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Abstract

Demographic bias is a significant challenge in practical

face recognition systems. Existing methods heavily rely on

accurate demographic annotations. However, such annota-

tions are usually unavailable in real scenarios. Moreover,

these methods are typically designed for a specific demo-

graphic group and are not general enough. In this paper,

we propose a false positive rate penalty loss, which mit-

igates face recognition bias by increasing the consistency

of instance False Positive Rate (FPR). Specifically, we first

define the instance FPR as the ratio between the number

of the non-target similarities above a unified threshold and

the total number of the non-target similarities. The unified

threshold is estimated for a given total FPR. Then, an ad-

ditional penalty term, which is in proportion to the ratio of

instance FPR overall FPR, is introduced into the denom-

inator of the softmax-based loss. The larger the instance

FPR, the larger the penalty. By such unequal penalties,

the instance FPRs are supposed to be consistent. Com-

pared with the previous debiasing methods, our method re-

quires no demographic annotations. Thus, it can mitigate

the bias among demographic groups divided by various at-

tributes, and these attributes are not needed to be previ-

ously predefined during training. Extensive experimental

results on popular benchmarks demonstrate the superiority

of our method over state-of-the-art competitors. Code and

pre-trained models are available at https://github.

com/xkx0430/FairnessFR.

1. Introduction

With the increasing deployment of face recognition sys-

tems, fairness in face recognition has received broad inter-

est from research communities [19, 3, 5, 15, 14, 22]. This

is partially due to the enormous impact brought in our daily

life by face recognition systems. For example, when auto-

*denotes the corresponding author.
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Figure 1. FNR and FPR curves of the four races in RFW [19]. FNR

and FPR are calculated with a ResNet34 [2], which is trained on

the public balanced dataset BUPT-Balanced [20]. Lower is better.

Given a specific threshold, PPR varies significantly among differ-

ent races than FNR. (e.g., the standard deviation (std) of FPR at

Tu=0.31 is 7.6, while the std of FNR at Tu=0.31 is 0.97).)

matic face recognition is applied to crime prevention, unfair

prediction may lead to unfair treatment of individuals across

different demographic groups.

Previous studies [14, 19, 3, 4, 16] mainly improve the

fairness of face recognition in two aspects, i.e., datasets and

algorithms. Since the widely-used public large-scale face

datasets, such as CASIA-WebFace [21], VGGFace2 [1],

and MS-Celeb-1M [6] are collected from the Internet, they

inevitably encode gender, ethnic, and culture biases. Thus,

the works in [14, 19, 18, 9] propose some new face recog-

nition datasets that contain relatively balanced samples in

ethnicity, age, and other facial attributes. However, it is

quite challenging to construct a balanced dataset in vari-

ous attributes. What is more, the racial bias of the models

trained with such balanced datasets cannot be eliminated

completely [18]. Therefore, a novel algorithm that can mit-

igate the bias regardless of whether training datasets are

balanced or not is imperative. Recently, several algorithms

supervised by demographic attribute information are intro-

duced to alleviate demographic bias. For example, Wang et

al. [19] propose a deep information maximization adapta-

tion network by transferring recognition knowledge from
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Caucasians to other races. With similar ideas, they pro-

pose another method based on a widely-used margin-based

loss function in face recognition, in which Q-learning learns

the optimal margins of non-Caucasians with a manually-

selected margin of Caucasians [18]. Different from the

above methods take Caucasians as a reference, Gong et

al. [4] present a debiasing adversarial network with four

specific classifiers, in which one classifier is designed for

identity and the other three are designed for demographic

attributes. They further introduce a group adaptive classifier

by using adaptive convolution kernels and attention mech-

anisms based on their demographic attributes [5]. How-

ever, all the above methods are explicitly designed to miti-

gate the bias in demographic groups divided by race. Thus,

these methods have poor transferability and generalization.

Moreover, they rely on accurate demographic attribute an-

notations, which are usually not available.

