝑣 𝑃

(d)

max

01

Ƹ𝑝1𝑣 Ƹ𝑝2𝑣Ƹ𝑝3𝑣

Figure 4: Pipeline of our differentiable point rendering. (a)

Given 3D points P and a camera view v, (b) the 3D points

pi ∈ P are firstly projected as 2D points p̂vi with depths

according to v. (c) We regard each 2D point as a smooth

density function modeled by kernel Ψ. (d) A depth map

Iv(P) is generated through a pixel-wise maximum reduc-

tion of negated point depths F weighted by point densities.

We then rasterize these 2D points p̂v = (p̂vx, p̂
v
y) with

depths p̂vz to generate a rendered image. To guarantee dif-

ferentiability, we regard each point not as a hard image

pixel, but like a density function that spread smooth influ-

ence around its center. Let Fp be the point feature used for

rendering, the rasterization can be formulated as

Ivx,y(P) = max
p∈P

{Ψ (‖(x, y), p̂v‖
2
)× Fp, 0} , (4)

where Ψ(x) = exp(−x2/2ρ2) is a Gaussian-shape kernel

that models the density function of a point, with ρ being a

hyper-parameter that controls the radius of its influence. In

order to render Iv(P) as a depth map, we define Fp = 1−
(p̂vz−minp∈P p̂vz)/(maxp∈P p̂vz−minp∈P p̂vz) as a negative

point depth normalized within [0, 1]. Choosing a different F
for rendering is also supported, our implementation is able

to render any point features without limits.

Comparing with previous differentiable point renderers

[18, 38, 2, 34, 7], ours is much simpler yet effective for

rendering depth maps. Unlike [7], our renderer does not

attach additional parameters for training. We don’t need to

perform z-buffer sorting like [34, 18], since the maximum

reduction among negative depths can automatically locate

the nearest point. More importantly, unlike [2] where point

coordinates are fixed, our renderer is fully differentiable:

it supports gradients to be back-propagated not only to the

feature Fp, but also to the 2D coordinates (p̂vx, p̂
v
y).

To reduce information loss in rendering, we further pro-

pose the multi-view point renderer π, which utilizes our dif-

ferentiable point renderer to simultaneously render a point

cloud P into eight depth maps, each observed from a differ-

ent viewpoint. The resulting π(P) with shape H ×W × 8
is an ordered concatenation of all eight depth maps in the

4622

channel dimension. The size H × W is set to 256 × 256
in experiments; the eight viewpoints are set as the eight cor-

ners of a cube: [±1,±1,±1], to cover a wide angle of obser-

vation. Unlike the multi-view depth maps used by [15], our

multi-view depth maps are rendered in a differentiable way:

gradients can be back-propagated from depths maps on to

the rendered points. Hence, our renderer enables end-to-

end training with both image and point supervisions, which

considerably promotes the perceptual quality of results.

Refiner Our refiner R shares similar structure with [21]:

they both consist of a minimum density sampling and a

residual network that resembles PointNet [25]. But differ-

ent from [21], we add CAE blocks to the residual network

for enhanced capability. Moreover, we recurrently deploy

the refiner twice upon the coarse result Yc to get a first and

a second refining result, Y 1

r and Y 2

r , with Y = Y 2

r being

the final output, as illustrated by Figure 1.

Discriminator We render three point clouds during train-

ing: the partial input X , the groundtruth Ygt and the first

refined result Y 1

r . Our discriminator D utilizes a cGAN [23]

strategy: the real sample is a concatenation of π(Ygt) and

π(X) in channel dimension; the fake sample is a concatena-

tion of π(Y 1

r) and π(X). This makes the adversarial update

of Y 1

r to be conditioned on the input X . We implement D as

a sequence of 2D convolution layers with spectral normal-

izations [24] and LeakyReLU activations.

