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Abstract

Generative Adversarial Networks (GANs) have recently

advanced image synthesis by learning the underlying dis-

tribution of the observed data. However, how the features

learned from solving the task of image generation are

applicable to other vision tasks remains seldom explored.

In this work, we show that learning to synthesize images

can bring remarkable hierarchical visual features that are

generalizable across a wide range of applications. Specif-

ically, we consider the pre-trained StyleGAN generator as

a learned loss function and utilize its layer-wise represen-

tation to train a novel hierarchical encoder. The visual

feature produced by our encoder, termed as Generative

Hierarchical Feature (GH-Feat), has strong transferabil-

ity to both generative and discriminative tasks, including

image editing, image harmonization, image classification,

face verification, landmark detection, and layout prediction.

Extensive qualitative and quantitative experimental results

demonstrate the appealing performance of GH-Feat.1

1. Introduction

Representation learning plays an essential role in the

rise of deep learning. The learned representation is able

to express the variation factors of the complex visual

world. Accordingly, the performance of a deep learning

algorithm highly depends on the features extracted from

the input data. As pointed out by Bengio et al. [4], a good

representation is expected to have the following properties.

First, it should be able to capture multiple configurations

from the input. Second, it should organize the explanatory

factors of the input data as a hierarchy, where more abstract

concepts are at a higher level. Third, it should have strong

transferability, not only from datasets to datasets but also

from tasks to tasks.

Deep neural networks supervisedly trained for image

classification on large-scale datasets (e.g., ImageNet [8] and

Places [66]) have resulted in expressive and discriminative

*denotes equal contribution.
1Project page is at https://genforce.github.io/ghfeat/.

visual features [46]. However, the developed features are

heavily dependent on the training objective. For example,

prior work has shown that deep features trained for the

object recognition task may mainly focus on the shapes

and parts of the objects while remain invariant to rota-

tion [1, 41], and the deep features from a scene classification

model may focus more on detecting the categorical objects

(e.g., bed for bedroom and sofa for living room) [65].

Thus the discriminative features learned from solving high-

level image classification tasks might not be necessarily

good for other mid-level and low-level tasks, limiting their

transferability [57, 64]. Besides, it remains unknown

how the discriminative features can be used in generative

applications like image editing.

Generative Adversarial Network (GAN) [17] has re-

cently made great process in synthesizing photo-realistic

images. It considers the image generation task as the

training supervision to learn the underlying distribution of

real data. Through adversarial training, the generator can

capture the multi-level variations underlying the input data

to the most extent, otherwise, the discrepancy between

the real and synthesized data would be spotted by the

discriminator. The recent state-of-the-art StyleGAN [31]

has been shown to encode rich hierarchical semantics in

its layer-wise representations [31, 55, 47]. However, the

generator is primarily designed for image generation and

hence lacks the inference ability of taking an image as the

input and extracting its visual feature, which greatly limits

the applications of GANs to real images.

To solve this problem, a common practice is to introduce

an additional encoder into the two-player game described

in GANs [12, 15, 13, 44]. Nevertheless, existing encoders

typically choose the initial latent space (i.e., the most

abstract level feature) as the target representation space,

omitting the pre-layer information learned by the generator.

On the other hand, the transferability of the representation

from GAN models is not fully verified in the literature.

Most prior work focuses on learning discriminative features

for the high-level image classification task [12, 15, 13] yet

put little effort on other mid-level and low-level downstream

tasks, such as landmark detection and layout prediction.
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In this work, we show that the pre-trained GAN genera-

tor can be considered as a learned loss function. Training

with it can bring highly competitive hierarchical visual

features which are generalizable to various tasks. Based on

the StyleGAN model, we tailor a novel hierarchical encoder

whose outputs align with the layer-wise representations

from the generator. In particular, the generator takes the

feature hierarchy produced by the encoder as the per-layer

inputs and supervises the encoder via reconstructing the

input image. We evaluate such visual features, termed as

Generative Hierarchical Features (GH-Feat), on both gen-

erative and discriminative tasks, including image editing,

image harmonization, image classification, face verifica-

tion, landmark detection, layout prediction, etc. Extensive

experiments validate that the generative feature learned

from solving the image synthesis task has compelling

hierarchical and transferable properties, facilitating many

downstream applications.

