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Abstract

Unprocessed RAW data is a highly valuable image for-

mat for image editing and computer vision. However, since

the file size of RAW data is huge, most users can only get ac-

cess to processed and compressed sRGB images. To bridge

this gap, we design an Invertible Image Signal Processing

(InvISP) pipeline, which not only enables rendering visually

appealing sRGB images but also allows recovering nearly

perfect RAW data. Due to our framework’s inherent re-

versibility, we can reconstruct realistic RAW data instead

of synthesizing RAW data from sRGB images without any

memory overhead. We also integrate a differentiable JPEG

compression simulator that empowers our framework to re-

construct RAW data from JPEG images. Extensive quan-

titative and qualitative experiments on two DSLR demon-

strate that our method obtains much higher quality in both

rendered sRGB images and reconstructed RAW data than

alternative methods.

1. Introduction

Professional photographers can choose to process RAW

images by themselves instead of RGB images to produce

images with better visual effects as the RAW data captures

unprocessed scene irradiance at each in 12-14 bits by a cam-

era. Due to its linear relationship with scene irradiance,

raw sensor data is also a better choice than RGB images

for many image editing and computer vision tasks, such

as photometric stereo, intrinsic image decomposition, im-

age denoising, reflection removal, and image super resolu-

tion [4, 7, 27, 16, 30, 39, 40, 45]. However, accessing RAW

images can be quite hard due to their memory-demanding

property: RAW images may be discarded during the pro-

cess of data storing, transferring, and sharing. In this paper,

we are interested in the question: can users get access to the

real RAW data without explicitly storing it?

Due to the great advantages of RAW images, there have

been many approaches to provide the mapping from sRGB

images to their RAW counterparts [2, 7, 29, 31, 36, 44].

Nguyen et al. [31] suggest explicitly storing the parameters
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of sRGB-RAW mapping functions into the JPEG metadata

for the prospective RAW reconstruction. Brooks et al. [7]

use the prior information of the cameras (e.g., color cor-

rection matrices and digital gains) to reverse the ISP step-

by-step. Another line of work [29, 36, 44] follows the in-

verse order of ISP and proposes learning-based methods to

synthesize RAW data from sRGB images. However, these

methods still rely on the underlying lossy in-camera ISP

pipeline, and the recovered RAW images are inaccurate and

may be different from the original ones.

In this work, we propose a novel and effective learned

solution by redesigning the camera image signal process-

ing pipeline as an invertible one, which can be aptly called

Invertible ISP (InvISP). Our learning-based InvISP enables

rendering visually appealing RGB images in the forward

process, and recovering nearly perfect quality raw sensor

data from compressed RGB images through the inverse

process. Our reconstructed RAW data is nearly identical

with real RAW data and enables computer vision applica-

tions, such as image retouching and HDR reconstruction, as

shown in Figure 1.

Designing an invertible ISP is not a trivial task for at

least three reasons. First, some steps in the traditional ISP,

such as denoising, tone mapping, and quantization, can lead

to inevitable information lost from wide-range (12-bit or

14-bit) raw sensor data to 8-bit RGB images. Second, the

invertible ISP should not produce visual artifacts such as

halo and ghosting artifacts [18]. To render visually appeal-

ing sRGB images, denoising, demosaicing, color correc-

tion, white balance gain, tone mapping, and color enhance-

ment must be designed carefully in ISP. Third, modern dig-

ital cameras store RGB images in the JPEG format, where

the lossy compression process makes reconstructing high-

quality RAW data highly challenging.

To overcome these challenges, we take advantage of

the inherent reversibility of normalizing-flow-based mod-

els [12, 25] and design both the RAW-to-RGB and RGB-

to-RAW mapping in our invertible ISP with one single in-

vertible neural network. We deeply analyze the properties

of traditional ISP and design specific modules that can not

only well approximate the camera ISP but also reconstruct

almost identical RAW data with the camera RAW data.
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Figure 1. Our ISP model can not only render visually pleasing RGB images but also recover RAW images that are nearly the same as the

original RAW data. The recovered RAW data are valuable for photographers and benefit a number of computer vision tasks such as HDR

reconstruction [32], image retouching [22], and RAW compression. Here, the RAW images are visualized with bilinear demosaicing.