3.4. Training Losses

During training, the reconstruction loss Lrec is required

to match the output point cloud to the ground-truth. Even

though the Chamfer Distance (CD) is very popular among

existing works due to its efficiency in computation, we fol-

low [21] and implement Lrec with the Earth Mover’s Dis-

tance (EMD) instead, which is more faithful to visual qual-

ity as verified by [8, 1, 21]. The Lrec supervises both the

coarse output Yc and the final output Y with

Lrec = dEMD(Yc, Ygt) + dEMD(Y, Ygt). (5)

The fidelity loss Lfd is employed to preserve structures of

the input X within the output Y as

Lfd =
1

|X|

∑

p∈X

min
q∈Y

‖p− q‖2
2
. (6)

We also introduce losses in the image domain. We impose

the depth map matching loss Ldepth as a L-1 distance on the

multi-view depth maps. We also adopt the feature matching

loss Lfea as a L-2 distance on the discriminator features.

These two losses are formulated as

Ldepth =
1

8HW

∥

∥π(Y 1

r),π(Ygt)
∥

∥

1
, (7)

Lfea =

4
∑

i

αi

HiWiDi

∥

∥Di[π(Y
1

r)], Di[π(Ygt)]
∥

∥

2

2
, (8)

with D1≤i≤4 being features extracted from intermediate lay-

ers of discriminator D, HiWiDi the feature shape, αi =

Method plane cabinet car chair lamp sofa table vessel avg

PointFCAE 1.554 2.631 2.132 2.954 4.067 2.997 2.899 2.619 2.732

FoldingNet 1.682 2.576 2.183 2.847 3.062 3.003 2.500 2.357 2.526

AtlasNet 1.324 2.582 2.085 2.442 2.718 2.829 2.160 2.114 2.282

PCN∗ 2.426 1.888 2.744 2.200 2.383 2.062 1.242 2.208 2.144

MSN 1.334 2.251 2.062 2.346 2.449 2.712 1.977 2.001 2.142

GRNet 1.376 2.128 1.918 2.127 2.150 2.468 1.852 1.876 1.987

Ours 1.131 2.014 1.783 2.050 2.063 2.333 1.729 1.790 1.862

Table 1: Completion comparison on ShapeNet in terms of

EMD ×103 (lower is better).

Method plane cabinet car chair lamp sofa table vessel avg

PointFCAE 1.424 3.878 0.519 2.404 6.989 2.594 2.673 8.998 3.683

FoldingNet 1.593 5.918 0.649 1.355 4.344 2.400 2.243 5.508 3.001

AtlasNet 0.512 2.536 0.706 1.181 2.295 2.460 1.810 2.475 1.747

PCN∗ 0.484 1.221 0.200 1.417 0.947 1.680 0.566 0.926 0.930

MSN 0.324 1.858 0.412 0.968 1.652 2.409 0.917 0.744 1.161

GRNet 4.649 1.002 1.152 1.712 2.977 2.717 1.713 5.528 2.681

Ours 0.307 0.691 0.142 1.113 0.774 0.945 0.668 0.523 0.645

Table 2: Completion comparison on ShapeNet in terms of

FPD ×0.1 (lower is better).

Di/
∑

4

i Di a re-weighting factor of each feature. The fi-

nal loss for the end-to-end SpareNet training combines all

individual losses as

L = wrecLrec + wfdLfd + wdepthLdepth+ (9)

wfeaLfea + wadvLadv + wexpLexp,

with Ladv the adversarial loss from the discriminator, Lexp

an expansion loss also used by [21]. We follow [22] and

implement Ladv as mean square in GAN training. The

loss weights are set as wrec = 200,wfd = 0.5,wadv =
0.1,wdepth = wfea = 1,wexp = 0.1.

4. Experiments

During training, we use the Adam optimizer with β1 = 0
and β2 = 0.9. Following TTUR [13], we set imbalanced

initial learning rates, 1×10−4 for the generator and 4×10−4

for the discriminator. We train the network for 200 epochs,

with the learning rates decayed by 0.1 at 100 and 150
epochs. With the batch size 32, it takes 5 days for train-

ing on the ShapeNet dataset with 4 Tesla V100 GPUs.

4.1. Datasets

We conduct experiments on two datasets commonly used

for point cloud completion: ShapeNet [4] and KITTI [9].

