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Abstract

Existing view synthesis methods mainly focus on the per-

spective images and have shown promising results. How-

ever, due to the limited field-of-view of the pinhole cam-

era, the performance quickly degrades when large cam-

era movements are adopted. In this paper, we make the

first attempt to generate novel views from a single indoor

panorama and take the large camera translations into con-

sideration. To tackle this challenging problem, we first use

Convolutional Neural Networks (CNNs) to extract the deep

features and estimate the depth map from the source-view

image. Then, we leverage the room layout prior, a strong

structural constraint of the indoor scene, to guide the gen-

eration of target views. More concretely, we estimate the

room layout in the source view and transform it into the

target viewpoint as guidance. Meanwhile, we also con-

strain the room layout of the generated target-view images

to enforce geometric consistency. To validate the effective-

ness of our method, we further build a large-scale photo-

realistic dataset containing both small and large camera

translations. The experimental results on our challeng-

ing dataset demonstrate that our method achieves state-

of-the-art performance. The project page is at https:

//github.com/bluestyle97/PNVS.

1. Introduction

With the popularity of 360◦ cameras, panoramas have

been widely used in many emerging domains such as Vir-

tual Reality (VR). In a typical VR application, the de-

vice displays a 360◦ virtual scene, which can respond to

6 degree-of-freedom (DoF) head motion and give the user

an immersive feeling. However, owing to the tedious im-

age collection process, the panoramas are usually captured

at a limited set of locations in practice, which restricts the
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Figure 1. Panoramic novel view synthesis. Our goal is to gener-

ate a target-view panorama from the source-view panorama with

camera translation t. The green, red, and blue lines represent

the ceiling-wall boundaries, wall-wall boundaries, and floor-wall

boundaries of the room layout, respectively.

DoF of scene viewing. With the expectation of providing

a free-viewpoint scene visualization experience, we make

the first attempt to address the problem of panoramic novel

view synthesis from a single panorama.

In this paper, we constrain the panoramic view synthesis

problem in the indoor scenario on account of its common-

ness in typical applications. Previous work [30, 36, 39] has

shown promising results on novel view synthesis from a sin-

gle perspective image. However, the performance quickly

degrades when larger camera rotations and translations are

adopted. Due to the limited field-of-view (FoV) of a pinhole

camera, it is arduous to extrapolate the large unseen areas

caused by violent camera motion. In contrast, a panorama

inherently supports the rotational viewpoint change. Thus,

we only need to consider camera translations. Furthermore,

360◦ FoV provides omnidirectional information, making it

possible to consider larger camera translations. By synthe-
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sizing panoramic novel views, we can create new 360◦ con-

tents to achieve 6-DoF scene viewing, which could poten-

tially benefit many applications, such as virtual house tours.

The main challenge of novel view synthesis lies in recov-

ering the missing areas caused by viewpoint change, and the

difficulty is amplified when considering large camera trans-

lations. Fortunately, a panorama contains more structural

information than a perspective image that can be exploited

to reduce the difficulty. Previous work on image inpaint-

ing [23, 28] has proven the effectiveness of structural in-

formation to guide the content generation process. In the

indoor scenario, the most common and easy-obtained struc-

tural information is the room layout, i.e., the ceiling-wall

boundaries, floor-wall boundaries, and wall-wall bound-

aries. The synthesized images have to keep the room layout

reasonable, especially when large camera translations are

adopted.

Inspired by the state-of-the-art view synthesis frame-

work [39], we propose a novel method to tackle the

panoramic view synthesis problem and exploit the room

layout as a prior and geometric constraint. The proposed

method is composed of three stages. In the first stage, we

use CNNs to extract a dense feature map, a depth map, and

room layout from the source-view panorama. In the sec-

ond stage, we transform the extracted feature map and room

layout into the target view with a spherical geometric trans-

formation process and fuse them to synthesize the target

panorama. In the final stage, we estimate the room lay-

out of the synthesized panorama and enforce the estimated

layout consistent with the transformed target-view layout in

the preceding stage.