To address the above problem, we first evaluate the bias

in face recognition from another perspective. Previous

methods [4, 18, 19] mainly adopt the standard deviation of

accuracy in each demographic group as the bias of a specific

face recognition algorithm. In contrast, we analyze the bias

in face recognition by two commonly-used evaluation met-

rics, i.e., false positive rate (FPR), and false negative rate

(FNR). As shown in Fig. 1, FPR varies significantly among

different races than FNR, which shares a similar observa-

tion with [12]. Thus, it is essential to promote the consis-

tency of FPR across each race group to mitigate the bias in

face recognition. Based on this observation, we propose a

false positive rate penalty loss, which mitigates face recog-

nition bias by increasing the consistency of instance FPR.

By generalizing the consistency of FPRs across each de-

mographic group to the consistency of FPRs across each

instance, our method is generic to improve the fairness of

face recognition across the demographic groups divided by

various attributes, such as race, gender, and age. Specifi-

cally, we first define the instance FPR as the ratio between

the number of the non-target similarities above a unified

threshold and the total number of the non-target similari-

ties. Then, an additional penalty term in proportion to the

ratio of instance FPR overall FPR is introduced into the de-

nominator of the softmax-based loss. A larger ratio between

each instance and the overall FPR yields a larger loss value.

By such unequal penalties, the instance FPRs are supposed

to be much consistent. Compared with the previous debi-

asing methods, our method firstly requires no demographic

annotations of images; secondly can be easily embedded

into the commonly used softmax-based loss function in face

recognition; and finally can mitigate the bias across all de-

mographic group divided by various kinds attributes, such

as race, gender, and age.

To sum up, the contributions of this work are three-fold:

• To our best knowledge, it is the first work that alle-

viates the bias in face recognition by promoting the

consistency of instance FPRs, which provides a new

perspective to improve face recognition fairness.

• Our false positive rate penalty loss can improve the

fairness across demographic groups divided by vari-

ous kinds of attributes. Moreover, our method requires

no demographic group annotation.

• We conduct extensive experiments on popular facial

benchmarks, which demonstrate the superiority of our

method over the SOTA competitors.

2. Related Work

Loss Function. Designing an effective loss function plays

a vital role in deep face recognition. Many margin-

based loss functions are proposed to obtain highly dis-

criminative features for face recognition. For example,

SphereFace [10], CosFace [17], ArcFace [2] are widely

used margin-based loss function, which add margins in

the positive logits (i.e., intra-class). Recently, several

works [20, 8] extend the margin-based loss function with

hard sample mining strategies, which add the extra mar-

gin in the negative logits (i.e., inter-class). Though the loss

mentioned above functions are verified to obtain good per-

formance, they do not consider the demographic bias. Our

method can mitigate the bias in face recognition by promot-

ing the consistency of instance FPRs, and thus improve face

recognition fairness.

Bias Mitigation in Face Recognition. Firstly, we inves-

tigate the current datasets widely used for fair face recog-

nition. The Diversity in Faces (DiF) dataset [11] provides

annotations of 1 million human facial images to advance

the study of fairness in facial recognition. Wang et al. [18]

propose the Racial faces in-the-wild (RFW) as a testing

database for studying racial bias in face recognition. In [20],

Wang et al. also introduce BUPT-balanced as a balanced

dataset on race, and BUPT-Globalface to reveal the real

distribution of the world’s population. Both of these two

public datasets are used for face recognition fairness stud-

ies. In [14], the BFW benchmark and dataset, inspired by

DemogPairs [9], is introduced as a labeled data resource

made available for evaluating recognition systems. BFW

contains eight demographic groups for bias evaluation, and

each of them consists of 200 subjects with 2.5K images.

In this paper, we will evaluate our proposed algorithms on

RFW and BFW. Next, we discuss the current algorithms for

mitigating bias, which aims to solve unfairness of discrim-

ination performance across groups, based on demographic

information. Wang et al. [19] propose a deep information

maximization adaptation network to alleviate bias, using

deep unsupervised domain adaptation. Subsequently, Wang
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Figure 2. Illustration of instance FPR Penalty Loss. Assuming a mini-batch input X consists of samples from two races, i.e., black and

white, we obtain the corresponding features by an embedding network. Given a weight matrix W that each column corresponds to one

identity, a cosine similarity matrix S is calculated based on the normalized feature X and weight W , and each value in this matrix is

Sij=XiWj . Among the matrix, the orange boxes the cosine similarities between the samples and their corresponding target (ground truth)

weights. The other boxes denote the cosine similarities between the samples and the non-target weights. The green boxes indicate that their

similarities are above a unified threshold Tu estimated by a preset FPR, while the grey boxes indicate equal to or less than the threshold.