Specifically, we design our model with the composition of

a stack of affine coupling layers and utilize the invertible 1

× 1 convolution as the learnable permutation function be-

tween the coupling layers. Besides, to empower our model

to recover realistic RAW data from JPEG images, we in-

tegrate a differentiable JPEG simulator into our invertible

neural network. We leverage the idea from Fourier transfor-

mation to replace the non-differentiable quantization step

in JPEG compression. Thus, our end-to-end InvISP frame-

work bypasses traditional ISP modules and minimizes the

information loss for the RAW data and RGB image conver-

sion. We bidirectionally train our network to optimize the

RGB and RAW reconstruction process jointly. We experi-

mentally prove that our framework can recover much better

RAW data than state-of-the-art baselines without sacrificing

the RGB reconstruction performance.

To the best of our knowledge, our framework is the

first attempt for RAW data reconstruction from the perspec-

tive of redesigning the camera ISP as an invertible one.

Our method can address the information loss issue in ISP

modules and is robust to the JPEG compression step. We

demonstrate the effectiveness of our method on two DSLR

cameras and show that our method outperforms state-of-

the-art baselines to a large extent. Moreover, we also exhibit

potential applications through RAW data compression, im-

age retouching, and HDR reconstruction.

2. Related Work

RAW Image Reconstruction. Recovering RAW from

sRGB images has been well-studied [36, 31, 2, 7, 44, 30,

29]. Nguyen et al. [31] encode the parameters in ISP into

JPEG metadata with 64KB overhead and use them to re-

construct RAW from JPEG images. Brooks et al. [7] pro-

pose to inverse the ISP pipeline step by step with camera

priors. CIE-XYZ Net [2] proposes to recover RAW from

sRGB images to the camera independent CIE-XYZ space.

CycleISP [44] proposes to model the RGB-RAW-RGB data

conversion cycle for synthesizing RAW from sRGB images.

Unlike previous methods, we aim to fundamentally solve

the RAW reconstruction problem by re-designing the cam-

era ISP into an invertible one.

Image Signal Processing (ISP). Image signal processing

pipeline (ISP) aims at converting raw sensor data to human-

readable RGB images [20, 10, 9, 39, 45, 43, 28, 26, 16].

Heide et al. [20] merge the steps in the traditional ISP

pipeline to avoid the accumulative error. Gharbi et al. [16]

propose a method with end-to-end networks to learn RAW

demosaicing and denoising jointly. Hasinoff et al. [19] pro-

pose a low-light imaging system for mobile devices. Other

works [10, 39] focus on learning low-light enhancement ISP

pipelines with CNNs. Zhang et al. [45] process RAW
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for super-resolution task with U-net [38] to preserve high-

frequency information. CameraNET [28] splits the ISP into

two learning stages for CNN. Unlike the encoder-decoder

style network adopted in previous work, we demonstrate

that invertible neural networks own great potential for ISP

pipeline and enable accurate RAW reconstruction.

Invertible Neural Networks. Normalizing flow-based

invertible neural networks [21, 25, 11, 12] have become

a popular choice in image generation tasks. Normalizing

flow transforms a simple posterior distribution to a complex

real-world distribution through a series of invertible trans-

formations. NICE [11] is the first learning-based normal-

izing flow framework with the proposed additive coupling

layers. RealNVP [12] modifies the additive coupling layer

to both multiplication and addition, and composes the cou-

pling layer in an alternating pattern such that all the inputs

can be altered with equal chance. Kingma et al. [25] pro-

pose ActNorm layer and generalize channel-shuffle opera-

tions with invertible 1× 1 convolution. Flow++ [21] modi-

fies the affine coupling layer to logistics mixture CDF cou-

pling flows and applies self-attention module.

