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Abstract

Few-shot learning (FSL), which aims to recognise new

classes by adapting the learned knowledge with extremely

limited few-shot (support) examples, remains an important

open problem in computer vision. Most of the existing meth-

ods for feature alignment in few-shot learning only con-

sider image-level or spatial-level alignment while omitting

the channel disparity. Our insight is that these methods

would lead to poor adaptation with redundant matching,

and leveraging channel-wise adjustment is the key to well

adapting the learned knowledge to new classes. There-

fore, in this paper, we propose to learn a dynamic align-

ment, which can effectively highlight both query regions

and channels according to different local support infor-

mation. Specifically, this is achieved by first dynamically

sampling the neighbourhood of the feature position condi-

tioned on the input few shot, based on which we further

predict a both position-dependent and channel-dependent

Dynamic Meta-filter. The filter is used to align the query

feature with position-specific and channel-specific knowl-

edge. Moreover, we adopt Neural Ordinary Differential

Equation (ODE) to enable a more accurate control of the

alignment. In such a sense our model is able to better

capture fine-grained semantic context of the few-shot exam-

ple and thus facilitates dynamical knowledge adaptation for

few-shot learning. The resulting framework establishes the

new state-of-the-arts on major few-shot visual recognition

benchmarks, including miniImageNet and tieredImageNet.

1. Introduction

Deep learning models have excelled in many computer

vision tasks such as image recognition [15, 39, 19] and ob-
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Figure 1. While position-specific alignment cannot eliminate the

negative influence of badly-learned channels, channel-specific one

can. CAN denotes Cross Attention Network [16] which is one of

the position-specific alignment models in FSL.

ject detection [14, 46]. However, they highly rely on an

avalanche of labeled training data and have difficulty trans-

ferring the learned knowledge to unseen categories. For

example, an object detector trained on 80 categories of

MSCOCO [23] would fail to detect a new class of mouse.

This severely limits their scalability to open-ended learning

of long tail categories in real-world. In contrast, learning

from extremely constrained (e.g., one or few) examples is

an important ability for humans. For example, children have

no problem forming the concept of “giraffe” by only taking

a glance from a picture, or hearing its description as looking

like a deer with a long neck.

Motivated by above observations, there has been a re-

cent resurgence of research interest in few-shot learning

(FSL) [18, 11, 43, 40, 42]. It aims to recognise new classes

by adapting the learned knowledge with extremely limited

few-shot (support) examples. The most naive baseline for

few-shot classification is to learn a discriminative feature

representation by deep convolution neural network. Query

features are then assigned with the class label of the nearest

support feature. As an alternative to that, learnable metric
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like RelationNet [42] is proposed, where a binary classifier

consisting of multiple layers of neural networks is utilised

to calculate the similarity between two images. In such a

framework, there is no exploration of more valuable infor-

mation for specific query image when being classified with

different support images, which leads to bad generalization

ability. Although there are some recent works targeting fea-

ture alignment for FSL, such as CAN [16] and FEAT [48],

which aggregates support knowledge to formalize an align-

ment function for query samples, we claim that these meth-

ods mainly have the following drawbacks. (1) Roughness.

Due to limited knowledge in FSL, every channel would con-

tribute to the prediction when comparing support feature to

the query feature. Moreover, since the extracted features

only have low spatial resolution, the information discrep-

ancy among spatial positions is far smaller than that among

channels for each query features. However, methods like

CAN and FEAT do not focus on channel-level informa-

tion. For example as shown in Fig. 1, while the spatial-

specific alignment can set a large weight to the red box

inside the target object, such a large weight is assigned to

both well-learned and badly-learned channels. This would

result in low signal in this region in the overall feature after

alignment. In contrast, channel-specific alignment depends

on the quality of each channel, thus being able to set low

weight to channel 2, resulting in a better overall feature.

(2) Redundant matching. There exists lots of redundancy

in the support knowledge. For example, when classifying

one position containing the target object, if there are several

regions that also have this object, then comparing to one of

them is enough for classification. Nonetheless, the exist-

ing methods utilize the whole support feature when align-

ing each query position, which is inefficient. (3) Inflexible

alignment. The alignment strategy in these works only runs

one time for all tasks. Thus, for those difficult ones, the

alignment may be insufficient to appropriately embed the

support knowledge into query feature.