We take the green boxes in each row as false positives and define the instance FPR as the ratio between the number of the green boxes and

the total number of the gray and green boxes. For samples from different races, the instance FPR varies significantly. Generally, the larger

the instance FPR, the worse an algorithm performs at the current training stage. Thus, we introduce an additional false positive penalty

term into the softmax-based losses to promote the consistency of instance FPRs.

et al. [18] introduce a reinforcement learning based race

balance network, in which additive angular margin of loss

functions for different races is selected by a pre-trained net-

work module. Gong et al. [4] present a debiasing adver-

sarial network with four specific classifiers, in which one

classifier for identity and the other three for demographic

attributes. They have further improved the method with a

group adaptive classifier based on estimated demographic

attributes recently [5].

Manual annotations of demographic attribute are nec-

essary in current studies, which are usually unavailable in

practice. Auxiliary modules, such as DQN, MDP, and at-

tribute classifier, increase the training pipelines’ difficulty

than standard end-to-end training methods. In contrast, our

proposed approach is simple to implement in an end-to-end

manner without accurate manual annotations and auxiliary

network modules.

3. Proposed Approach

In this section, we introduce the details of our approach.

First, we explain the relationship between false positive rate

and bias in face recognition; then we deduce a new evalu-

ation protocol for demographic bias from the correspond-

ing FPRs. Next, we introduce our false positive rate penalty

loss, which mitigates face recognition bias by increasing the

consistency of instance FPR.

3.1. Demographic Bias

False Positive Rate vs. Bias In face recognition systems,

a comparison of two images with the same identity gen-

erates a positive pair, while a comparison of two images

with different identities generates a negative pair. In gen-

eral, a unified threshold Tu should be set as the criterion for

judging whether a comparison of two images is positive or

negative. A negative pair with similarity above the thresh-

old is called a false positive pair (FPP), and a positive pair

with similarity below the threshold is called a false negative

pair (FNP). Correspondingly, the false positive rate (FPR)

is defined as the ratio of false positive pairs to all negative

pairs, and the false negative rage (FNR) is defined as the

ratio of false negative pairs to all positive pairs. Both FPR

and FNR are the frequently used as evaluation protocols in

face recognition. Given a similarity set of N+ positive pairs

{S+[i]}, and a similarity set of N− negative pairs {S−[i]},

FPR and FNR, which are respectively denoted as γ+ and

γ−, are formulated as follows:

γ+ =

∑N−

i=1 1(S
−[i] > Tu)

N−
, (1)

γ− =

∑N+

i=1 1(S
+[i] < Tu)

N+
, (2)

where 1(·) is a indicator function.

For a demographic group g of certain race, gender, or

age, etc., we can further calculate its own FPR γ+
g and FNR
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γ−
g as follows:

γ+
g =

∑N−

g

i=1 1(S
−
g [i] > Tu)

N−
g

, (3)

γ−
g =

∑N+
g

i=1 1(S
+
g [i] < Tu)

N+
g

, (4)

where S−
g , S+

g , N−
g and N+

g are the corresponding num-

bers and similarity sets of the g group. To analyze bias in

recognition performance, we adopt the FPR and FNR pro-

tocols to exhibit the performance difference across differ-

ent demographic groups. We employ the BUPT-Balanced

dataset [18] to train a ResNet-34 model with ArcFace and

show the FPR and FNR performance on RFW [19] in Fig. 1.

By comparing the FPR and FNR of four races, we notice

that the performance of different races varies greatly, and

moreover, the difference in FPR is much larger than that in

FNR (the standard deviation of FPR at Tu = 0.31 is 7.6,

while the standard deviation of FNR at Tu = 0.31 is 0.97).

We note that similar results are also reported in the NIST

FRVT [12].

Considering such results, we believe that achieving

higher consistency in FPR prior to FNR across demograph-

ics is essential for improving fairness in face recognition.

Besides, we define the standard deviation of the ratio be-

tween the demographic and overall FPR as bias degree.

Given the group set G and group number NG , the bias de-

gree δ is formulated as follows:

δ =
1

NG

√

√

√

√

∑

g∈G

(

γ+
g − µ

γ+

)2

(5)

where µ is the average demographic FPR. In our following

experiments, this criterion is used as a fairness evaluation

protocol on several benchmarks.