2. Related Work

Visual Features. Visual Feature plays a fundamental role

in the computer vision field. Traditional methods used man-

ually designed features [40, 3, 7] for pattern matching and

object detection. These features are significantly improved

by deep models [34, 49, 20], which automatically learn the

feature extraction from large-scale datasets. However, the

features supervisedly learned for a particular task could be

biased to the training task and hence become difficult to

transfer to other tasks, especially when the target task is

too far away from the base task [57, 64]. Unsupervised

representation learning is widely explored to learn a more

general and transferable feature [10, 61, 53, 16, 24, 68,

19, 42, 21, 51]. However, most of existing unsupervised

feature learning methods focus on evaluating their features

on the tasks of image recognition, yet seldom evaluate them

on other mid-level or low-level tasks, let alone generative

tasks. Shocher et al. [48] discover the potential of discrim-

inative features in image generation, but the transferability

of these features are still not fully verified.

Generative Adversarial Networks. GANs [17] are able to

produce photo-realistic images via learning the underlying

data distribution. The recent advance of GANs [45, 30, 5]

has significantly improved the synthesis quality. Style-

GAN [31] proposes a style-based generator with multi-level

style codes and achieves the start-of-the-art generation per-

formance. However, little work explores the representation

learned by GANs as well as how to apply such representa-

tion for other applications. Some recent work interprets the

semantics encoded in the internal representation of GANs

and applies them for image editing [27, 47, 2, 18, 55, 67].

But it remains much less explored whether the learned GAN

representations are transferable to discriminative tasks.

Adversarial Representation Learning. The main reason

of hindering GANs from being applied to discriminative

tasks comes from the lack of inference ability. To fill this

gap, prior work introduces an additional encoder to the

GAN structure [12, 15]. Donahue and Simonyan [13] and

Pidhorskyi et al. [44] extend this idea to the state-of-the-

art BigGAN [5] and StyleGAN [31] models respectively.

In this paper, we also study the representation learning

using GANs, with following improvements compared to

existing methods. First, we propose to treat the well-trained

StyleGAN generator as a learned loss function. Second,

instead of mapping the images to the initial GAN latent

space, like most algorithms [12, 15, 13, 44] have done,

we design a novel encoder to produce hierarchical features

that well align with the layer-wise representation learned

by StyleGAN. Third, besides the image classification task

that is mainly targeted at by prior work [12, 15, 13, 44], we

validate the transferability of our proposed GH-Feat on a

range of generative and discriminative tasks, demonstrating

its generalization ability.

3. Methodology

We design a novel encoder to extract hierarchical visual

features from the input images. This encoder is trained in an

unsupervised learning manner from the image reconstruc-

tion loss based on a prepared StyleGAN generator. Sec. 3.1

describes how we abstract the multi-level representation

from StyleGAN. Sec. 3.2 presents the structure of the novel

hierarchical encoder. Sec. 3.3 introduces the idea of using

pre-trained StyleGAN generator as a learned loss function

for representation learning.

3.1. Layer­wise Representation from StyleGAN

The generator G(·) of GANs typically takes a latent

code z ∈ Z as the input and is trained to synthesize a

photo-realistic image x = G(z). The recent state-of-the-

art StyleGAN [31] proposes to first map z to a disentangled

space W with w = f(z). Here, f(·) denotes the

mapping implemented by multi-layer perceptron (MLP).

The w code is then projected to layer-wise style codes

{y(ℓ)}Lℓ=1 , {(y
(ℓ)
s ,y

(ℓ)
b )}Lℓ=1 with affine transformations,

where L is the number of convolutional layers. y
(ℓ)
s and y

(ℓ)
b

correspond to the scale and weight parameters in Adaptive

Instance Normalization (AdaIN) [26]. These style codes

are used to modulate the output feature maps of each

convolutional layer with

AdaIN(x
(ℓ)
i ,y(ℓ)) = y

(ℓ)
s,i

x
(ℓ)
i − µ(x

(ℓ)
i )

σ(x
(ℓ)
i )

+ y
(ℓ)
b,i , (1)

where x
(ℓ)
i indicates the i-th channel of the output feature

map from the ℓ-th layer. µ(·) and σ(·) denote the mean and

variance respectively.
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Figure 1. Framework of the proposed encoder, which is able to extract Generative Hierarchical Features (GH-Feat) from input image.

This feature hierarchy highly aligns with the layer-wise representation (i.e., style codes of per-layer AdaIN) learned by the StyleGAN

generator. Parameters in blue blocks are trainable.

Here, we treat the layer-wise style codes, {y(ℓ)}Lℓ=1, as

the generative visual features that we would like to extract

from the input image. There are two major advantages.