∗The PCN scores are calculated from a released PCN[39] model that is

trained on a fully sized ShapeNet, which is 8 times larger than the training

set of all the other models reported in Tables 1, 2, 3. Even though, our

model demonstrates superiority over it in terms of both EMD and FPD.

4623

Input AtlasNet[11] FCAE FoldingNet[37] PCN[39] MSN [21] GRNet [35] Ours Groundtruth
L

am
p

C
h

ai
r

S
o

fa
V

es
se

l
A

ir
p

la
n

e
T

ab
le

Figure 5: Visualized completion comparison on ShapeNet.

Method plane cabinet car chair lamp sofa table vessel avg

PointFCAE 0.340 1.170 0.480 1.240 2.294 1.312 1.433 0.893 1.145

FoldingNet 0.622 1.608 0.619 1.553 2.025 1.543 1.534 0.910 1.302

AtlasNet 0.301 0.967 0.440 0.858 1.126 1.174 0.813 0.639 0.790

PCN∗ 0.559 0.389 0.581 0.466 0.684 0.263 0.156 0.395 0.437

MSN 0.252 0.974 0.445 0.770 0.933 1.152 0.669 0.491 0.711

GRNet 0.293 0.560 0.363 0.583 0.690 0.935 0.532 0.389 0.543

Ours 0.176 0.664 0.362 0.616 0.631 0.789 0.498 0.384 0.515

Table 3: Completion comparison on ShapeNet in terms of

CD ×103 (lower is better).

ShapeNet. The ShapeNet dataset derived from [39] con-

sists of 30,974 3D models that belong to 8 categories: air-

plane, cabinet, car, chair, lamp, sofa, table, and vessel. Each

groundtruth point cloud comprises 16,384 points that are

uniformly sampled from the corresponding 3D model. The

partial point clouds are constructed by projecting the 2.5D

depth maps of the model back into 3D. This leads to 8 dif-

ferent partial point clouds for each groundtruth in the train-

ing set. Following [35, 31], we randomly select only one

partial point cloud from the 8 to build our training pairs.

This results in a training set only 1/8 the size of the one

used by PCN [39]. For a fair comparison, we use the same

train/val/test splits as [35, 31].

KITTI. The KITTI dataset comprises a sequence of real Li-

DAR scans. For each frame, the cars are extracted accord-

ing to the labeled bounding box, resulting in 2,401 point

partial inputs. Since no groundtruth exist in this dataset, we

cannot rely on paired metrics for evaluation.

4.2. Comparison on ShapeNet

Metrics. We employ three evaluation metrics to measure

completion accuracy on ShapeNet: the Chamfer Distance

(CD), the Earth Mover’s Distance (EMD) and the Fréchet

Point cloud Distance (FPD). Among these distances, CD is

a widely used one due to its computation efficiency. EMD

is more discriminative to the local details and density distri-

bution. Previous works [21, 8, 1] have claimed EMD to be a

more reliable measure for visual quality than CD. The FPD

[27], inspired by the FID [13], is a metric that computes the

Fréchet distance between Gaussian fitted distributions. It

evaluates not the accuracy of an individual point cloud, but

the overall perceptual quality of all predicted point clouds.

Completion evaluation. We compare SpareNet with

the following state-of-the-art approaches: 1) PointFCAE,

a simple autoencoder adopting PointNet as encoder and

MLPs as decoder; 2) AtalasNet [11], which generates points

by sampling from the parametric surface elements; 3) Fold-

ingNet [37], which proposes folding-based decoder to di-

rectly generate points; 4) PCN [39] that uses stacked Point-

Net for feature extraction; 5) MSN [21], the baseline of this

work; 6) GRNet [35], a recent leading approach that oper-

4624

62

90

92

94

96

A
cc

u
ra

cy
(%

)

91.1
91.5

90.1

92.3

91.1

92.3

93.8

96.0
Partical Input Result

Method Result

70

80

90

100

A
cc

u
ra

cy
(%

)

84.86

97.98

94.47

89.64

83.37

98.97

81.68

Method Result

G
T

(a)
A

tla
sN

et

FC
A

E

Fol
di

ng
PC

N
M

SN

G
R
N

et

O
ur

s

A
tla

sN
et

FC
A

E

Fol
di

ng
PC

N
M

SN

G
R
N

et

O
ur

s

(b)

Figure 6: (a) Comparing informativeness. Higher is better.