To validate the effectiveness of our method and facilitate

the research on this novel task, we further build a large-scale

photo-realistic dataset upon Structured3D dataset [53]. The

rendered images are high-fidelity, making the dataset close

to realistic application scenarios. Besides the typical set-

tings of previous work, our dataset also considers large cam-

era translations to push the boundaries of the view synthesis

task. We split our dataset into an easy set and a hard set ac-

cording to the camera translation. The easy set contains

target panoramas with small camera translations ranging

from 0.2m to 0.3m, including 13 080 training images and

1791 testing images. The hard set contains target panora-

mas with large camera translations ranging from 1m to 2m,

including 17 661 training images and 2279 testing images.

In summary, the main contributions of this paper are

as follows: (i) We are the first to tackle the problem of

synthesizing panoramic novel views from a single indoor

panorama. (ii) We propose a novel layout-guided method

to tackle this challenging task, which is able to handle large

camera translations. (iii) We build a new high-quality and

challenging dataset for this novel task, which contains small

and large camera translations. (iv) The experimental results

demonstrate that our method achieves state-of-the-art per-

formance on this novel task and can be generalized to real

datasets.

2. Related Work

Novel view synthesis. Previous work on novel view syn-

thesis is based on heterogeneous settings, and we concen-

trate on learning-based methods here. The most straightfor-

ward idea is to perform image generation directly [10, 52].

Instead, some methods [25, 55, 56] estimate the 2D corre-

spondences between the source image and the target image

first, i.e., appearance flows, to tackle this problem. More in-

tuitively, many methods adopt the modeling-rendering pat-

tern, which means modeling the scene first and then render-

ing it to novel views. Following this scheme, a variety of

middle representations have been exploited, such as point

cloud [24, 39], learned representations [3, 27, 31], layered

depth image (LDI) [30, 37], multi-plane images (MPI) [4,

20, 21, 33, 36, 54] and neural radiance fields [22, 49].

Compared with common perspective settings, attempts

on view synthesis from panoramas are still very limited so

far. Some previous work [8, 29] has tackled the problem

of 6-DoF viewing from a pre-captured 360◦ video to pro-

mote VR applications. Huang et al. [8] propose to recon-

struct a point cloud from the input 360◦ video to achieve

real-time 6-DoF video playback with a VR device. Serrano

et al. [29] present a method for adding parallax and real-

time playback of 360◦ videos, which relies on a layered

scene representation. Recently, inspired by the MPI repre-

sentation, Lin et al. [17] and Attal et al. [2] propose multi-

depth panorama (MDP) and multi-sphere image (MSI) rep-

resentation respectively, to conduct 6-DoF rendering from

360◦ imagery. However, their settings are quite different

from ours. Lin et al. [17] take the images captured by a

multi-camera 360◦ panorama capture rigs as input, while

the input of [2] is a 360◦ stereo video.

Image inpainting. Image inpainting aims to complete the

missing region in an image. Traditional patch-based meth-

ods [19] and diffusion-based methods [32] are the pioneer-

ing work to tackle this problem. In the deep learning era,

CNN-based methods [16, 18, 42, 48] and GAN-based meth-

ods [14, 44, 45, 46] draw more attention from the research

community due to their favorable performance. Several in-

painting methods have demonstrated the effectiveness of us-

ing structural information. Back in the non-deep-learning

era, Sun et al. [35] and Huang et al. [9] have proposed to

use line and planar structure to guide the image inpainting

process. Various learning-based methods [15, 23, 28, 41]

also exploit the structural information. Although the struc-

tural information differs in specific forms, e.g., edges, gra-

dients, sketches, or foreground contours, they all act as a

global structural prior as well as a geometric constraint and

have shown reliable effectiveness.
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Figure 2. An overview of our pipeline. In the first stage, the network extracts a dense feature map Fs from the source-view panorama Is

as contextual information, and estimates its depth Ds as well as room layout Ls = {Bs,Cs} as structural information. In the second

stage, Fs and Ls are transformed into the target viewpoint with a forward splatting operation and a layout transformation process to form

Ft and Lt = {Bt,Ct}, respectively. Then, Ft and Lt are fused together to synthesize the target-view panorama It. In the final stage, we

estimate the room layout of synthesized panorama It and enforce it consistent with the transformed layout Lt.