First, the synthesized image can be completely determined

by these style codes without any other variations, making

them suitable to express the information contained in the

input data from the generative perspective. Second, these

style codes are organized as a hierarchy where codes at

different layers correspond to semantics at different lev-

els [31, 55]. To the best of our knowledge, this is the first

work that adopts the style codes for the per-layer AdaIN

module as the learned representations of StyleGAN.

3.2. Hierarchical Encoder

Based on the layer-wise representation described in

Sec. 3.1, we propose a novel encoder E(·) with a hierar-

chical structure to extract multi-level visual features from a

given image. As shown in Fig. 1, the encoder is designed

to best align with the StyleGAN generator. In particular,

the Generative Hierarchical Features (GH-Feat) produced

by the encoder, {f (ℓ)}Lℓ=1 , {(f
(ℓ)
s , f

(ℓ)
b )}Lℓ=1, are fed into

the per-layer AdaIN module of the generator by replacing

the style code y(L−ℓ+1) in Eq. (1).

We adopt ResNet [20] architecture as the encoder back-

bone and add an extra residual block to get an additional

feature map with lower resolution.2 Besides, we introduce

a feature pyramid network [36] to learn the features from

multiple levels. The output feature maps from the last three

stages, {R4, R5, R6}, are used to produce GH-Feat. Taking

a 14-layer StyleGAN generator as an instance, R4 aligns

with layer 9-14, R5 with 5-8, while R6 with 1-4. Here,

to bridge the feature map with each style code, we first

downsample it to 4×4 resolution and then map it to a vector

of the target dimension using a fully-connect (FC) layer.

In addition, we introduce a lightweight Spatial Alignment

Module (SAM) [56, 38] into the encoder structure to better

capture the spatial information from the input image. SAM

2In fact, there are totally six stages in our encoder, where the first one is

a convolutional layer (followed by a pooling layer) and each of the others

consists of several residual blocks.

works in a simple yet efficient way:

Ri = Widown(Ri) +W6R6 i ∈ {4, 5},

where W4, W5, and W6 (all are implemented with an 1× 1
convolutional layer) are used to project the feature maps R4,

R5, and R6 to have the same number of feature channels

respectively. R4 and R5 are downsampled to the same

resolution of R6 before fusion. The detailed structure of

the encoder can be found in Supplementary Material.

3.3. StyleGAN Generator as Learned Loss

We consider the pre-trained StyleGAN generator as a

leaned loss function. Specifically, we employ a Style-

GAN generator to supervise the encoder training with the

objective of image reconstruction. We also introduce a

discriminator to compete with the encoder, following the

formulation of GANs [17], to ensure the reconstruction

quality. To summarize, the encoder E(·) and the discrim-

inator D(·) are jointly trained with

min
ΘE

LE = ||x−G(E(x))||2 − λ1Ex[D(G(E(x)))]

+ λ2||F (x)− F (G(E(x)))||2,
(2)

min
ΘD

LD = Ex[D(G(E(x)))]− Ex[D(x)]

+ λ3Ex[||∇xD(x)||22],
(3)

where || · ||2 denotes the ℓ2 norm and λ1, λ2, λ3 are loss

weights to balance different loss terms. The last term in

Eq. (2) represents the perceptual loss [29] and F (·) denotes

the conv4 3 output from a pre-trained VGG [49] model.

4. Experiments

We evaluate Generative Hierarchical Features (GH-Feat)

on a wide range of downstream applications. Sec. 4.1 in-

troduces the experimental settings, such as implementation

details, datasets, and tasks. Sec. 4.2 conducts ablation study

on the proposed hierarchical encoder. Sec. 4.3 and Sec. 4.4

evaluate the applicability of GH-Feat on generative and

discriminative tasks respectively.
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4.1. Experimental Settings

Implementation Details. The loss weights are set as λ1 =
0.1, λ2 = 5e−5, and λ3 = 5. We use Adam [32] optimizer,

with β1 = 0 and β2 = 0.99, to train both the encoder and

the discriminator. The learning rate is initially set as 1e−4

and exponentially decayed with the factor of 0.8.

Datasets and Models. We conduct experiments on four

StyleGAN [31] models, pre-trained on MNIST [35], FF-

HQ [31], LSUN bedrooms [58], and ImageNet [8] respec-

tively. The MNIST model is with 32×32 resolution and the

remaining models are with 256× 256 resolution.