(b) Comparing fake detection accuracies. Lower is better.

Method Atlasnet PCN Folding TopNet MSN GRNet Ours

Consistency↓ 0.700 1.557 1.053 0.568 1.951 0.313 0.249

Fidelity↓ 1.759 2.235 7.467 5.354 0.434 0.816 1.461

MMD↓ 2.108 1.366 0.537 0.636 2.259 0.568 0.368

Table 4: Quantitative comparison on KITTI dataset in terms

of consistency, fidelity and minimum matching distance

(MMD). The best results are highlighted in bold.

ates on volumetric grids. For a fair comparison, we train all

the models using the EMD loss with their released codes.

All models utilize the same training set except PCN∗.

Tables 1 and 3 show that our method outperforms prior

works in terms of both EMD and CD metric. In particular,

our method is more advantageous in terms of the FPD score

as shown in Table 2, reducing the FPD from the second-

best 0.930 to 0.645. The qualitative results in Figure 5 fur-

ther corroborate the perceptual advantage of our method. In

comparison, our method is able to generate fine structures

with shapes whereas other methods are prone to give blurry

results. Thin structures, such as the mast of the vessel, can

also be faithfully generated. Overall, our completed result

appears much less noisy and visually pleasing.

Comparison via classification. To better quantify the com-

pletion quality, we propose two novel metrics for compari-

son. First, we employ a pretrained PointNet model and test

its classification accuracy on the completed point clouds by

different methods. A pretrained classifier should perform

better when the input is more resemblance to the real point

clouds. In Figure 6 (a), the PointNet achieves the highest

classification accuracy when using our completed results

as input, showing that our method can well preserve the

semantics of the partial input and is able to complete the

points as the real ones. Besides, we compare the percep-

tual quality of various methods by examining their rendered

view images. As we do not have the labeling of quality

scores, we train an image classifier (ResNet-18) to differen-

tiate the fake or real data based on the complete results of

all seven methods, and then make use of this fake detector

to test each method. Here we assume that different meth-

Ablation EMD CD FPD

[A] w/o η in CAE 2.060 0.606 1.012

[B] w/o EdgeConv in CAE 1.972 0.542 0.692

[C] w/o Style-based Folding 3.274 1.779 3.111

[D] w/o Recurrent Refine 2.184 0.708 1.856

Ours Full 1.862 0.515 0.645

Table 5: Ablation results of SpareNet.

ods share similar types of artifacts and the fake detection

trained on one method is generalizable to other approaches.

Figure 6 (b) shows that our method can better mislead the

fake detector by giving a lower detection accuracy, proving

that our methods suffer from less noticeable artifacts when

observed at different viewpoints.

4.3. Comparison on KITTI

This dataset contains the LiDAR scans from auto-driving

scenes, and the objects are much sparser than the ShapeNet

dataset. For better transferred performance, we finetune all

the models using the ShapeNetCars subset that only con-

tains the cars from the ShapeNet so that the prior knowledge

for this category can be better leveraged.

Since the groundtruth point clouds are not available in

this real-world dataset, we cannot apply the full-reference

metrics (CD, EMD and FPD) for evaluation. As such,

we follow the practice in [39], and use the following met-

rics: 1) the Temporal Consistency that measures the Cham-

fer distance for the consecutive frames; 2) the Fidelity, a

single-directional Chamfer distance that measures how the

input structures are preserved in the output; 3) the Minimum

Matching Distance (MMD), the CD between the output and

the point cloud in ShapetNetCars that is closest to the output

in terms of CD. This metric makes sure that the output re-

sembles a car model in ShapeNet. Table 4 shows the quan-

titative results. Our method shows superior consistency and

MMD, indicating that our method can complete the real

point points with high stability and quality. Yet, MSN and

GRNet outperform in fidelity, possibly because our adver-

sarial rendering that enforces high perceptual quality brings

a slight sacrifice of the fidelity relative to the input.