Consistency of Instance FPR As an extreme case, if a

demographic group is consisted of one single instance, de-

mographic group’s FPR degrades into instance’s FPR. Cor-

respondingly, the consistency of FPRs across different de-

mographic groups is generalized as the consistency of FPRs

across different instance. During training, we choose to in-

crease such a generalized version of consistency rather than

the consistency of demographic groups’ FPRs to mitigate

face recognition bias. There are two reasons: 1) Demo-

graphic groups can be divided by various kinds of attributes,

such as race, gender, and age etc., which is too numerous to

enumerate; 2) Evaluating the consistency of instance FPR

requires no demographic annotations of image samples. In

the following, we first revisit the softmax-based losses and

then show our way to achieve a higher FPR consistency via

introducing extra false positive penalties into the softmax-

like loss.

(a) Demographic FPR (ArcFace)

(b) Demographic FPR (ours)

Figure 3. Comparison on demographic FPR in training. We com-

pare the FPR trends of different races with ArcFace and our meth-

ods, respectively. In ArcFace (a), the FPRs of Caucasian and In-

dian are still at a low level, while the FPRs of black and Asian are

at a high level, even continue to grow. In our method (b), except

Indian, the FPRs of the other races trend to converge at the end

of training. We notice that the FPR of Caucasian is a slightly in-

creased. However, we evaluate this trained model on RFW, and

the performance of Caucasian is not degraded.

3.2. FPR Penalty Loss

Softmax Loss Function. The original softmax loss is for-

mulated as follows:

L = − log
eWyi

xi+byi
∑n

j=1 e
Wjxi+bj

, (6)

where xi ∈ Rd denotes the deep feature of i-th sample

which belongs to the yi class, Wj ∈ Rd denotes the j-th

column of the weight W ∈ Rd×n and bj is the bias term.

The class number and the embedding feature size are n and

d, respectively. In practice, the bias is usually set to bj = 0
and the individual weight is set to ||Wj ||= 1 by l2 normal-

ization. The deep feature is also normalized and re-scaled

to s. Thus, the original softmax can be modified as follows:

L = − log
es(cos θyi )

es(cos θyi ) +
∑n

j 6=yi
es(cos θj)

. (7)

Since the learned features with the original softmax loss

may not be discriminative enough for practical face recog-

nition problem, several variants are proposed and can be

formulated in a general form:

L = − log
es·G(cos θyi )

es·G(cos θyi ) +
∑n

j 6=yi
es·H(cos θj)

, (8)
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(b) Comparison on variance on demographic FPR

(a) Comparison on variance on proportion 
of samples with false positives

(c) Comparison on variance on instance FPR

Figure 4. Comparison on variance in training. We compare the

training variance in three aspects. As shown in (a), in a mini-

batch, the proportion of the samples whose instance FPR is greater

than 0 is compared between baseline and our method. (b) shows

the standard deviations on demographics FPR, and (c) shows the

standard deviations on instance FPR. Compared with arcface, our

method achieves higher consistency on demographic FPR and in-

stance FPR.

where G(cos θyi
) and H(cos θj) are the functions to mod-

ulate the positive and negative cosine similarities, respec-

tively. In margin-based loss function, such as ArcFace,

G(cos θyi
) = cos(θyi

+m) aims to emphasize the inter-

class similarity. In mining-based loss functions, H(cos θj)
is designed to mining difficult negative pairs to decrease the

intra-class confusion. However, the previous works focus

on improving the discrimination performance on popular

benchmarks, but not on enhancing the fairness of perfor-

mance. Next, we introduce an extra false positive penalty

term into the softmax-based losses, aiming at making the

instance FPR more consistent and consequently enhancing

the fairness of face recognition performance.