Layout and depth estimation on panoramas. Room lay-

out estimation from a panorama has been sufficiently stud-

ied. LayoutNet [59] predicts a boundary probability map

and a corner probability map from the input panorama, then

estimates the room layout with a Manhattan layout opti-

mizer. HorizonNet [34] further simplifies the layout repre-

sentation by replacing the 2D probability maps with 1D vec-

tors. DuLa-Net [43] exploits an equirectangular panorama

branch and a perspective ceiling-view branch to tackle this

problem.

OmniDepth [58] transfers the monocular depth esti-

mation task to panoramas first. Zioulis et al. [57] pro-

pose a self-supervised method to estimate panoramic depth,

which uses panoramic view synthesis as a proxy task.

BiFuse [38] adopts a two-branch architecture to predict

panoramic depth. Jin et al. [11] propose to leverage the

geometric structure of a scene, i.e., different room layout

representations, to conduct this problem. Recently, Zeng

et al. [47] propose to jointly learn the panoramic layout and

depth since they are tightly intertwined.

3. Method

Given a source-view panorama Is ∈ R
H×W×3 at the

source camera position ps ∈ R
3 and a target camera po-

sition pt ∈ R
3, our goal is to synthesize a target-view

panorama It ∈ R
H×W×3. Since the panorama inherently

support camera rotations, we can assume that the cameras

always face the same direction and only consider the cam-

era translations here.

Our method follows the classical modeling-rendering

pattern. We first conduct depth estimation on the source-

view image to obtain the 3D scene. Since the estimated 3D

scene is inaccurate and noisy, directly rendering new views

from it leads to severe shape distortion and pixel misalign-

ment. Inspired by the recent success in room layout esti-

mation [34, 59], we exploit it as a structural prior and geo-

metric constraint to guide the view synthesis process. The

three-stage pipeline is shown in Figure 2.

3.1. Feature Extraction and Structure Estimation

In the first stage, we extract contextual and structural in-

formation from the source-view image. Concretely, the fea-

ture extraction module GF extracts a dense feature map Fs

from Is as contextual information, and the layout estimation

module GL estimates the room layout Ls from Is as struc-

tural information. To build the scene geometry, the depth

estimation module GD predicts a depth map Ds from Is.

Previous work [39] has shown that synthesizing novel

views from high-level features containing scene semantics

instead of simple RGB colors leads to better results. Fol-
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Figure 3. The geometric interpretation of the relationships among

P , S, and C. The left and middle pictures explain the relation-

ship between coordinates (u, v) ∈ P and (φ, θ) ∈ S, which are

borrowed from [40]. The right picture explains the relationship

between coordinates (φ, θ, r) ∈ S and (x, y, z) ∈ C, O is the

camera center.

lowing this spirit, our model utilizes a CNN GF to extract

a dense feature map Fs ∈ R
H×W×C from the input RGB

panorama Is ∈ R
H×W×3.

Similar to LayoutNet [59], the layout estimation module

GL predicts a boundary map Bs ∈ R
H×W×3 and a corner

map Cs ∈ R
H×W . With Bs and Cs, we follow the stan-

dard post-processing procedure of LayoutNet to obtain the

2D positions of room corners Ls ∈ R
N×2.

The feature extraction, depth and layout estimation pro-

cess can be represented as:

Fs = GF (Is),Ds = GD(Is), {Bs,Cs} = GL(Is). (1)

GF is implemented as a series of ResNet blocks, and C
is set to 64. We follow the architectures of Hu et al. [7] and

LayoutNet [59] to implement GD and GL, respectively.