Tasks and Metrics. Unlike existing adversarial feature

learning methods [15, 12, 44, 13] that are mainly evaluated

on the high-level image classification task, we benchmark

GH-Feat on a range of both generative and discriminative

tasks from multiple levels, including (1) Image editing. It

focuses on manipulating the image content or style, e.g.,

style mixing, global editing, and local editing. (2) Image

harmonization. This task harmonizes a discontinuous

image to produce a realistic output. (3) MNIST digit

recognition. It is a long-standing image classification task.

We report the Top-1 accuracy on the test set following [35].

(4) Face verification. It aims at distinguishing whether

the given pair of faces come from the same identity. We

validates on the LFW dataset [25] following the standard

protocol [25]. (5) ImageNet classification. This is a large-

scale image classification dataset [8], consisting of over 1M
training samples across 1,000 classes and 50K validation

samples. We use Top-1 accuracy as the evaluation metric

following existing work [12, 13]. (6) Pose estimation. This

task targets at estimating the yaw pose of the input face.

70K real faces on FF-HQ [31] are split to 60K training

samples and 10K test samples. The ℓ1 regression error is

used as the evaluation metric. (7) Landmark detection. This

task learns a set of semantic points with visual meaning.

We use FF-HQ [31] dataset and follow the standard MSE

metric [63] to report performances in inter-ocular distance

(IOD). (8) Layout prediction. We extract the corner points

of the layout line and convert the task to a landmark

regression task. The annotations of the collected 90K
bedroom images (70K for training and 20K for validation)

are obtained with [62]. Following [69], we report the corner

distance as the metric. (9) Face luminance regression. It

focuses on regressing the luminance of face images. We

use it as a low-level task on the FF-HQ [31] dataset.

4.2. Ablation Study

We make ablation studies on the training of encoder from

two perspectives. (1) We choose the layer-wise style codes

y over the w codes as the representation from StyleGAN.

(2) We introduce Spatial Alignment Module (SAM) into the

encoder to better handle the spatial information.

Table 1. Quantitative results on ablation study.

Space SAM MSE↓ SSIM↑ FID↓

W ✓ 0.0601 0.540 22.24

Y 0.0502 0.550 19.06

Y ✓ 0.0464 0.558 18.48

Table 2. Quantitative comparison with ALAE [44] on reconstruct-

ing images from FF-HQ faces [31] and LSUN bedrooms [58].

Face Bedroom

Method MSE↓ SSIM↑ FID↓ MSE↓ SSIM↑ FID↓

ALAE [44] 0.182 0.398 24.86 0.275 0.315 21.01

GH-Feat (Ours) 0.046 0.558 18.42 0.068 0.507 16.01

Figure 2. Qualitative comparison on reconstructing real images.

From left to right: Inputs, ALAE [44], and our GH-Feat.

Since the encoder is trained with the objective of

image reconstruction, we use mean square error (MSE),

SSIM [52], and FID [22] to evaluate the encoder perfor-

mance. Tab. 1 shows the results where we can tell that

our encoder benefits from the effective SAM module and

that choosing an adequate representation space (i.e., the

comparison between the first row and the last row) results in

a better reconstruction. More discussion on the differences

between W space and Y space can be found in Sec. 4.4.1.

4.3. Evaluation on Generative Tasks

Thanks to using the StyleGAN as a learned loss function,

a huge advantage of GH-Feat over existing unsupervised

feature learning approaches [24, 68, 42, 51, 19], which

mainly focus on the image classification task, is its gen-

erative capability. In this section, we conduct a number of

generative experiments to verify this point.

4.3.1 Image Reconstruction

Image reconstruction is an important evaluation on whether

the learned features can best represent the input image.

The very recent work ALAE [44] also employs StyleGAN

for representation learning. We have following differences

from ALAE: (1) We use the Y space instead of the W
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Content Image Level 0-1 Level 2-3 Level 4-5 Level 6-7 Level 8-9 Level 10-11 Level 12-13

Figure 3. Style mixing results by exchanging the GH-Feat extracted from the content image and the style image (first row) at different

levels. Higher level corresponds to more abstract feature.

Figure 4. Global image editing achieved by GH-Feat. On the left is the input image, while the others are generated by randomly sampling

the visual feature at some particular level.

space of StyleGAN as the representation space. (2) We

learn hierarchical features that highly align with the per-

layer style codes in StyleGAN. (3) Our encoder can be

efficiently trained with a well-learned generator by treating

StyleGAN as a loss function. Tab. 2 and Fig. 2 show

the quantitative and qualitative comparison between GH-

Feat and ALAE [44] on FF-HQ faces [31] and LSUN

bedrooms [58]. We can tell that GH-Feat better reconstructs

the input by preserving more information, resulting a more

expressiveness representation.