Therefore to solve these problems, in this paper we pro-

pose a novel dynamic feature alignment strategy. In detail,

we turn to dynamic filters [17, 52] for tackling this problem.

We first predict a dynamic meta-filter with both position-

specific and channel-specific filter weights based on small

neighbourhood of each position. This filter can contain ad-

equate information to inform the model of the most im-

portant regions and channels that need to be highlighted.

Hence, applying this filter to align the query features will

culminate in more effective representations for recognition.

Meanwhile, using the neighborhood rather than the whole

support feature directly decreases the number of knowledge

source and the redundancy. To alleviate the problem re-

sulted from fixed neighbor, we adopt a dynamic sampling

strategy that all of the feature positions can be selected via

learning an offset conditioned on the input few shot pairs.

Intuitively, this learned sampling allows the network to bet-

ter capture position based semantic context of the few-shot

example. To further make the alignment more adaptive to

harder tasks, a direct way is to recursively apply the sup-

port knowledge to query feature through repetitive align-

ment. However, it is hard to control the extent of alignment

by fixed hyper-parameter for various tasks. Consequently

we modify the direct intuition of recursive alignment into

an adaptive manner by using Neural Ordinary Differen-

tial Equation (ODE) which makes continuous the residual

alignment procedure and takes an adaptive step size to get

the final solution for the corresponding ODE. After achiev-

ing the aligned query feature, we utilize a meta-classifier

to get the final prediction where the support knowledge is

aggregated by unlearnable operations to form a classifier,

which can avoid the adaptation problem that learnable clas-

sifiers are fully dependent on meta-train set and cannot ad-

just well for data in novel categories.

The contributions of this work are as follows:

1. We propose to learn a novel dynamic meta-filter for

more effective and efficient feature alignment in FSL.

2. We introduce dynamic sampling and grouping strategy

to further improve the flexibility and efficiency of basic

dynamic meta-filter.

3. Neural ODE is, for the first time, leveraged to help

model get better representation for FSL.

2. Related work

Few-shot recognition. Few-shot learning (FSL) is a surg-

ing research topic which aims to learn patterns with a set of

data (base classes) and adapt to a disjoint set (new classes)

with limited training data. Few-shot image classification

is the one with most focus and researches. There are two

main ways to tackle this problem. One is optimization-

based methods [34, 9, 30, 21, 41], which firstly train a net-

work with base class data, then finetune the classifier or the

whole network with support data from unseen classes.

The metric-based method, on the other hand, is designed

to solve FSL by applying an existing or learned metric on

the extracted features of images. MatchingNet [43] adopts

memory module to merge the information in each task and

cosine distance as the metric to classify unseen data. Pro-

toNet [40] proposes the prototype as a simple representa-

tion of each category and adopts euclidean distance as the

metric. RelationNet [42] uses network to learn the rela-

tion, which is taken as similarity, between input few-shot

pairs. CAN [16], based on RelationNet, learns an atten-

tion module to highlight the correct region of interest to

help better classification. The key dissimilarity between our

model and the existing metric-based methods is that we pro-

pose to dynamically sample local context and based on that
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to learn position and channel-dependent relationship which

has never been explored before.

Dynamic Sampling. Sampling local context in a proper

manner has been studied in the literature for a long time.

Prior to the rise of deep learning, SIFT [27] and DPM [8]

attempt to construct a good adaptive kernel. In the era of

deep learning, convolutional kernel samples the neighbour-

hood of corresponding position in a uniform manner. For

instance, a uniform 9-neighbourhood is sampled for a 3× 3
kernel. Though this strategy paves the way for the suc-

cess of the convolutional neural networks (CNNs), it is still

limited in capturing position based semantic context. Our

method is related to deformable convolution [4], where, in-

stead of uniform sampling, a specific region is learned for

each position. A fundamental difference between our model

and the existing ones is that they only learn the offset depen-

dent on the input feature while the filter weights are fixed for

all inputs. In contrast, our model learns the offset to sam-

ple the neighbourhood of the feature position. The position

and channel dependent filter is then predicted based on the

sampled neighbourhood. Intuitively, this learned sampling

allows the network to better capture position based semantic

context of the few-shot example.