3.2. Viewpoint Transformation and View Synthesis
with Layout Prior

In the second stage, we transform the source-view con-

textual Fs and structural information Ls into the target view

and synthesize the target panorama It.

The viewpoint transformation is a spherical geometric

transformation process. To make it easier to understand,

we first clarify several related coordinate systems and show

their relationships in Figure 3.

• Panoramic pixel grid coordinate system P: Coordi-

nates (u, v) ∈ P represent the pixel at the u-th column

and the v-th row pixel on the panoramic image plane,

where u ∈ [0,W ) and v ∈ [0, H).

• Spherical polar coordinate system S: The origin is

the camera position. Coordinates (φ, θ, r) ∈ S repre-

sents a point whose longitude is φ, latitude is θ, and

distance from the origin is r, where φ ∈ [−π, π],
θ ∈ [−π/2, π/2], r > 0.

• 3D Cartesian camera coordinate system C: The ori-

gin is the camera position. The X,Y, Z axes points

upsample scale=1.0

pixel missing rate=45.81%

Source View

Target View

upsample scale=2.0

pixel missing rate=27.37%

upsample scale=4.0

pixel missing rate=18.03%

splatting

Figure 4. The influence of feature map upsampling. In the splat-

ting operation, each source-view pixel contributes to 4 neighbor-

ing target pixels. Therefore, using a denser source-view feature

map leads to smaller holes on the splatted feature map. Since it is

hard to visualize the feature, we show the splatting results of RGB

values under different upsampling scales instead.

rightward, forward and upward, respectively. Coordi-

nates (x, y, z) ∈ C represents the position of a 3D point

relative to the origin, where x, y, z ∈ R.

Feature map view transformation. To transform the

source-view feature map Fs into the target view, we need

to map each source-view pixel (us, vs) ∈ Ps to a target-

view pixel (ut, vt) ∈ Pt, which can be accomplished by a

series of coordinate transformations from Ps to Pt:

f = fSt 7→Pt
◦ fCt 7→St

◦ fCs 7→Ct
◦ fSs 7→Cs

◦ fPs 7→Ss
, (2)

where fA 7→B denotes a coordinate transformation from co-

ordinate system A to B, and ◦ denotes the composition of

transformations. We refer the readers to supplementary ma-

terial for detailed coordinate transformation equations.

By conducting Eq. (2) on a source-view pixel (us, vs) ∈
Ps, we can obtain its corresponding target-view pixel posi-

tion (ut, vt) = f (us, vs) ∈ Pt. With the pixel correspon-

dences, we adopt a differentiable rendering approach [37,

57] to generate target-view feature map Ft ∈ R
H×W×C .

Concretely, we splat the feature vector at each pixel of

Fs onto its corresponding pixel position on the target-view

panorama plane with the bilinear interpolation. To resolve

the conflicts caused by the many-to-one mapping problem,

a soft z-buffering is adopted, which can be formulated as:

It(ut, vt) =

∑

(us,vs)
Is(us, vs) exp(−Ds(us, vs)/dmax)

∑

(us,vs)
exp(−Ds(us, vs)/dmax) + ǫ

,

(3)

where dmax = 10 is a pre-defined maximum depth value, ǫ
is a small constant for numerical stability.

Feature map upsampling. Since large camera translations

are taken into consideration, directly splatting leads to large

missing areas (i.e., holes) on Ft, making it difficult to in-

paint. Besides, some areas that are supposed to be occluded

will be unexpectedly exposed because the areas occluding
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them are missing. To tackle this problem, we upsample Fs

to F ′
s before the forward splatting:

F ′

s = Conv(Upsample(Fs)), (4)

where Conv denotes a convolution layer, Upsample :
R

H×W×C → R
2H×2W×C denotes the nearest upsampling

layer. This operation can significantly reduce the missing

areas in Ft and make it easier for the network to inpaint.