4.3.2 Image Editing

In this part, we evaluate GH-Feat on a number of image

editing tasks. Different from the features learned from dis-

criminative tasks [20, 19], our GH-Feat naturally supports

sampling and enables creating new data.

Style Mixing. To achieve style mixing, we use the encoder

to extract visual features from both the content image

and the style image and swap these two features at some

particular level. The swapped features are then visualized

by the generator, as shown in Fig. 3. We can observe

the compelling hierarchical property of the learned GH-

Feat. For example, by exchanging low-level features,

only the image color tone and the skin color are changed.

Meanwhile, mid-level features controls the expression, age,

or even hair styles. Finally, high-level features correspond

to the face shape and pose information (last two columns).

Global Editing. The style mixing results have suggested

the potential of GH-Feat in multi-level image stylization.

Sometime, however, we may not have a target style image

to use as the reference. Thanks to the design of the latent

space in GANs [17], the generative representation naturally

supports sampling, resulting in a strong creativity. In

other words, based on GH-Feat, we can arbitrarily sample

meaningful visual features and use them for image editing.

Fig. 4 presents some high-fidelity editing results at multiple

levels. This benefits from the matching between the learned

GH-Feat and the internal representation of StyleGAN.

Local Editing. Besides global editing, our GH-Feat also

facilitates editing the target image locally by deeply coop-

erating with the generator. In particular, instead of directly

swapping features, we can exchange a certain region of the

spatial feature map at some certain level. In this way, only

a local patch in the output image will be modified while

other parts remain untouched. As shown in Fig. 5, we can

successfully manipulate the input face with different eyes,

noses, and mouths.

4.3.3 Image Harmonization

Our hierarchical encoder is robust such that it can extract

reasonable visual features even from discontinuous image

content. We copy some patches (e.g., bed and window)

onto a bedroom image and feed the stitched image into

our proposed encoder for feature extraction. The extracted

features are then visualized via the generator, as in Fig. 6.

We can see that the copied patches well blend into the

“background”. We also surprisingly find that when copying

a window into the source image, the view from the original

window and that from the new window highly align with

each other (e.g., vegetation or ocean), benefiting from the

robust generative visual features.

4.4. Evaluation on Discriminative Tasks

In this part, we verify that even the proposed GH-Feat

is learned from generative models, it can be applicable
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Input Eyes Nose Mouth

Figure 5. Local image editing achieved by GH-Feat. On the left is the input image, while the others are generated by randomly sampling

the visual feature and replacing the spatial feature map (for different regions) at some particular level. Zoom in for details.

Bed Window Ceiling Light

Figure 6. Image harmonization with GH-Feat. On the top left corner is the original image. Pasting a target image patch onto the original

image then feeding it as the input (top row), our hierarchical encoder is able to smooth the image content and produce a photo-realistic

image (bottom row).

Figure 7. Performance on different discriminative tasks using GH-Feat. Left three columns enclose the comparisons between using

different spaces of StyleGAN as the representation space, where Y space (in red color) shows stronger discriminative and hierarchical

property than W space (in blue color). This is discussed in Sec. 4.4.1. The last column compares the two different strategies used in the

face verification task, which is explained in Sec. 4.4.2. Higher level corresponds to more abstract feature.

to a wide range of discriminative tasks with competitive

performances. Here, we do not fine-tune the encoder for

any certain task. In particular, we choose multi-level down-

stream applications, including image classification, face

verification, pose estimation, layout prediction, landmark

detection, and luminance regression. For each task, we use

our encoder to extract visual features from both the training

and the test set. A linear regression model (i.e., a fully-

connected layer) is learned on the training set with ground-

truth and then evaluated on the test set.

4.4.1 Discriminative and Hierarchical Property

Recall that GH-Feat is a multi-scale representation learned

by using StyleGAN as a loss function. As a results, it

consists of features from multiple levels, each of which

correspond to a certain layer in the StyleGAN generator.

Here, we would to explore how this feature hierarchy is

organized as well as how they can facilitate multi-level

discriminative tasks, including face pose estimation, indoor

scene layout prediction, and luminance3 regression from

face images. In particular, we evaluate GH-Feat on each

task level by level. As a comparison, we also train encoders

by treating the w code, instead of the style code y, as the

representation. From Fig. 7, we have three observations: (1)

GH-Feat is discriminative. (2) Features at lower level are

more suitable for low-level tasks (e.g., luminance regres-

sion) and those at higher level better aid high-level tasks

(e.g., pose estimation). (3) Y space demonstrates a more

obvious hierarchical property than W space.