Input dependent weights. The basic idea of input de-

pendent weights is to control the model weight not by di-

rectly optimizing but another learnable module. [17] de-

veloped an idea of “dynamic conolution”, that is predict-

ing a dynamic convolutional filter for each feature position.

HyperNet [13] builds additional module to generate input-

dependent weight for a RNN. [1] firstly imports this idea

to FSL. [11] proposes to generate final classifier weights

based on pretrained classifier weights and the input infor-

mation during test phase. [22] implants several new filters

to the top layer while freezes other part of the model dur-

ing test phase. The newly added weights is finetuned using

support data. [33] aims to bridge the activation and clas-

sifier weights via additional sub-network. Unlike the above

works that generate input-dependent or category-dependent

weights, we focus on the local information and discrepancy

between different positions and channels of query images.

Our model can generate both position and channel specific

filter weights which are especially beneficial for us to model

the context of each feature position for target class, thus

leading to more effective few-shot classification.

Neural Ordinary Differential Equation. Neural ODE was

proposed by Chen et. al. in [3], which treats forward pass

of a residual network as a discrete form of ODE. Under

such condition, neural networks can be modified into neu-

ral ODEs where a time variable is introduced to control

the output. There is a line of works targeting more effi-

cient and robust neural ODE [28, 36, 5], and another line

is the application of neural ODE to other tasks. For exam-

ple, ODE2VAE [49] utilizes neural ODE for modeling tra-

jectory of high-dimensional data, and Vid-ODE [32] uses it

in video generation. In this paper, neural ODE is, for the

first time, introduced to few-shot learning to help learn a

dynamic alignment between support and query features.

3. Problem formulation

The assumption of data split in FSL is different from

common supervised learning. Suppose that we have two

sets of data, meta-train set Ds = {(Ii, yi) , yi ∈ Cs} and

meta-test set Dt = {(Ii, yi) , yi ∈ Ct} standing for collec-

tions of base class data and novel class data. Cs and Ct repre-

sent base and novel category sets respectively (Cs∩Ct = ∅).

The goal of FSL is to train a model on Ds which is well

generalized to Dt. According to the commonly-used set-

ting, we can access to few (e.g., one or five) labelled data

from each category of Ct. These ground truth provide the

supervision we can use to transfer the knowledge learned

from base classes to novel classes.

We follow former methods [40, 42] to adopt an N -way

K-shot meta-learning strategy. Here N denotes number of

categories in one episode and K stands for number of sam-

ples for each category in support set. In detail, we sam-

ple N categories from Cs for training and Ct for testing,

K instances each for these selected categories to construct

a support set S = {(Isuppi , y
supp
i )}. Similarly we sam-

ple Q pieces of data from the N categories as query set

Q = {(Iqi , y
q
i )}, and S ∩ Q = ∅.

4. Dynamic Alignment Network

Our model is illustrated in Fig. 2 where four sub-

modules are used: feature extractor femb, dynamic align-

ment module fd, meta-classifier fmc and a global-classifier

fgc. Given each pair of support and query image

(Isupp, I
q), first we use femb to extract feature maps

Xsupp = femb(I
supp), Xq = femb(I

q). The size of each

feature map is c× h× w, where c, h, w indicates the num-

ber of channel, height and width, individually. The feature

for each category can be represented as the average of all

support feature maps in this class. For simplicity we will

still use Xsupp to stand for feature maps of each category.

Next the dynamic alignment module fd, which consists of a

dynamic meta-filter and adaptive alignment, is used to align

query feature with both position and channel-specific sup-

port knowledge. Finally, a confidence score of similarity

between the adjusted query feature and corresponding sup-

port feature is provided by the meta-classifier fmc. Mean-

while, a global classifier fgc is also applied to the query fea-

ture to get a prediction of real category. All these modules

are trained with a few-shot classification loss and a global

classification loss. In the following context we describe our

dynamic meta-filter by first explaining the naı̈ve alignment

model in Sec. 4.1 and then proposing and improving our dy-
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Conv

Offset 𝑴𝟏𝟖 × 𝒉 × 𝒘
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𝒇𝒈𝒄 “Electric guitar”