Extra Penalty on the FPR of Instance. Since the yi-th
column of the weight W usually could be regarded as a rep-

resentative of the yi-th class, for the i-th instance belonging

to class yi, the target logit cos θyi
could be considered as

the similarity of a positive pair, while the non-target log-

its cos θj , j 6= yi could be considered as the similarities of

negative pairs. According to Eq. 3, given these non-target

similarities and a unified threshold Tu, corresponding to a

overall FPR γ+
u , the FPR of the instance can be calculated

as:

γ+
i =

∑n
j=1,j 6=yi

1(cos θj > Tu)

n− 1
, (9)

To make instance FPRs more consistent, that is, all close

to FPR γ+
u , we add an extra penalty term in the denomi-

nator of the softmax function which is in proportion to the

ratio of instance FPR to overall FPR γ+
i /γ+

u . Specially, we

add the ratio (multiplied by a factor α > 0) to the original

non-target logit, leading to the loss function presented as

follows:

L = − log
es·G(cos θyi )

es·G(cos θyi ) +
∑n

j 6=yi
e
s·

(

cos θj+α
γ
+
i

γ
+
u

) . (10)

Since the extra penalty esαγ
+
i
/γ+

u is always > 1, a larger

instance-overall FPR ratio yields a larger loss value. By

such unequal penalties, the instance FPRs are supposed to

be much consistent. Further, considering the fact that more

attention should be paid to those false positive cases with

higher similarity (hard samples), we introduce a weighted

FPR function of instance as follows:

γ̄+
i =

∑n
j=1,j 6=yi

1(cos θj > Tu) · F (cos θj)

n− 1
. (11)

Here the function F (z) is supposed to give larger weights to

false positive cases with higher similarities and thus should

be monotone increasing. Without loss of generality, in this

paper, we use the power function F (z) = sgn (z) |z|
p

as

the weighted function, where p ≥ 1 and sgn(·) is the sign

function. Since Tu is usually positive, the sign function and

the abs. function can be omitted, leading to F (z) = zp.

When p = 1, F (·) degrades into cosθj .

Finally, we show the effect achieved by the loss function

on the training set. Fig. 3 shows the difference of the FPR

trends between baseline and our method. In Fig. 3 (b), We

notice that FPR of Asian in our method keeps decreasing in

most time of training process, and becomes much consistent

with other races at the end. In Fig. 4, we compare the train-

ing variance on proportion of samples with false positives,

demographic FPR and instance FPR. As a result, both the

variance in these three aspects are lower than the baseline

method. In a word, our algorithm helps to mitigate the race

bias effectively.
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Algorithm 1: FPR Penalty Loss

Input: The deep feature of i-th sample with its label yi,

cosine similarity cos θj of two vectors, last

fully-connected layer parameters W , embedding

network parameters Θ, class number c, sample

number n, learning rate λ, and overall false

positive rate γ+
u

iteration number k ← 0, parameter t← 0, γ+
u ← 1e−4;

while not converged do

Compute the ⌈γ+
u n(c− 1)⌉-th largest value of set

{cos θj | i ∈ [1, n], j ∈ [1, c], j 6= yi} as the

temporary threshold Tu;

if cos(θj) > Tu then

Ij = 1;

else

Ij = 0;

end

Compute the weighted FPR γ̄+
i by Eq. 11;

Compute the loss L by Eq. 10 (replace γ+
i by γ̄+

i );

Compute the gradient of Wj and xi by Eq. 12;

Update the parameters W and Θ by:

W (k+1) = W (k) − λ(k) ∂Li

∂W
,

Θ(k+1) = Θ(k) − λ(k) ∂Li

∂xi

∂xi

∂Θ(k) ;

k ← k + 1;

end

Output: W , Θ.

FPR Setting and Threshold Estimation in Training.

From Eq. 9 and Eq. 11, we see that our proposed method

relies on the choice of a overall γ+
u , which further involves

the estimation of the threshold Tu. In practice, the choice

of the FPR depends on the deployment scenario of the face

recognition system. For example, to balance the risk and

user experience, the FPR is usually set to 1e-5 in a face

access control system. And the popular public face bench-

marks often focus on the FPR range [1e-1, 1e-6]. Note that

a lower FPR means less number of false positive cases. If

the overall FPR is set to be extremely small, there are rare

false positive cases can get extra penalty, which may intu-

itively lower the performance gain of our method. Besides,

it’s hard to estimate a stable threshold corresponding to an

extremely small FPR, because of a lack of enough negative

pairs during training. For the above reasons, we choose the

overall FPR range as [1e-1, 1e-5] in this paper.

Given an overall FPR, usually the threshold is estimated

from the quantile of the distribution of all negative pairs.