3We convert images from RGB space to YUV space and use the mean

value from Y space as the luminance.
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Figure 8. Image reconstruction results on LFW [25]. For each pair of images, left is the low-resolution input while right is reconstructed

by GH-Feat. All samples are with the same identity.

4.4.2 Digit Recognition & Face Verification

Image classification is widely used to evaluate the perfor-

mance of learned representations [24, 68, 19, 42, 13]. In

this section, we first compare our proposed GH-Feat with

other alternatives on a toy dataset, i.e., MNIST [35]. Then,

we use a more challenging task, i.e., face verification, to

evaluate the discriminative property of GH-Feat.

MNIST Digit Recognition. We first show a toy example

on MNIST following prior work [12, 44]. We make a little

modification to ResNet-18 like [37] which is widely used

in literatures to handle samples from MNIST [35] in lower

resolution. The Top-1 accuracy is reported in Tab. 3 (a).

Our GH-feat outperforms ALAE [44] and BiGAN [12] with

1.45% and 1.92%, suggesting a stronger discriminative

power. Here, ResNet-18 [20] is employed as the backbone

structure for both MoCo [19] and GH-Feat.

LFW Face Verification. We directly use the proposed

encoder, which is trained on FF-HQ [31], to extract GH-

Feat from face images in LFW [25] and tries three different

strategies on exploiting GH-Feat for face verification: (1)

using a single level feature; (2) grouping multi-level fea-

tures (starting from the highest level) together; (3) voting

by choosing the largest face similarity across all levels.

Fig. 7 (last column) shows the results from the first two

strategies. Obviously, GH-Feat from the 5-th to the 9-th

levels best preserve the identity information. Tab. 3 (b)

compares GH-Feat with other unsupervised feature learning

methods, including VAE [33], MoCo [19], and ALAE [44].

All these competitors are also trained on FF-HQ dataset [31]

with optimally chosen hyper-parameters. ResNet-50 [20]

is employed as the backbone for MoCo and GH-Feat.

Our method with voting strategy achieves 69.7% accuracy,

surpassing other competitors by a large margin. We also

visualize some reconstructed LFW faces in Fig. 8, where

our GH-Feat well handles the domain gap (e.g., image

resolution) and preserves the identity information.

4.4.3 Large-Scale Image Classification

We further evaluate GH-Feat on the high-level image clas-

sification task using ImageNet [8]. Before the training of

encoder, we first train a StyleGAN model, with 256 × 256
resolution, on the ImageNet training collection. After that,

we learn the hierarchical encoder by using the pre-trained

generator as the supervision. No labels are involved in the

Table 3. Quantitative comparison between our proposed GH-Feat

and other alternatives on MNIST [35] and LFW [25].

(a) Digit recognition on MNIST.

Methods Acc.

AE(ℓ1) [23] 97.43

AE(ℓ2) [23] 97.37

BiGAN [12] 97.14

ALAE [44] 97.61

MoCo-R18 [19] 95.89

GH-Feat (Ours) 99.06

(b) Face verification on LFW.

Methods Acc.

VAE [33] 49.3

MoCo-R50 [19] 48.9

ALAE [44] 55.7

GH-Feat (Grouping) 60.1

GH-Feat (Layer-wise) 67.5

GH-Feat (Voting) 69.7

Table 4. Quantitative comparison on the ImageNet [8] classifica-

tion task.

Method Architecture Top-1 Acc.

Motion Seg (MS) [43, 11] ResNet-101 27.6

Exemplar (Ex) [14, 11] ResNet-101 31.5

Relative Po (RP) [9, 11] ResNet-101 36.2

Colorization (Col) [60, 11] ResNet-101 39.6

Contrastive Learning

InstDisc [54] ResNet-50 42.5

CPC [42] ResNet-101 48.7

MoCo [19] ResNet-50 60.6

Generative Modeling

BiGAN [12] AlexNet 31.0

SS-GAN [6] ResNet-19 38.3

BigBiGAN [13] ResNet-50 55.4

GH-Feat (Ours) ResNet-50 51.1

above training process.4 For the image classification prob-

lem, we train a linear model on top of the features extracted

from the training set with the softmax loss. Then, this linear

model is evaluated on the validation set.5 Tab. 4 shows

the comparison between GH-Feat and other unsupervised

representation learning approaches [54, 42, 19, 12, 6, 13],

where we beat most of the competitors. The state-of-the-

art MoCo [19] gives the most compelling performance. But

different from the representations learned with contrastive

learning, GH-Feat has huge advantages in generative tasks,

as already discussed in Sec. 4.3. Among adversarial rep-

resentation learning approaches, BigBiGAN [13] achieves

4Our encoder can be trained very efficiently, usually 3× faster than the

GAN training.
5During testing, we adopt the fully convolutional form as in [50] and

average the scores at multiple scales.
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FF-HQ CelebA

Figure 9. Landmark detection results. GH-Feat is trained on FF-HQ [31] dataset but can successfully handle the hard cases (large pose

and low image quality) in MAFL dataset [63], a subset of CelebA [39].