4.4. Ablation Study

We report the results of extensive ablation experiments

in Table 5, with each row corresponding to one ablation

setting. We observe that the ablation settings all cause the

drop of performance (i.e. raise of the three distance num-

bers) comparing to our full model shown at the bottom. It

in turn exhibits the effectiveness of each ablated compo-

nent we propose. For example, in [A], the structure that

computes and applies the channel attention vector η (Equa-

tion 1) is removed from CAE blocks. The raise of metric

numbers reflects the importance of our proposed channel-

4625

1 2 4 8
(a) Resolution: ×2048

2.0

2.2

2.4

2.6

2.8
E

M
D
×

1
0

3
w/ adversarial

w/o adversarial

1 2 4 8
(b) Resolution: ×2048

0.5

0.6

0.7

0.8

0.9

1.0

C
D
×

1
0

3

w/ adversarial

w/o adversarial

Figure 7: Ablation of adversarial rendering under different

point resolutions. Our adversarial rendering demonstrates

larger improvement when predicting denser point clouds.

0 20000 40000 60000 80000
Iterations

2

4

6

E
M

D
×

1
0

3

Style-based Folding

Vanilla Folding

Figure 8: Loss curves of training two models: one uses the

vanilla folding (red); the other applies style-based folding

(blue). The latter converges much faster than the former.

Input wadv = 0.0 wadv = 0.1 wadv = 5 Groundtruth

ai
rp

la
n

e
ch

ai
r

la
m

p

Figure 9: Results with different adversarial loss weights.

attentive functionality. On the other hand, the advantage of

edge features over point features can be observed by com-

paring the full model with [B] where its CAE blocks aban-

don the EdgeConv structure but preserve the channel atten-

tion η on point features. We also ablate on the style-based

generator in [C], where the generator G adopts the vanilla

concatenation-based folding instead of our style-based fold-

ing. The large-margin performance drop indicates the crit-

icalness of our style-based folding in point cloud comple-

tion. It is also verified by Figure 8, where the style-base

folding leads to much faster convergence of training loss

than the vanilla folding. In addition, we use a single-step

refinement (with renderings applied on the final output) in-

stead of the recurrent refinement and report results in [D],

the performance drop indicates a necessity of recurrent re-

finement in our framework.

Yadv EMD CD FPD wadv EMD CD FPD

∅ 2.029 0.617 1.308 0 2.029 0.617 1.308

{Y 1
r } 1.862 0.515 0.645 0.1 1.862 0.515 0.645

{Y 2
r } 1.937 0.601 0.874 0.2 1.898 0.535 0.654

{Y 1
r , Y 2

r } 1.898 0.535 0.736 5 1.980 0.593 1.013

Table 6: Ablation of adversarial training settings. By de-

fault we apply discriminator only on Y 1

r with wadv = 0.1.

More experiments are conducted to study the adversar-

ial training settings. We compare the accuracies with or

without adversarial training in terms of both EMD and CD

in Figure 7. It shows that 1) adversarial rendering brings

significant improvement under all point resolutions, from

2,048 to 16,384; 2) a denser predicted point cloud leads to

a larger improvement. We believe it is due to the rendering

quality: a denser point cloud renders smoother depth maps

with less point scattering effects, aiding the discriminator to

better capture the intrinsic geometry of point clouds.

Let Yadv be the point clouds which we apply adversarial

rendering on; let wadv be the weight of the adversarial loss.