Here, we utilize the non-target logits instead of the negative

instance pairs in threshold estimation, for reasons that com-

pared with the size of mini-batch, the number of class in

training is often much larger, leading to more negative pairs

and thus a more accurate and stable threshold estimate.

Optimization. We show our method 1 can be easily op-

timized by the conventional stochastic gradient descent.

Let’s denote Gi as the sG(cos θyi
) of the sample belongs

to the yi-th class, Hj as s
(

cos θj + αγ+
i /γ+

u

)

, and Ij as

the mining mask. In this section, we consider the Cos-

Face form of our loss function, so Gi = cos θyi
− m and

Hi = cos θj + αγ̄+
i /γ+

u . In the backward propagation pro-

cess, the gradients w.r.t. xi and Wj are presented as follows:

∂Li

∂Wyi

=
∂Li

∂Gi

· xi,

∂Li

∂Wj

=

(

1 +
α

γ+
u

· Ij
∂F

∂ cos θj

)

·
∂Li

∂Hj

· xi,

∂Li

∂xi

=
∂Li

∂Gi

·Wyi +



1 +
α

γ+
u

·
∑

j 6=yi

Ij
∂F

∂ cos θj



 ·
∂Li

∂Hj

·Wj ,

(12)

Based on the above formulations, we can find the extra

gradients for alleviating bias have a new composed term
∂Li

∂Hj

∂F
∂ cos θj

, if the j-th logit with Ij = 1 is chosen as a

false positive case. The term ∂Li

∂Hj
brings gradient adjust-

ment from false positive cases above the threshold, while

the term ∂F
∂ cos θj

further modulates the former adjustment

by the similarity of specific false positive case.

4. Experiments

4.1. Experimental Setting

Dataset. In this study, we employ BUPT-Balancedface

and BUPT-Globalface dataset [19] for training. BUPT-

Balancedface dataset contains 1.3M images of 28K celebri-

ties and is approximately race-balanced with 7K identities

per race. BUPT-Globalface dataset contains 2M images of

38K celebrities, and its racial distribution is approximately

the same as the real distribution of the world’s population.

RFW dataset [18] and BFW dataset [14] are used for fair-

ness testing. RFW consists of faces from four race groups:

African, Asian, Caucasian, and Indian. Each race group

contains nearly 10K images of 3K individuals for face ver-

ification. Compared with RFW, the BFW dataset provides

balanced face data with more attributes, including ID, gen-

der, and race. There are eight demographic groups ac-

cording to two genders and four ethnic groups (i.e. Black,

White, Asian, and Indian), and each demographic group

consists of 200 subjects with 2.5K images.

Training Setting. We follow [17, 2] to crop the 112×112
faces with five landmarks detected by MTCNN [23]. The

RGB images are first normalized by subtracting 127.5 and

divided by 128, then feeding into the embedding network.

we adopt ResNet34, ResNet50 and ResNet100 as in [7, 2]

as the embedding network. We conducted all the experi-

ments on 8 NVIDIA Tesla V100 GPU with Pytorch [13]
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Table 1. Verification performance (%) of different FPR param-

eter γ.

Methods (%) African Asian Caucasian Indian Avg Std

γ+
u = 10−5 95.60 95.10 97.18 96.32 96.05 0.91

γ+
u = 10−4

95.95 95.17 96.78 96.38 96.07 0.69

γ+
u = 10−3 95.47 94.90 96.92 96.12 95.84 0.87

γ+
u = 10−2 95.45 94.78 96.98 96.13 95.84 0.94

γ+
u = 10−1 95.23 94.60 95.87 95.97 95.42 0.64

Table 2. Verification performance (%) of different exponent p

in F (z).

Methods (%) African Asian Caucasian Indian Avg Std

p = 0.25 95.35 95.10 96.97 96.07 95.87 0.84
p = 0.5 95.27 94.93 96.58 96.02 95.70 0.74
p = 1.0 95.18 94.92 96.90 95.83 95.71 0.88
p = 1.5 95.27 94.67 97.05 96.23 95.80 1.05
p = 2.0 95.95 95.17 96.78 96.38 96.07 0.69
p = 2.5 95.85 95.00 96.96 96.20 96.00 0.82
p = 3.0 95.60 95.18 97.17 95.98 95.98 0.85

framework. The models are trained with SGD algorithm,

with momentum 0.9 and weight decay 5e − 4. The batch

size is set to be 512. On BUPT-Balancedface, the learn-

ing rate starts from 0.1 and is divided by 10 at 20, 32, 36
epochs. The training process is finished at 40 epochs. On

BUPT-Globalface, we divide the learning rate at 10, 18, 22
epochs and finish at 24 epochs. We follow the common set-

ting as [17] to set s = 64 and m = 0.35.