3. Traditional ISP analysis

Modern digital cameras apply a series of operations,

which form the image signal processing pipeline (ISP), to

render RAW data to human-readable RGB images. These

operations include white balance, demosaicing, denoising,

color space transformation, tone mapping, and others [24].

Traditionally, every step of an ISP needs labor-intensive

tuning for specific cameras, and inverting the traditional

ISP steps is quite challenging. In this section, we ana-

lyze the existing modules with information loss in the tra-

ditional ISP. We show that the lossy steps in traditional ISP

restrict the RAW reconstruction performance of a series of

works [31, 7, 44] that aim at synthesizing RAW from sRGB

images. Different from previous works, we re-design the

ISP into an end-to-end invertible one that can bypass the

traditional modules to minimize information loss during the

RAW data and JPEG image conversion, which further en-

ables recovering high-quality RAW data.

Quantization and tone mapping. Some ISP steps like de-

mosaicing and gamma compression may involve float-point

operations, and thus quantization is inevitable to transform

the data into the integer type. For instance, the rounding

function can bring (−0.5, 0.5) intensity error to a pixel in

theory. In the context of ISP, however, the tone mapping

step can enlarge the intensity error much greater than ±0.5.

The tone mapping curve is usually designed as S-curve that

compresses the high-intensity value and low-intensity value

more than mid-intensity values [37, 5]. As illustrated in Fig-

ure 2, for a 14-bit raw image, gamma compression makes

pixel intensity at [16313, 16383] all be rounded to the max

0 16383
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Figure 2. Some popular tone mapping curves used in games and

industries [37, 5]. Although the tone mapping function itself is

lossless, the following quantization causes a great loss of infor-

mation in over-exposed and under-exposed pixels. For instance,

in a 14-bit linear RAW image, the pixel intensity lies in [16313,

16383] will all be quantized to the maximum pixel intensity 255

of an 8-bit RGB image.

intensity 255 after normalized to (0, 255). This step may

cause a 0.004 RMSE error at this single pixel. Thus, it is

challenging for existing works [31, 7, 44] to directly syn-

thesize the 14-bit RAW data from its 8-bit sRGB counter-

parts, especially at the over-exposed regions. We show the

comparison of our recovered RAW with previous works in

Figure 5. Our method can preserve much more detail of

RAW data, even at high-intensity pixels.

Out-of-range value clipping. Value clipping is a com-

mon step to normalize the raw value within a reasonable

range, which may happen after color space transforma-

tion, demosaicing, denoising, and tone mapping [1, 15, 34,

14]. Most commonly used value clipping operation is like

min(max(x, 0), 1), which will discard the out-of-range pix-

els at over- and under-exposed regions. Note that this re-

stricts the image capacity for further adjustment. Moreover,

traditional ISPs are manually tuned in isolation by experts,

which accumulates the clip error among ISP steps to bring

further information lost. Our end-to-end pipeline jointly op-

timizes all the ISP steps and alleviates the clip error accu-

mulation problem to recover more realistic RAW images.

JPEG compression. Modern digital cameras store RGB

images in JPEG format, whose information loss fur-

ther brings challenges to RAW image reconstruction.

JPEG encoding pipeline consists of four main steps:

color space transformation, discrete cosine transformation

(DCT), quantization, and entropy encoding [33]. In reality,

quantization is the only lossy and non-differentiable step in

JPEG compression. Note that the JPEG information loss is

quite hard to reverse. Thus we take a compromised step by

integrating the JPEG compression procedure into our net-

work optimization process to alleviate the information loss.
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Figure 3. Our Invertible ISP (InvISP) framework. InvISP is composed of both forward and inverse passes. In the forward pass, the Bayer

RAW is first bilinearly demosaiced and then transformed to an RGB image by a stack of bijective functions {fi}
k

i=0. Our model integrates

a differentiable JPEG simulator to account for compression information lost. During the training time, to invert the ISP, the backward pass

takes a compressed RGB image as input and reverses all the bijective functions and the bilinear demosaicing to obtain the original RAW

image. Note that the backward pass takes real JPEG images as input at test time. We illustrate the details of the invertible block on the

right. r, s, and t are transformations defined in the bijective functions {fi}
k

i=0.