Different settings of Yadv and wadv are exploited in Table

6 showing that: 1) when adversarial rendering involves the

final output, i.e. when Y 2

r ∈ Yadv , the completion accu-

racy is slightly impaired; 2) a large adversarial loss weight

(wadv = 5) also hinders the completion accuracy. We deem

this a conflict between the adversarial loss Ladv and the re-

construction loss Lrec (defined by Equation 5) when they

are applied on the same output, or when their loss weights

are comparable: Lrec encourages the output to match the

single corresponding groundtruth, whereas the Ladv pro-

motes an improved visual quality through the discriminator,

which is learned from a larger distribution instead of a sin-

gle groundtruth. This conflict is also visualized by Figure

9, where a larger adversarial loss weight wadv , though helps

forge some structures (e.g. the airplane engine, the chair leg)

reasonable for the category, nevertheless often distracts the

resulting shape from its true groundtruth.

5. Conclusion

This paper presents a novel framework, SpareNet, for

point cloud completion. It comprises channel-attentative

Edge-Convs for the fusion of local and global context in

point feature extraction. It also performs style-based fold-

ing for an enhanced capability in point cloud synthesis. In

addition, adversarial point rendering is adopted: by lever-

aging a fully differentiable point renderer, an image-based

discriminator is utilized for capturing geometric details in

point clouds. Extensive experiments on ShapeNet and

KITTI verify the state-of-the-art performance of SpareNet,

as well as the effectiveness of each proposed component.

4626

References

[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and

Leonidas Guibas. Learning representations and generative

models for 3d point clouds. In International conference on

machine learning, pages 40–49. PMLR, 2018.

[2] Kara-Ali Aliev, Artem Sevastopolsky, Maria Kolos, Dmitry

Ulyanov, and Victor Lempitsky. Neural point-based graph-

ics. arXiv preprint arXiv:1906.08240, 2019.

[3] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. arXiv

preprint arXiv:1803.10091, 2018.

[4] Angel X Chang, Thomas Funkhouser, Leonidas Guibas,

Pat Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese,

Manolis Savva, Shuran Song, Hao Su, et al. Shapenet:

An information-rich 3d model repository. arXiv preprint

arXiv:1512.03012, 2015.

[5] Xuelin Chen, Baoquan Chen, and Niloy J Mitra. Unpaired

point cloud completion on real scans using adversarial train-

ing. arXiv preprint arXiv:1904.00069, 2019.

[6] Angela Dai, Charles Ruizhongtai Qi, and Matthias Nießner.

Shape completion using 3d-encoder-predictor cnns and

shape synthesis. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 5868–

5877, 2017.

[7] Peng Dai, Yinda Zhang, Zhuwen Li, Shuaicheng Liu, and

Bing Zeng. Neural point cloud rendering via multi-plane

projection. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 7830–

7839, 2020.

[8] Haoqiang Fan, Hao Su, and Leonidas J Guibas. A point set

generation network for 3d object reconstruction from a single

image. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 605–613, 2017.

[9] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. The Inter-

national Journal of Robotics Research, 32(11):1231–1237,

2013.

[10] Fabian Groh, Patrick Wieschollek, and Hendrik PA Lensch.

Flex-convolution. In Asian Conference on Computer Vision,

pages 105–122. Springer, 2018.

[11] Thibault Groueix, Matthew Fisher, Vladimir G. Kim, Bryan

Russell, and Mathieu Aubry. AtlasNet: A Papier-Mâché Ap-

proach to Learning 3D Surface Generation. In Proceedings

IEEE Conf. on Computer Vision and Pattern Recognition

(CVPR), 2018.

[12] Yulan Guo, Hanyun Wang, Qingyong Hu, Hao Liu, Li Liu,

and Mohammed Bennamoun. Deep learning for 3d point

clouds: A survey. IEEE transactions on pattern analysis and

machine intelligence, 2020.

[13] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,

Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

two time-scale update rule converge to a local nash equilib-

rium. In Advances in neural information processing systems,

pages 6626–6637, 2017.

[14] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In IEEE Conference on Computer Vision and Pattern

Recognition, 2018.

[15] Tao Hu, Zhizhong Han, Abhinav Shrivastava, and Matthias

Zwicker. Render4completion: Synthesizing multi-view

depth maps for 3d shape completion. In Proceedings of the

IEEE International Conference on Computer Vision Work-

shops, pages 0–0, 2019.

[16] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 984–993, 2018.