Figure 2. Schematic illustration of our proposed model for 1-shot task. Support and query features are extracted with a backbone network

femb. Then two features are employed to predict an offset map using the local knowledge, which is used to dynamically sample the

support feature to collect useful information for generating dynamic meta-filter for each query position. The filter is applied to align the

query feature which is classified with a meta-classifier. GAP denotes global average pooling.

namic meta-filter from multiple points in Sec. 4.2. Then we

complete the framework by introducing the meta-classifier

(Sec. 4.3) and some implementation details (Sec. 4.4)

4.1. Naı̈ve feature alignment

After extracting support and query features, several for-

mer studies show that applying an alignment or transfor-

mation to the query features based on support knowledge

can help the model filter out feature part most beneficial

to classification, thus improving the performance. A naive

alignment can be written in the following form:

X̂q = g(Xq, A(Xq,X )) (1)

where g is the aligning operation, A is alignment basis and

X is knowledge source for generating A. For CAN [16], g

is multiplication, X is single support feature and A is cross

attention between two feature maps. For FEAT [48], g is

summation, X is whole support set and A is weighted aver-

age of X with a self-attention module. The common ground

of these two methods lies in two aspects: (1) Both meth-

ods omit channel-level alignment. CAN focuses on spatial-

level attention while FEAT uses an instance-level one. (2)

All available support knowledge is used. These two proper-

ties lead to the weaknesses including roughness, redundant

matching and inflexible alignment as discussed in Sec. 1.

To this end, we propose a new alignment framework in the

form of dynamic meta-filter (DMF).

4.2. Dynamic Meta­filter for Adaptive Alignment

Concretely, given the support and query feature pair

{Xsupp, Xq}, instead of directly generating a filter from

support features, we first apply a convolution layer fψ pa-

rameterized by ψ with kernel size 3 to the support feature

Xsupp, which outputs a tensor ψ(Xsupp) ∈ R
(c×k×k)×h×w

where k denotes the kernel size of DMF. Then, for each po-

sition (i, j) we can have a tensor of size c× k × k:

fd(i, j) = σ(ψ ∗ B3(X
supp
:,i,j )) (2)

where B3 means a 3 width neighbor, ∗ denotes convolu-

tion, σ is the Sigmoid function used to control the scale.

This fd(i, j) can be seen as c convolution filters with ker-

nel size k. Convolving fd(i, j) to the corresponding posi-

tion of Xq with c groups leads to a refined query feature

X̂q ∈ R
c×h×w, where

X̂
q
:,i,j = X

q
:,i,j + fd(i, j) ∗c Bk(X

q
:,i,j) (3)

where ∗c denotes convolution with group c. In this way,

each channel is rescaled by a weight computed by DMF

and the query feature is thus aligned according to the infor-

mation collected from support feature in a both position-

varying and channel-varying manner. Meanwhile, the

source of support information for each query position is di-

rectly decreased from whole feature map to a small grid.

The dynamic meta-filter described above is both efficient

and capable of dealing with fine-grained support knowl-

edge, but drawbacks are also obvious: (1) The convolutional

kernel used to generate DMF can only have a fixed kernel

size, which would limit the receptive field, increasing the

probability of failure to collect useful support information.

(2) The DMF would be large and time consuming if the fea-

ture map has large dimension. (3) Despite a dynamic filter,

the alignment is fixed, thus not flexible. Hence, we further

propose three improvements to solve these problems.

Dynamic Sampling To help the model be more flexible

to fetch any required features, we utilize a dynamic sam-

pling strategy. In detail, the fixed convolution region in fψ
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is replaced with a learnable one. Conditioned on the in-

put support and query feature pair, a neighbourhood map

M ∈ R
9×h×w of each feature position is predicted with a

convolution layer fη of kernel size 5:

M = fη(X
supp‖Xq) (4)

where ·‖· denotes concatenation. Each row of the neigh-

bourhood map M:,i,j ∈ R
9 denotes the regions containing

useful information for generating the filter at (i, j). This

map is then used to dynamically sample knowledge from

Xsupp for each position to generate the DMF:

B̃3(X
supp
:,i,j ) = Sample(Xsupp

:,i,j ,M:,i,j) (5)

fd(i, j) = σ(ψ ∗ B̃3(X
supp
:,i,j )) (6)