To achieve this, we design a differentiable JPEG simula-

tor by carefully simulating the JPEG compression proce-

dure and replacing the quantization step with differentiable

Fourier transformations.

4. Method

4.1. Invertible Image Signal Processing (InvISP)

We denote the RAW data space as X and sRGB data

space as Y . Our goal is to find the invertible and bijec-

tive function which can map the data point from RAW data

space to sRGB data space, denoted as f : X → Y . To

achieve this, classical neural networks need two separate

networks to approximate X → Y and Y → X mappings re-

spectively, which leads to inaccurate bijective mapping and

may accumulate the error of one mapping into the other. We

take an alternative method and use the affine coupling layers

in [12, 25] to enable invertibility of one single network. We

design our invertible ISP with the compostition of a stack

of invertible and tractable bijective functions {fi}
k
i=0, i.e.

f = f0 ◦f1 ◦f2 ◦ · · · ◦fk. For a given observed data sample

x, we can derive the transformation to target data sample y

through

y = f0 ◦ f1 ◦ f2 ◦ · · · ◦ fk(x), (1)

x = f−1

k
◦ f−1

k−1
◦ · · · ◦ f−1

0 (y). (2)

The bijective model fi is implemented through affine

coupling layers. In each affine coupling layer, given a D

dimensional input m and d < D, the output n is calculated

as

n1:d = m1:d, (3)

nd+1:D = md+1:D ⊙ exp (s (m1:d)) + t (m1:d) , (4)

where s and t represent scale and translation functions from

Rd 7→ RD−d, and ⊙ is the Hadamard product. Note that the

scale and translation functions are not necessarily invertible,

and thus we realize them by neural networks.

As stated in [12], the coupling layer leaves some input

channels unchanged, which greatly restricts the representa-

tion learning power of this architecture. To alleviate this

problem, we firstly enhance [42] the coupling layer (3) by

n1:d = m1:d + r(md+1:D), (5)

where r can be arbitrary function from RD−d 7→ Rd. The

inverse step is easily obtained by

md+1:D = (nd+1:D − t (n1:d))⊙ exp (−s (n1:d)) , (6)

m1:d = n1:d − r(md+1:D). (7)

Next, we utilize the invertible 1 × 1 convolution pro-

posed in [25] as the learnable permutation function to re-

verse the order of channels for the next affine coupling layer.

We remove the spatial checkerboard mask as it brings no

evident performance improvement [25]. We follow the im-

plementation of [10] and disable batch normalization [23]

and weight normalization used in [12]. For our image-to-

image translation task, we directly learn the RAW-to-RGB

mapping without explicitly modeling the latent distribution

to stabilize the training process.
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Figure 4. The curve of our approximation rounding function for

quantization in our differentiable JPEG simulator.

Note that the input size of invertible neural networks

must be identical to the output size. Thus, we take the bilin-

ear demosaiced RAW data as input, which will not destroy

the RAW data quality, and reversing the bilinear demosaic-

ing is trivial [7]. For the affine coupling layer, we split the

input into two parts. We note that although three-channel

input cannot be split evenly, the invertible 1 × 1 convolu-

tion ensures that unchanged components are updated in the

next invertible block. Thus R, G, and B channels are still

treated equally. We also do an online gamma correction

(i.e. without storing on disk) to RAW data to compress the

dynamic range for faster convergence speed.

The forward pass of our InvISP produces the sRGB im-

ages, and the reverse pass aims at recovering realistic RAW

data. We conduct bi-directional training with L1 loss to op-

timize our framework.

L = ||f(x)− y||1 + λ||f−1(y)− x||1, (8)

where λ is the hyper-parameter used to balance the accuracy

between RGB and RAW reconstruction. We set λ to 1 in our

main experiments.