Figure 4 demonstrates such effect.

Layout view transformation. The layout transformation

from Ls ∈ R
N×2 to Lt ∈ R

N×2 is similar to feature map

transformation but have some differences. Be aware that

we cannot know the depths of layout corners from Ds since

they may be occluded by foreground objects. Thus, we es-

timate the depth of each corner with the camera height h.

We provide the details of the layout transformation process

in the supplementary material.

To utilize Lt, we draw a boundary map Bt ∈ R
H×W×3

and a corner map Ct ∈ R
H×W from Lt with Gaussian blur-

ring. Then, we feed them into the view synthesis module

GS to serve as structural prior and constrain the synthesis of

target-view panorama.

View synthesis with layout prior. With the transformed

target-view contextual information Ft and structural infor-

mation {Bt,Ct}, the view synthesis module GS fuses them

all together and synthesizes the target-view panorama It:

It = GS(Ft ⊕Bt ⊕Ct), (5)

where ⊕ denotes the concatenation operation along the

channel dimension. We adopt an architecture similar to [23]

to implement GS .

3.3. Layout Consistency Constraint

In order to maximize the use of room layout guidance,

we introduce a layout-consistency loss to force the synthe-

sized panorama It to keep the consistency of room layout.

Specifically, we feed It into the layout estimation module

to obtain B̂t and Ĉt. Then, we compare them with Bt,Ct

and calculate the layout consistency loss as:

Llayout = BCE(B̂t,Bt) + BCE(Ĉt,Ct), (6)

where BCE represents the binary cross entropy loss.

3.4. Losses

During training, the layout estimation module GL and

the depth estimation module GD are pretrained under the

supervision of ground-truth layout and depth, respectively.

Given the synthesized panorama It and the ground-truth

panorama I∗
t , the rest model is trained with ℓ1 loss, percep-

tual loss [12], style loss [5], adversarial loss [6] and layout

consistency loss. Their functions can be formulated as:

Lℓ1 = E [‖It − I∗

t ‖1] , (7)

Lperc = E

[

∑

i

‖ψi (It)− ψi (I
∗

t )‖1

]

, (8)

Lstyle = E





∑

j

‖Gj (It)−Gj (I
∗

t )‖1



 , (9)

Ladv = E [logD (I∗

t )] + E [log (1−D (G (Is)))] , (10)

where ψi denotes the activation map of the i-th layer of a

pretrained VGG-19,Gj is aCj×Cj Gram matrix calculated

from ψj . G denotes the generator, i.e., our model, and D
denotes the discriminator, It = G (Is).

Finally, the total loss is calculated as:

L = Lℓ1 + Lperc + λLstyle + Ladv + Llayout, (11)

where λ is set to 100 in our experiments.

4. Experiments

In this section, we conduct experiments to validate the

performance of our proposed method. Due to the space lim-

itation, we refer the readers to the supplementary material

for extensive qualitative results and failure cases.

4.1. Experimental Setup

Implementation details. Our model is implemented with

PyTorch library [26] and trained on two NVIDIA TITAN

V GPU devices. We use the Adam [13] optimizer with

β1 = 0.9 and β2 = 0.999. The batch size is set to 4.

Specifically, we first train the depth estimation module and

the layout estimation module for 30 epochs to make them

converge. Then, we freeze them and train the rest model for

another 50 epochs. The learning rate for both the generator

and the discriminator is set to 1× 10−4. After 30 epochs,

we reduce the learning rate by 10 times.