Through dynamic sampling, we can increase the probability

of exploring the useful positions while keeping a low vol-

ume of source knowledge. Among the many ways to imple-

ment the dynamic sampling, we imitate the deformable con-

volution (DeformConv) [4] where the neighborhood map

is realized in the form of horizontal and vertical offsets

M ∈ R
18×h×w and sampling is based on the offset from

each position. Note that [45] also adopts DeformConv in

few-shot learning. However, they directly employ Deform-

Conv to both the support and query features and map them

into another latent space, which are then used to measure

the correlation. No information interaction is conducted be-

tween support and query data. Compared to this method,

the dynamic sampling in our model is predicted based on

both support and query knowledge and used to generate a

dynamic position and channel-dependent meta-filter which

is then utilized to embed the knowledge from support im-

ages into query features.

Grouping Strategy To decrease the computation cost re-

sulted from large number of filters, we make a simple

assumption: similar information is shared among some

groups of channels in feature maps. Attributed to that,

we follow the existing works on group convolution [47] to

gather these channels together to share one filter. Specif-

ically, we equally segment the query feature map into g

groups. The output channel of the meta-filter generator fψ
is then modified from c×k×k to g×k×k. Due to grouping

the model only needs to generate a g-channel filter for each

position, thus more lightweight. It is noteworthy that when

g = 1, our DMF works in the same way as CAN and FEAT

where all channels of each position are processed with the

same weight. Such a strategy is shown to be less powerful

than a larger g in our experiments, which proves our advan-

tage against the other methods.

Adaptive Alignment The most direct solution for more dif-

ficult tasks is to recur the alignment process to get a more

refined feature, such as in [44] where a learned spatial trans-

formation is repeatedly used on the image features. By this

means, the query feature can be written as:

X
q
t+1 = X

q
t + F (Xq

t , fd), t = 0, · · · , T − 1 (7)

X̂q = X
q
T (8)

where F is the dynamic convolution. Such a method raises

another problem — tuning the extra hyper-parameter of re-

cursion depth T . In [44] the authors tried several choices of

this hyper-parameter for one dataset. However, for different

tasks, the depth variable should be varying depending on

the level of complication. Therefore for FSL, it is inappro-

priate to use a fixed recursion depth on episodes containing

various categories. As an alternative, we refer to the Neural

ODE [3]. By gradually decreasing the time step t, the recur-

sive residual equation 8 can be transformed from an Euler

discretization form into an ODE:

dXq(t)

dt
= F (Xq(t), t) (9)

Then X̂q is set as the solution of Eq. 9 given initial condi-

tion Xq . Such a form is better for two reasons. First, using

modern ODE solvers such as Dormand-Prince method can

get more accurate solution than Euler’s method. Second, by

taking adaptive step size, the recursive depth is thus data-

dependent, thus getting rid of hyper-parameter T .

4.3. Meta classifier

After we achieve a dynamically aligned query feature

X̂q , we follow the CAN [16] to take a simple way to form

the classifier which does not need any learnable parameters.

Formally, we aggregate Xsupp by global average pooling

into X̄supp ∈ R
c×1×1, which contains the global informa-

tion of Isupp. We then use it as the weights for a convo-

lutional filter, named meta-classifier (MC) fmc, with c as

the number of channel and 1 × 1 as kernel size. Applying

this filter to query feature leads to a tensor X̃q ∈ R
1×h×w.

Through the calculation we directly compare the global sup-

port feature with local query feature on each corresponding

channel. Therefore, if Iq has the same category as I
supp,

X̃q should have high value in most positions.

4.4. Implementation details

Objective function. Our loss function is defined in the

same way as in CAN. For each input few-shot pair with all

inputs and outputs {Xsupp, ysupp, Xq, yq, X̂q, X̃q}, denote

X as the set of results from fmc between I
q and all support

features, the objective function can be written as follow:

L = ℓf +
1

2
ℓg (10)

ℓg = −(log softmax(fgc(X̂
q)))T yq (11)

ℓf =
1

hw

∑

s,t

log
e−X̃

q

s,t

∑
X̃∈X

e−X̃s,t

· ✶yq=ysupp (12)
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where ℓf is for the few-shot N -way classification, and

ℓg is for the global many-shot |Cs|-way (e.g., 64 for

miniImageNet) classification.