4.2. Differentiable JPEG Simulator

Our goal is to train a robust invertible ISP that can tol-

erate the distortion by JPEG compression to recover accu-

rate RAW. However, the JPEG compression algorithm is not

differentiable, which can not be directly integrated into our

end-to-end framework. Thus, we propose a differentiable

JPEG simulator to enable our network robust to the JPEG

compression through the optimization process. Since en-

tropy encoding is lossless and goes after quantization, we

skip this step and only simulate color space transformation,

DCT, and quantization steps.

To simulate the DCT process, we compute the DCT co-

efficients and split the input into 8 × 8 blocks. Then each

block is multiplied by DCT coefficients to get the DCT map.

In JPEG compression, the DCT map is divided by quanti-

zation tables and rounding to the integer type. Since the

rounding function is not differentiable, we design a differ-

entiable rounding function base on the Fourier series, which

can be defined as:

Q(I) = I −
1

π

K∑

k=1

(−1)k+1

k
sin(2πkI), (9)

where I is the input map after divided by quantization tables

in JPEG compression, and K is used for the tradeoff be-

tween approximation accuracy and computation efficiency.

As K increases, the simulation function is closer to the real

round function, but the running time will also increase. We

empirically set K to 10. The rounding process is illustrated

in Figure 4.

In the decoding phase of JPEG compression, I is mul-

tiplied by the quantization table. The inverse DCT and

color space transformation are then applied to reconstruct

the simulated JPEG images.

Discussion. Differentiable rounding function is widely

used in network quantization research. To fairly prove the

effectiveness of our proposed rounding function, we also

compare with the rounding function in [17], as shown in

Table 1. Our method can achieve a better balance between

RGB rendering and RAW reconstruction.

5. Experiments

5.1. Experimental setup

Datasets. We collect the Canon EOS 5D subset (777 im-

age pairs) and the Nikon D700 subset (590 image paris)

from the MIT-Adobe FiveK dataset [8] as the training and

test data. We train our model for each camera separately.

We randomly split each of the two sets (Canon, Nikon)

into training and test sets with a ratio of 85:15. We use

the LibRaw library to process the RAW images to render

ground-truth sRGB images. In general, LibRaw conducts

most representative ISP steps in modern digital cameras to

render sRGB images, including color space conversion, de-

mosaicing, denoising, white balancing, exposure compen-

sation, gamma compression, and global tone mapping.

Implementation details. We utilize random crop, random

rotation, and random flip as data augmentation to train our

model. We preprocess the raw data using the white bal-

ance parameters provided by camera metadata since esti-

mating white balance directly from raw images is a research

topic in itself [3]. To test the effectiveness of our JPEG

simulator, we store the ground truth RGB into JPEG for-

mat, whose quality is set to 90 (Q=90, most representative

JPEG quality in modern digital cameras). We also conduct

experiments without preprocessing white balance and with

another JPEG quality, whose quantitative results are acces-

sible in the supplement. At test time, we first conduct the

forward pass of our network to render RGB images and save
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NIKON D700 Canon EOS 5D

Method RGB RAW RGB RAW

PSNR SSIM PSNR PSNR SSIM PSNR

UPI [7] - - 30.12 - - 26.31

CycleISP [44] - - 30.19 - - 34.48

InvGrayscale [41] 24.13 0.8258 33.28 28.22 0.8714 38.00

U-net [10] 36.48 0.9342 41.17 33.44 0.8893 41.14

Ours (w/o JPEG simulation) 37.44 0.9309 44.19 33.45 0.8923 45.73

Ours (JPEG with DSQ [17]) 37.44 0.9467 45.25 33.15 0.8946 48.22

Ours (JPEG with Fourier) 37.47 0.9473 45.23 33.61 0.9007 48.57

Table 1. Quantitative evaluation among our model and baselines. Various perceptual metrics show that our proposed ISP model outperforms

all the baselines. Our method with JPEG simulation using proposed Fourier quantization outperforms the other two alternative models.