4.2. Ablation Study

Effect of the overall FPR γ+
u . We conduct experiments

at five fixed FPRs from 10−5 to 10−1, and find that nearly

all the best performance of training is achieved when γ+
u =

10−4, except that a higher accuracy of Caucasian is ob-

tained at γ+
u = 10−5, as shown in Tab. 1. We explain the

reasons as follows: 1) When γ+
u is set to be 10−5 or even

a lower value, a relatively large value of threshold is used

to measure the FPR of instance and generate penalty terms.

Correspondingly, the number of extra penalty would be re-

duced. Besides, considering that the noisy data (e.g. label

flips) is ubiquitous in training dataset, with a small num-

ber of noisy false positive cases, the accuracy of estimated

threshold and the extra gradient adjustment may be affected

dramatically. 2) When γ+
u is set to be a large value, e.g.

10−1 or higher, we obtain a relatively small value of thresh-

old. With such a threshold, most training instances would

be forced to generate numerous false negative pairs, since

the similarity of most negative pairs is around 0. As a re-

sult, the instance FPRs and its corresponding penalty would

be almost equal and hard to be more consistent through op-

timization. Therefore, γ+
u = 10−4 is a reasonable choice.

We will use this configure in our following experiments.

Effect of exponent p in F (z). With the fixed FPR as 10−4

, we further investigate the effect of exponent p in F (z) =

Table 3. Verification performance (%) of protocol on RFW

with SOTA methods ([BUPT-Balancedface]).

Methods (%) African Asian Caucasian Indian Avg Std

ArcFace-R34 [18] 93.98 93.72 96.18 94.67 94.64 1.11
CosFace-R34 [18] 92.93 92.98 95.12 93.93 93.74 1.03
DebFace-R34 (ECCV’20) 93.67 94.33 95.95 94.78 94.68 0.83
PFE-R34 [5] 95.17 94.27 96.38 94.60 95.11 0.93
GAC-R34 [5] 94.65 94.93 96.23 95.12 95.23 0.60
RL-RBN-R34(cos) (CVPR’20) 95.27 94.52 95.47 95.15 95.10 0.41
RL-RBN-R34(arc) (CVPR’20) 95.00 94.82 96.27 94.68 95.19 0.93
Ours-R34 95.95 95.17 96.78 96.38 96.07 0.69

ArcFace-R50 95.55 94.95 96.68 95.47 95.66 0.73
Ours-R50 96.47 95.75 97.08 96.77 96.52 0.57

ArcFace-R100 96.43 94.98 97.37 96.17 96.24 0.98
Ours-R100 97.03 95.65 97.6 96.82 96.78 0.82

Table 4. Verification accuracy (%) of protocol on RFW with

SOTA methods ([BUPT-Globalface]).

Methods (%) African Asian Caucasian Indian Avg Std

ArcFace-R34 [18] 93.87 94.55 97.37 95.86 95.37 1.53
CosFace-R34 [18] 92.17 93.50 96.63 94.68 94.25 1.90
RL-RBN-R34(cos) (CVPR’20) 94.27 94.58 96.03 95.15 95.01 0.77
RL-RBN-R34(arc) (CVPR’20) 94.87 95.57 97.08 95.63 95.79 0.93
Ours-R34 95.77 95.85 97.92 96.70 96.56 0.75

ArcFace-R50 96.23 96.43 97.98 96.92 96.89 0.78
Ours-R50 96.85 96.75 98.30 96.95 97.21 0.73

ArcFace-R100 96.68 96.10 98.17 97.32 97.07 0.89
Ours-R100 97.37 96.48 98.57 97.4 97.45 0.85

Table 5. Bias degree of protocol on RFW with SOTA methods.

overall FPR 10−5 10−4 10−3 10−2

RL-RBN-R34(arc) 351.98 208.44 92.18 16.70
Ours-R34 257.53 185.91 59.25 10.33

Table 6. Bias degree of protocol on BFW with SOTA methods.