Bedroom Kitchen

Figure 10. Layout prediction results using feature learned by MoCo [19] (top row) and our GH-Feat (bottom row). Both methods are

trained on LSUN bedrooms [58] and then transferred to LSUN kitchens.

the best performance, benefiting from the incredible large-

scale training. However, GH-Feat presents a stronger

generative ability, suggested by the comparison results on

image reconstruction shown in Tab. 5. More discussion can

be found in Supplementary Material.

4.4.4 Transfer Learning

In this part, we explore how GH-Feat can be transferred

from one dataset to another.

Landmark Detection. We train a linear regression model

using GH-Feat on FF-HQ [31] and test it on MAFL [63],

which is a subset of CelebA [39]. This two datasets have a

large domain gap, e.g., faces in MAFL have larger poses yet

lower image quality. As shown in Fig. 9, GH-Feat shows a

strong transferability across these two datasets. We com-

pare our approach with some supervised and unsupervised

alternatives [63, 59, 28, 19]. For a fair comparison, we

try the multi-scale representations from MoCo [19] (i.e.,

Res2, Res3, Res4, and Res5 feature maps) and report the

best results. Tab. 6 demonstrates the strong generalization

ability of GH-Feat. In particular, it achieves on-par or better

performance than the methods that are particular designed

for this task [63, 59, 28]. Also, it outperforms MoCo [19]

on this mid-level discriminative task.

Layout Prediction. We train the layout predictor on

LSUN [58] bedrooms and test it on kitchens to validate

how GH-Feat can be transferred from one scene category

to another. Feature learned by MoCo [19] on the bed-

room dataset is used for comparison. We can tell from

Fig. 10 that GH-Feat shows better predictions than MoCo,

especially on the target set (i.e., kitchens), suggesting a

Table 5. Qualitative comparison between BigBiGAN [13] and

GH-Feat on reconstructing images from ImageNet [8].

MSE↓ SSIM↑ FID↓

BigBiGAN [13] 0.363 0.236 33.42

GH-Feat (Ours) 0.078 0.431 22.70

Table 6. Landmark detection results on MAFL [63].

Method Supervision MSE↓

TCDCN [63] ✓ 7.95

MTCNN [59] ✓ 5.39

Cond. ImGen [28] 4.95

ALAE [44]. 10.13

MoCo-R50 [19] 9.07

GH-Feat (Ours) 5.12

stronger transferability. Like landmark detection, we also

conduct experiments with the 4-level representations from

MoCo [19] and select the best.

5. Conclusion

In this work, we consider the well-trained GAN gen-

erator as a learned loss function for learning multi-scale

features. The resulting Generative Hierarchical Features are

shown to be generalizable to a wide range of vision tasks.
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[35] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 1998. 4, 7

[36] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In IEEE Conf. Comput. Vis.

Pattern Recog., 2017. 3

[37] Kuang Liu. Pyotrch cifar10. https://github.com/

kuangliu/pytorch-cifar.git, 2019. 7

[38] Shu Liu, Lu Qi, Haifang Qin, Jianping Shi, and Jiaya Jia.

Path aggregation network for instance segmentation. In IEEE

Conf. Comput. Vis. Pattern Recog., 2018. 3

[39] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Int. Conf.

Comput. Vis., 2015. 8

[40] David G Lowe. Distinctive image features from scale-

invariant keypoints. Int. J. Comput. Vis., 2004. 2

[41] DZ Matthew and R Fergus. Visualizing and understanding

convolutional neural networks. In IEEE Conf. Comput. Vis.

Pattern Recog., 2014. 1

[42] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-

sentation learning with contrastive predictive coding. arXiv

preprint arXiv:1807.03748, 2018. 2, 4, 7

[43] Deepak Pathak, Ross Girshick, Piotr Dollár, Trevor Darrell,

and Bharath Hariharan. Learning features by watching

objects move. In IEEE Conf. Comput. Vis. Pattern Recog.,

2017. 7

[44] Stanislav Pidhorskyi, Donald Adjeroh, and Gianfranco

Doretto. Adversarial latent autoencoders. In IEEE Conf.