[17] Zitian Huang, Yikuan Yu, Jiawen Xu, Feng Ni, and Xinyi Le.

Pf-net: Point fractal network for 3d point cloud completion.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), June 2020.

[18] Eldar Insafutdinov and Alexey Dosovitskiy. Unsupervised

learning of shape and pose with differentiable point clouds.

In Advances in neural information processing systems, pages

2802–2812, 2018.

[19] Tero Karras, Samuli Laine, and Timo Aila. A style-based

generator architecture for generative adversarial networks. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 4401–4410, 2019.

[20] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In Advances in neural information processing sys-

tems, pages 820–830, 2018.

[21] Minghua Liu, Lu Sheng, Sheng Yang, Jing Shao, and Shi-

Min Hu. Morphing and sampling network for dense point

cloud completion. AAAI 2020, 2019.

[22] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen

Wang, and Stephen Paul Smolley. Least squares genera-

tive adversarial networks. In Proceedings of the IEEE inter-

national conference on computer vision, pages 2794–2802,

2017.

[23] Mehdi Mirza and Simon Osindero. Conditional generative

adversarial nets. arXiv preprint arXiv:1411.1784, 2014.

[24] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and

Yuichi Yoshida. Spectral normalization for generative ad-

versarial networks. arXiv preprint arXiv:1802.05957, 2018.

[25] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,

2017.

[26] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In Advances in neural informa-

tion processing systems, pages 5099–5108, 2017.

[27] Dong Wook Shu, Sung Woo Park, and Junseok Kwon. 3d

point cloud generative adversarial network based on tree

structured graph convolutions. In Proceedings of the IEEE

International Conference on Computer Vision, pages 3859–

3868, 2019.

[28] Lyne P. Tchapmi, Vineet Kosaraju, Hamid Rezatofighi, Ian

Reid, and Silvio Savarese. Topnet: Structural point cloud de-

coder. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition (CVPR), June 2019.

[29] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J

4627

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. In Proceedings of the IEEE International Con-

ference on Computer Vision, pages 6411–6420, 2019.

[30] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-

tral graph convolution for point set feature learning. In Pro-

ceedings of the European conference on computer vision

(ECCV), pages 52–66, 2018.

[31] Xiaogang Wang, Marcelo H. Ang Jr. , and Gim Hee Lee.

Cascaded refinement network for point cloud completion.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020.

[32] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics (TOG), 2019.

[33] Xin Wen, Tianyang Li, Zhizhong Han, and Yu-Shen Liu.

Point cloud completion by skip-attention network with hi-

erarchical folding. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

1939–1948, 2020.

[34] Olivia Wiles, Georgia Gkioxari, Richard Szeliski, and Justin

Johnson. Synsin: End-to-end view synthesis from a sin-

gle image. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 7467–

7477, 2020.

[35] Haozhe Xie, Hongxun Yao, Shangchen Zhou, Jiageng Mao,

Shengping Zhang, and Wenxiu Sun. Grnet: Gridding resid-

ual network for dense point cloud completion. In ECCV,

2020.

[36] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In Proceedings of the European Con-

ference on Computer Vision (ECCV), pages 87–102, 2018.

[37] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Fold-

ingnet: Point cloud auto-encoder via deep grid deformation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2018.

[38] Wang Yifan, Felice Serena, Shihao Wu, Cengiz Öztireli,

and Olga Sorkine-Hornung. Differentiable surface splatting

for point-based geometry processing. ACM Transactions on

Graphics (TOG), 38(6):1–14, 2019.

[39] Wentao Yuan, Tejas Khot, David Held, Christoph Mertz, and

Martial Hebert. Pcn: Point completion network. In 2018

International Conference on 3D Vision (3DV), pages 728–

737. IEEE, 2018.

[40] Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-

abas Poczos, Russ R Salakhutdinov, and Alexander J Smola.

Deep sets. In Advances in neural information processing

systems, pages 3391–3401, 2017.

[41] Wenxiao Zhang, Qingan Yan, and Chunxia Xiao. Detail pre-

served point cloud completion via separated feature aggrega-

tion, 2020.

4628