Ground-truth RGB Ground-truth RAW UPI RAW [7] CycleISP RAW [44] Our RAW

Figure 5. The qualitative comparison among UPI [7], CycleISP [44] and our method. UPI and CyleISP synthesize RAW data from 8-bit

compressed RGB, which is inevitable to suffer from the information loss of traditional ISP. Unlike theirs, our model forms a RAW-

RGB-RAW cycle and is inherently reversible to recover the realistic RAW image. The GT RAW image is visualized through bilinear

demosaicing, and other RAW images are visualized through error maps. This figure is best viewed in the electronic version.

them into JPEG images. Then we load the saved JPEG im-

ages and conduct the inverse step to recover RAW images.

5.2. Baselines

UPI. Brooks et al. [7] unprocess the sRGB images to

synthesize high-quality RAW images for learned RAW de-

noising. They adopt camera priors to inverse ISP step-by-

step, such as digital gain, tone mapping curves, white bal-

ance, and color correction matrices [7]. Since the metadata

such as color correction matrix, white balance, and digital

gain are camera dependent, we modified these parameters

in their method to fit our dataset. We use their described
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Figure 6. Comparison with baselines. Invertible Grayscale [41] fails at learning a good balance between RGB rendering and RAW recover-

ing, which results in relatively poor performance in both RGB and RAW images. The U-net [10] can render comparable RGB performance

with ours but perform worse at RAW recovering. Our invertible ISP can both render visually pleasing RGB images and reconstruct realistic

RAW data. The GT RAW is visualized through bilinear demosaicing, and other RAW images are visualized through error maps. This figure

is best viewed in the electronic version.

method to estimate metadata for our datasets.

CycleISP. We select the state-of-the-art learning-based

RAW synthesizing method, CycleISP [44], as another base-

line for synthetic RAW direction. Note that their model has

access to RGB images at test time, and thus we only need

to compare with their synthesized RAW images. We di-

rectly utilize their pretrained model since their framework

is trained on the MIT-Adobe FiveK dataset, and their pro-

posed color attention unit can be generalized to different

cameras.

U-net. U-net is a representative architecture for ISP in

recent year publications [10, 45], thus we implement a

encoder-decoder baseline using U-net [38]. Both the en-

coder and decoder are consist of an independent U-net.

Same as [10, 45], we pack the Bayer pattern RAW into R-

G-G-B channels for encoder input and utilize the depth-to-

space operation to restore the RGB resolution. We utilize

the same data augmentation strategies as our InvISP. We

jointly train the encoder and decoder of our U-net baseline

using L1 loss from scratch on all our datasets.

Invertible Grayscale. Invertible Grayscale [41] is a general

framework to learn the forward and inverse mapping be-

tween two space, such as color-image space and grayscale-

image space. The encoder of Invertible Grayscale takes a

3-channel RGB image as input and processes it to a single-

channel grayscale image. The decoder recovers the original

sRGB image with the same color from the grayscale image.

Similar to their settings, we change the input from sRGB

image to RAW data after bilinear demosaicing and set the

output of the encoder to the 3-channel RGB image. Since

the lightness loss function is not suitable for our tasks, we

remove it for our experiments.

5.3. Results

Quantitative results. To quantitatively evaluate our

method, we use PSNR and SSIM for rendered RGB images,

and PSNR for recovered RAW images. The comparison

with baselines is reported in Table 1. Compared with the

RAW synthesizing method UPI and CycleISP, our model

can recover more accurate RAW data, which is proved by

more than 13 dB improvement of PSNR. The results are not

surprising because lots of information lost in the ISP is quite

hard to invert, which results in poor performance for syn-

thetic RAW reconstruction methods. However, our InvISP

can jointly optimize RGB rendering and RAW recovering

process and thus is better to handle the information lost in

quantization, JPEG compression, and saturated value clip-

ping problem in ISP. For the Invertible Grayscale and the

U-net baselines, the results indicate that our method con-

tributes a better ISP as well as a stronger model for recover-

ing RAW data. This is because using two separate networks

for ISP and inverse ISP will cause the error accumulation

problem, which further degrades the RAW reconstruction

performance. Our methods take the inherent reversibility of

invertible neural networks thus can recover higher-quality

RAW images than baselines.