Dataset. Our panoramic view synthesis dataset is built upon

Structured3D dataset [53]. Each panorama in Structured3D

corresponds to a different room. We regard original im-

ages as source views and render three target views for each

source view. Our dataset is divided into two sets with dif-

ferent target-view camera selection strategies: (i) an easy

set: the camera translation ranges from 0.2m to 0.3m along

random directions, which is a typical translational distance

in previous view synthesis work. (ii) a hard set: the cam-

era translation ranges from 1.0m to 2.0m along random di-

rections, which is a very challenging setting and has rarely

been considered. To clarify the difficulties of our settings,

we visualize the relationship between the pixel missing rate

after the splatting operation and the camera translation dis-

tance in the supplementary material. The resolution of the
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Figure 5. Qualitative view synthesis results on our dataset. The first two rows are from the easy set, while the last three rows are from the

hard set. We highlight the major differences using the bounding boxes. More results are shown in the supplementary material.

Methods
Easy Set (0.2m to 0.3m) Hard Set (1.0m to 2.0m)

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

SynSin (end-to-end) 16.88 0.7433 0.1946 15.51 0.7298 0.2462
SynSin (supervised by GT depth) 18.04 0.7853 0.1714 17.02 0.7827 0.2119
SynSin (GT depth as input) 18.79 0.8127 0.1559 18.02 0.8181 0.1724

MPI (32 layers) 18.32 0.8044 0.2150 16.53 0.7725 0.3098
MPI (64 layers) 18.08 0.7984 0.2192 16.56 0.7769 0.3051
MPI (128 layers) 18.23 0.8015 0.2170 16.50 0.7776 0.3015

Ours (supervised by GT depth) 19.35 0.8373 0.1351 17.50 0.8148 0.1769
Ours (GT depth as input) 20.52 0.8727 0.1192 18.53 0.8552 0.1544
Ours (GT depth & GT layout as input) 20.83 0.8743 0.1150 18.95 0.8593 0.1454

Table 1. Quantitative results on our dataset.

panorama in our dataset is 512 × 1024. In all experiments,

we take panoramas of 256× 512 as input.

Evaluation metrics. We quantify the performance of our

method with three metrics: (i) Peek Signal-to-Noise Ratio

(PSNR), (ii) Structural Similarity (SSIM), and (iii) Learned

Perceptual Image Patch Similarity (LPIPS) [50].

4.2. Experimental Results

Methods for comparison. We compare our approach with

two state-of-the-art single-image view synthesis methods:

point-cloud-based method SynSin [39]1 and MPI-based

1https://github.com/facebookresearch/synsin

method [36]2 (in short, MPI). We choose SynSin [39] and

MPI [36] as our baselines on account of their good perfor-

mance as well as the code availability and portability.

We modify SynSin and MPI to make them applicable

to panoramas. For SynSin, the perspective projection in the

differentiable renderer is replaced with equirectangular pro-

jection. Every 3D point is projected to a circular region of

the target-view panorama plane with α-compositing. For

MPI, we use the same network as [36] to infer a multi-

sphere image (MSI) centered at the camera position, which

is similar to [2]. Then, we cast the rays from the target view

2https : / / github . com / google - research / google -

research/tree/master/single_view_mpi
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Source View Ours (without layout) Ours (with layout) Target View (Ground Truth)

Figure 6. The effectiveness of room layout guidance. We highlight the major differences using the bounding boxes.

onto the MSI and use the bilinear interpolation to perform

view synthesis.

Quantitative evaluation. SynSin estimates the depth of the

source view with an end-to-end training scheme. For a fair

comparison, we also train SynSin with ground-truth depth

as supervision to meet our setting. Besides, we evaluate

SynSin and our model with ground-truth depth as input to

investigate their upper-bound performance. For MPI, we set

the number of layers as 32 , 64 , and 128 , respectively.

As Table 1 shows, the performance of SynSin and our

model increases when using more accurate depth, and

the performance of MPI increases when more layers are

adopted. Our method outperforms the other two methods

in all metrics. When exploiting ground-truth depth as input,

our model shows a higher upper bound than SynSin. In ad-

dition, we can further boost the performance of our model

by adopting the ground-truth layout as input.

Qualitative evaluation. Figure 5 shows the qualitative re-

sults of three methods. As one can see, our approach main-

tains more plausible visual details. Especially the results on

the hard set show that our method can maintain the room

structure well when large camera translation is adopted.