overall FPR 10−7 10−6 10−5 10−4 10−3

RL-RBN-R34(arc) 2.44 2.01 2.49 2.91 2.43
Ours-R34 1.18 1.08 1.18 1.67 1.80

zp. Here, we set the value varies from 0.25 and 3.0. Tab. 2

shows that the performance of our method decreases as n
increasing from 0.25 to 1.0, and then gradually increases

until n reaches near 2.0, and then the performance begins

to decrease again. Note that when p > 1, the gradient is

convex with regard to z, and with a moderate value of p,

e.g.p = 2, we can give a proper but not too much penalty

on false positive cases with larger similarity. Based on these

reasons, we choose p = 2 in our following experiments.

4.3. Comparisons with SOTA methods

Accuracy on RFW. We train a ResNet34 model on

BUPT-Balancedface with our method, and report the results

of the competitors following the RFW protocol, shown in

Tab. 3. Our method shows superiority over the competi-

tors with the balanced dataset. Compared with the SOTA

results, it achieves about 0.77% gains for average accu-

racy, and its standard deviation is decreased to 0.69 which

is slightly higher than SOTA. Though the standard devi-

ation of GAC and RL-RBN(cos) is much lower, its per-
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(a) ROC (African) (b) ROC (Asian) (c) ROC (Caucasian) (d) ROC (Indian)

Figure 5. ROC for RFW.

(a) ROC (Asian female)

(b) ROC (Asian male)

(c) ROC (Black female)

(d) ROC (Black male)

(e) ROC (Indian female)

(f) ROC (Indian male) (h) ROC (White male)

(g) ROC (White male)

Figure 6. ROC for BFW.

formance on Caucasian is actually worse than that of the

CosFace baseline. In contrast, for our method, the reduc-

tion in bias is obtained along with the accuracy improve-

ment of all four races. We also train a ResNet34 model on

BUPT-Globalface with our method and arcface. In Tab. 4, it

shows that the average accuracy of our method is still much

better than other competitors, while our standard deviation

is also lower than others. Besides, we train Arcface and

our method with ResNet50 and ResNet100 as in [2]. As

shown in Tab. 3 and Tab. 4, our method also performs better

than the common baseline. The above results show that our

method can achieve competitive performances on both race

balanced and unbalanced datasets, with regard to the mean

and standard deviation of accuracy.

FPR on RFW. According to the FPR and TPR evalua-

tion protocols discussed in Sec.2, we compare the perfor-

mance between baseline and our method. Fig. 5 (a) shows

the African ROC curves of our method and the SOTA com-

petitor, and it is clear that our method performs best. Be-

sides, Fig. 5 (b)(c)(d) respectively show the other groups’

ROC curves. This experiment on RFW proves that our loss

leads to the face recognition model with more discrimina-

tive features than RL-RBN(arc). According to the evalu-

ation protocol defined in Eq. 5, we also compare the bais

degree with the SOTA method in Tab. 5. The lower bias de-

gree at each threshold corresponding with the overall FPR

demonstrates our method can achieve better performance on

fairness recognition than that of RL-RBN(arc).

FPR on BFW. Fig. 6 shows the ROC curves on all 8 de-

mographic groups in BFW. Across all ethnicity, our method

achieves better performance on the female group and the

male group. Across all gender, the TPR on each ethnicity in

our method is much better than RL-RBN(arc). As defined

in Eq. 5, we calculate the bias degree on BFW shown in

Tab. 6, which proves that our algorithm also can alleviate

both gender and race bias across demographics effectively.

5. Conclusions

In this paper, We develop a novel penalty term into the

softmax loss function to alleviate bias and improve the fair-

ness performance in face recognition. We propose the con-

cept of instance FPR as an extreme case of demographic

FPR, and convert consistency of instance FPR as a penalty

item of softmax-based loss. Extensive experiments on pop-

ular facial benchmarks demonstrate the effectiveness of our

method compared to the SOTA competitors. Following the

main idea of this work, future research can be expanded in

various aspects, including designing a better weight func-

tion F (·) for inconsistency penalty, and investigating the

effects of noise samples that might be mistakenly optimized

as false positive cases.
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