Network Structure. We use the same ResNet12 as in

[48] for extracting image features. To enlarge the use of

position-specific property of our DMF, we remove the last

pooling layer of the backbone so that the spatial size of out-

put feature map is doubled to 11 × 11. Note that no extra

parameters or capacity are introduced here. The convolu-

tion between our DMF and query features is implemented

by first unfolding the query features along the spatial di-

mension and calculate the dot product between the unrolled

features and DMF. The whole operation is highly efficient

which will be shown in supplementary material.

5. Experiments

5.1. Datasets and setting

Datasets. Our experiments are conducted on two datasets.

miniImageNet dataset [43], containing 600 images with

each of the 100 categories, is a small subset of ImageNet.

We follow the split in [34], where 64, 16, 20 classes are used

for train, validation and test, respectively. tieredImageNet

dataset [35] is a larger subset of ILSVRC-12 dataset. It con-

sists of 34 categories with 779,165 images in total. These

categories are further broken into 608 classes, where 351

classes are used for training, 97 for validation and 160 for

testing. The size of images in miniImageNet is 84× 84 and

in tieredImageNet, 224 × 224. Images in tieredImageNet

are resized to 84× 84 before training and testing.

Experimental setup. We empirically set the groups g

as 64 for 1-shot tasks on both datasets, 160 for 5-shot

miniImageNet and 320 for 5-shot tieredImageNet. Kernel

size k is assigned as 1 for all tasks. Stochastic Gradient De-

scent (SGD) [2] with 5e−4 weight decay is used to optimize

our model. For miniImageNet, the initial learning rate is set

as 0.35 and 0.05 for tieredImageNet. Cosine learning rate

decay [26] is used along with SGD. Random cropping, hor-

izontal flipping, color jittering and random erasing [53] are

adopted for data augmentation during training, which is the

same as in CAN [16]. We test 2000 episodes sampled from

meta-test set for all experiments.

Evaluation benchmark. We report the accuracy and 95%
confidence interval (CI) of 5-way 1-shot and 5-way 5-shot

settings when comparing with the existing methods. For

ablation study, only accuracy is reported.

Competitors. To show the efficacy of our model, we com-

pare it with several previous methods for example Prototyp-

ical Network (ProtoNet) [40], RelationNet [42], MetaOpt-

Net [20], Cross Attention Network (CAN) [16], etc. These

models are chosen because they are among the best few-

shot learning models and also the results with the same set-

ting have been reported in the original paper.

5.2. Comparison with state­of­the­art

We compare our model with the competitors in Tab. 1,

where the accuracies and 95% CI of 5-way 1-shot and 5-

way 5-shot tasks on two datasets are shown. Note that dif-

ferent backbone structures are used among these models.

miniImageNet result. As shown in the Tab. 1, on

miniImageNet, all of the models with Conv4 are worse than

ours, which in part results from the low capacity of the back-

bone. When comparing with models trained with the same

backbone, the 1-shot accuracy of our model is still 0.98%

higher than the best one, i.e., FEAT (66.78%). When com-

paring with models using WRN-28-10 which has larger ca-

pacity than ResNet12, our model is still outstanding. On 5-

shot task, our model is 0.30% higher than DeepEMD which

is the strongest competitor using ResNet12 backbone, and

1.54% higher than Robust dist++ which is the best 5-shot

model with WRN backbone. It reflects that the ability

of our model to deal with extremely limited data is better

than most of the competitors, while ours is well-designed

to draw the correct characteristics in common among lim-

ited images. Moreover, it is worth noting that the addi-

tional parameters of our model to the backbone are just

two convolutional layers which is quite lightweight due to

the group strategy. In contrast, most of these competitors,

for example, TADAM and E3BM, have much more param-

eters. Also, some of the state-of-the-art methods for ex-

ample FEAT and DeepEMD adopt pre-train to get a good

initialization of the backbone for the meta-training stage so

that their proposed modules used for few-shot recognition

can be trained well. Compared with them, our proposed

Dynamic Meta-filter does not depend on initialization, thus

pretrain-free. In this way, our model can be trained with an

ensemble of global classification loss and few-shot classifi-

cation loss, which would be faster than those competitors.

tieredImageNet result. Results in Tab. 1 show that on

tieredImageNet we have 0.69% accuracy boost over the

best competitor on 1-shot classification, which also proves

the above conclusion. For 5-shot tasks, our model is

0.07% worse than DeepEMD. One possible reason is that

tieredImageNet is a larger dataset with more base cate-

gories, hence the backbone itself can already learn a good

representation with 5 support samples for each novel class.