However, the other two approaches have artifacts, such as

blurring layout boundaries and distortion.

User study. For more complete qualitative comparison, we

further conduct a user study. We first sample 50 images

from the easy set and the hard set, respectively. Then, we

recruit 50 volunteers and show them the synthesized target

views of the three methods in random order, and the ground

truth. We ask them to select the closest one to the ground

truth and report the percentage of volunteers who prefer a

given method. As shown in Table 2, volunteers prefer our

method over the other two methods in both sets.

Methods
Easy Set Hard Set

(0.2m to 0.3m) (1.0m to 2.0m)

SynSin 0.21 0.18
MPI 0.13 0.09
Ours 0.66 0.73

Table 2. User study on our dataset.

4.3. Ablation Studies

We conduct some ablation studies to verify the effective-

ness of each component in our proposed method. The re-

sults are shown in Table 3 and discussed in detail next.

Feature map upsampling. We try to remove the feature

map upsampling from our model. By comparing the quan-

titative results with the complete model, we can see that

the upsampling operation leads to a performance improve-

ment. As shown in Figure 4, the upsampling operation can

remarkably reduce the missing pixels after the splatting op-

eration, which abates the contextual information loss and

makes the inpainting easier for the view synthesis module.

Room layout. To show the effectiveness of room layout, we

remove either the layout prior or layout consistency loss, or

both of them. The results show that both the layout prior

and layout consistency loss contribute to the performance

improvement. When using the layout prior, all metrics in-

crease by a large margin. The layout consistency loss leads

to better perceptual quality, which is indicated by the im-

provement of LPIPS. When using both of them, the perfor-

mance of the model reaches the peak. Besides, Figure 6 vi-

sualizes some target-view results synthesized with or with-

out layout guidance on the hard set. We can see that the

model could utilize the structural information provided by
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Figure 7. Panoramic view synthesis on 2D-3D-S dataset and PanoContext dataset. More results are shown in the supplementary material.

Components Easy Set (0.2m to 0.3m) Hard Set (1.0m to 2.0m)

Upsampling Prior Consistency PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

18.44 0.8067 0.1511 16.48 0.7735 0.2007
X 18.57 0.8110 0.1504 16.70 0.7802 0.1965
X X 18.49 0.8173 0.1503 16.93 0.7981 0.2066
X X 19.40 0.8371 0.1455 17.46 0.8146 0.1917

X X 19.12 0.8354 0.1390 17.33 0.8090 0.1813
X X X 19.35 0.8373 0.1351 17.50 0.8148 0.1769

Table 3. Ablation studies on our dataset.

the room layout to synthesize target-view panoramas with

more visual-plausible layout structures.

4.4. Panoramic View Synthesis on Real Datasets

To verify the generalization ability of our method, we

also conduct panoramic view synthesis on real datasets. We

train the model on our dataset, then directly test it on 2D-

3D-S dataset [1] and PanoContext dataset [51]. For each

dataset, we set the camera translation distance as 0.5m,

1.0m and 1.5m, along the x-axis or y-axis randomly. Fig-

ure 7 shows the qualitative results. The results show that

our method generalizes well to the real scenes and has a

great potentiality for real-world application. To be noted,

the vertical FoV of the panorama in 2D-3D-S dataset does

not cover 180◦. Thus, there are wavy black regions on the

top and the bottom, making the synthesis more challenging

and unrealistic to be inpainted completely.

5. Conclusion

In this paper, we explore synthesizing 360◦ novel views

from a single indoor panorama and consider large camera

translations. We propose a novel layout-guided method that

exploits the room layout as a prior and geometric constraint.

We also build a large-scale dataset for this novel task. The

experiments show that our method achieves state-of-the-art

performance and generalizes well on real datasets. In the fu-

ture, we plan to exploit more general structures (e.g., planes

or wireframes) and extend this idea to outdoor scenes.
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