Qualitative results. We show qualitative comparisons

against baseline methods in Figure 5 and Figure 6. In Fig-

ure 5, the synthetic RAW by CycleISP and UPI differs a lot

from ground truth RAW images, especially at over-exposed

regions, which indicates that their model performs poorly to

handle the information loss of ISP. Our model, however, can

recover the RAW information much better than synthetic

RAW methods, even at challenging highlight pixels, which
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Figure 7. Our model can enable image retouching [22] and HDR

reconstruction [32] applications. Note that we use the pretrained

model of [22] for retouching.

raises the potential for prospective photo editing tasks. In

Figure 6, Invertible Grayscale fails to pursue a good bal-

ance between RGB rendering and RAW reconstruction. Our

naive U-net baseline can achieve comparable performance

in terms of RGB rendering but not perform well at RAW

recovering. Our method reconstructs higher-quality RAW

images on edges and over-exposed areas without sacrificing

the RGB rendering performance.

6. Applications

6.1. RAW data compression

One important application of our framework is RAW

data compression for cameras. Traditionally, users need

to explicitly store RAW data for further applications. Us-

ing our technique, however, only JPEG images need to be

stored, and users can reconstruct the corresponding RAW

data from JPEG images. To evaluate the reduced file size,

we calculate the compression ratio and the bit per pixel

(BPP). The compression ratio Cratio [35] is calculated by

Cratio =
Uncompressed size

Compressed size
=

BBMP

BJPEG

, (10)

where BBMP is the file size of RAW data in BMP for-

mat and BJPEG is the file size of rendered sRGB image

in JPEG format. Note that BBMP is calculated by [6]

BBMP = 54 +
H ×W × b

8
, (11)

where H , W and b are the height, width and the bit depth of

the RAW data. We further compare our compression effec-

tiveness with Adobe lossy DNG. As shown in Table 2, the

file size is highly reduced, even compared with lossy DNG.

Compression ratio ↑ BPP ↓

Dataset Lossy DNG Ours Lossy DNG Ours

NIKON D700 1.61 34.98 8.73 0.4655

Canon EOS 5D 1.52 27.37 6.56 0.5237

Table 2. Comparison of the compression ratio of the file size and

bit per pixel (BPP) between our method and lossy DNG. The file

size is significantly reduced by our framework.

6.2. Image retouching

Professional photographers choose to retouch images

from RAW data for better visual quality. We demonstrate

that our recovered RAW can be directly taken as input for

high-quality image retouching. We use an automatic deep

learning based image retouching method Exposure [22] as

an example. We preprocess the recovered RAW and ground

truth RAW through demosaicing and white balancing, fol-

lowing the setting of the paper [22]. We directly utilize

their pretrained model that is also trained on the MIT-Adobe

FiveK dataset. As illustrated in Figure 7, our reconstructed

RAW data has an indistinguishable visual quality to the

RAW data captured by the camera.

6.3. HDR reconstruction and tone manipulation

Inferring a high dynamic range image from a single low

dynamic range input is challenging [13, 14] since the infor-

mation lost in saturated and under-exposed regions are hard

to invert accurately. Our invertible ISP framework funda-

mentally alleviates these difficulties and thus enables single

image HDR reconstruction. Further, the recovered HDR

image can be tone mapped to display much more details

than the original RGB input. In Figure 7, we use [32] as

tone mapper to demonstrate the potential of our method.

7. Conclusion

We have proposed an end-to-end invertible image signal

processing (InvISP) framework to generate visually pleas-

ing RGB images and recover nearly perfect quality RAW

data. We leverage the idea from invertible neural networks

to design our invertible structure and integrate a differen-

tiable JPEG simulator to enhance the network stability to

JPEG compression. We use LibRaw to simulate ground-

truth ISP on the MIT-Adobe FiveK dataset. We evaluate our

method through comparisons with other frameworks and

RAW data synthesis methods. We also demonstrate that our

framework enables RAW data compression, image retouch-

ing, and HDR reconstruction tasks. We hope our method

can inspire further research on RAW image reconstruction.
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