Comput. Vis. Pattern Recog., 2020. 1, 2, 4, 5, 7, 8

[45] Alec Radford, Luke Metz, and Soumith Chintala. Unsuper-

vised representation learning with deep convolutional gener-

ative adversarial networks. In Int. Conf. Learn. Represent.,

2016. 2

[46] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan,

and Stefan Carlsson. Cnn features off-the-shelf: an astound-

ing baseline for recognition. In IEEE Conf. Comput. Vis.

Pattern Recog. Worksh., 2014. 1

[47] Yujun Shen, Ceyuan Yang, Xiaoou Tang, and Bolei Zhou. In-

terfacegan: Interpreting the disentangled face representation

learned by gans. IEEE Trans. Pattern Anal. Mach. Intell.,

2020. 1, 2

[48] Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal

Yarom, Michal Irani, William T Freeman, and Tali Dekel.

Semantic pyramid for image generation. In IEEE Conf.

Comput. Vis. Pattern Recog., 2020. 2

[49] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In Int.

Conf. Learn. Represent., 2015. 2, 3

[50] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In IEEE Conf. Comput. Vis. Pattern Recog.,

2015. 7

[51] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Con-

trastive multiview coding. arXiv preprint arXiv:1906.05849,

2019. 2, 4

[52] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P

Simoncelli. Image quality assessment: from error visibility

to structural similarity. IEEE Trans. Image Process., 2004. 4

[53] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In IEEE Conf. Comput. Vis. Pattern Recog.,

2018. 2

[54] Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin.

Unsupervised feature learning via non-parametric instance

discrimination. In IEEE Conf. Comput. Vis. Pattern Recog.,

2018. 7

[55] Ceyuan Yang, Yujun Shen, and Bolei Zhou. Semantic

hierarchy emerges in deep generative representations for

scene synthesis. Int. J. Comput. Vis., 2020. 1, 2, 3

[56] Ceyuan Yang, Yinghao Xu, Jianping Shi, Bo Dai, and Bolei

Zhou. Temporal pyramid network for action recognition. In

IEEE Conf. Comput. Vis. Pattern Recog., 2020. 3

[57] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson.

How transferable are features in deep neural networks? In

Adv. Neural Inform. Process. Syst., 2014. 1, 2

[58] Fisher Yu, Ari Seff, Yinda Zhang, Shuran Song, Thomas

Funkhouser, and Jianxiong Xiao. Lsun: Construction of a

large-scale image dataset using deep learning with humans

in the loop. arXiv preprint arXiv:1506.03365, 2015. 4, 5, 8

[59] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.

Joint face detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Processing Letters,

2016. 8

[60] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In Eur. Conf. Comput. Vis., 2016. 7

[61] Richard Zhang, Phillip Isola, and Alexei A Efros. Split-

brain autoencoders: Unsupervised learning by cross-channel

prediction. In IEEE Conf. Comput. Vis. Pattern Recog., 2017.

2

[62] Weidong Zhang, Wei Zhang, and Jason Gu. Edge-semantic

learning strategy for layout estimation in indoor environ-

ment. Transactions On Cybernetics, 2019. 4

[63] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou

Tang. Facial landmark detection by deep multi-task learning.

In Eur. Conf. Comput. Vis., 2014. 4, 8

[64] Nanxuan Zhao, Zhirong Wu, Rynson WH Lau, and Stephen

Lin. What makes instance discrimination good for transfer

learning? arXiv preprint arXiv:2006.06606, 2020. 1, 2

[65] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva,

and Antonio Torralba. Object detectors emerge in deep scene

cnns. In Int. Conf. Learn. Represent., 2015. 1

[66] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,

and Antonio Torralba. Places: A 10 million image database

for scene recognition. IEEE Trans. Pattern Anal. Mach.

Intell., 2017. 1

[67] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-

domain gan inversion for real image editing. In Eur. Conf.

Comput. Vis., 2020. 2

4441



[68] Chengxu Zhuang, Alex Lin Zhai, and Daniel Yamins. Local

aggregation for unsupervised learning of visual embeddings.

In Int. Conf. Comput. Vis., 2019. 2, 4, 7

[69] Chuhang Zou, Alex Colburn, Qi Shan, and Derek Hoiem.

Layoutnet: Reconstructing the 3d room layout from a single

rgb image. In IEEE Conf. Comput. Vis. Pattern Recog., 2018.

4

4442