Moreover, DeepEMD receives marginally better results at

the cost of massive training and inference time resulted

from a more complicated classifier involving Quadratic Pro-

gramming. In contrast, our framework is more succinct.

5.3. Model analysis

To further validate the effectiveness of our method, we

conduct a series of ablation studies on miniImageNet. We

first show some experimental proofs of the derivation of

our method, then we show some other results on the hyper-

parameters. The results are shown in Tab. 2.
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Model Backbone
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot

ProtoNet [40]

Conv4

49.42±0.78 68.20±0.72 53.31±0.89 72.69±0.74

MatchingNet [43] 43.56±0.84 55.31±0.73 — —

RelationNet [42] 50.44±0.82 65.32±0.70 54.48±0.93 71.32±0.78

MAML [9] 48.70±1.75 63.11±0.92 — —

Dynamic Few-shot [11] 56.20±0.86 72.81±0.62 — —

LEO [37]

WRN-28

61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09

PPA [33] 59.60±0.41 73.74±0.19 — —

Robust dist++ [6] 63.28±0.62 81.17±0.43 — —

wDAE [12] 61.07±0.15 76.75±0.11 68.18±0.16 83.09±0.12

CC+rot [10] 62.93±0.45 79.87±0.33 70.53±0.51 84.98±0.36

FEAT [48] 65.10±0.20 81.11±0.14 70.41±0.23 84.38±0.16

TapNet [50]

Res-12

61.65±0.15 76.36±0.10 — —

SNAIL [29] 55.71±0.99 68.88±0.92 — —

MetaOptNet [20] 62.64±0.61 78.63±0.46 65.99±0.72 81.56±0.53

TADAM [31] 58.50±0.30 76.70±0.30 — —

DC [22] 62.53±0.19 78.95±0.13 — —

VFSL [7] 61.23±0.26 77.69±0.17 — —

CAN [16] 63.85±0.48 79.44±0.34 69.89±0.51 84.23±0.37

FEAT [48] 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16

DeepEMD [51] 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58

E3BM [25] 63.80±0.40 80.10±0.30 71.20±0.40 85.30±0.30

DSN-MR [38] 64.60±0.72 79.51±0.50 67.39±0.82 82.85±0.56

Net-Cosine [24] 63.85±0.81 81.57±0.56 — —

Ours Res-12 67.76±0.46 82.71±0.31 71.89±0.52 85.96±0.35

Table 1. 5-way few-shot accuracies with 95% confidence interval on miniImageNet and tieredImageNet.

DS K=1 K=5

X 67.76 82.71

× 66.73 81.20

Pool K=1 K=5

X 67.12 81.54

× 67.76 82.71

(a) (b)

Group K=1 K=5

1 66.48 81.40

64 67.76 82.17

160 67.61 82.71

320 67.51 82.71

640 67.43 82.34

Align K=1 K=5

0 64.20 80.24

1 67.26 82.14

2 67.27 81.81

3 67.45 81.19

ODE 67.76 82.71

(c) (d)

Table 2. Ablation Studies on miniImageNet 5-way tasks. We

show 1-shot(K=1) and 5-shot(K=5) results. (a) Dynamic Sam-

pling: Full model is compare with one without dynamic sample.

(b) Pooling: we compare model trained with and without the last

pooling layer in the Res-12 backbone. (c) Groups: we compare

the number of groups in dynamic conv. (d) Instantiation: we try

different structures based on our method, including models with

no alignment, fixed number of alignment and ODE alignment.

Effectiveness of dynamic sampling We test models with

and without dynamic sampling. As quantitative result in

Tab. 2, the model with dynamic sampling is 1.03% better

on 1-shot and 1.50% better on 5-shot than that without dy-

namic sampling. This shows that when directly using neigh-

bor of each position to generate DMF, the model can only

receive insufficient useful knowledge, leading to worse per-

formance, which justifies the efficacy of this module. As an

addition, we show the learned sampling strategy for some

regions of support and query pairs in Fig. 3. This reflects

that given specific query images, the dynamic sampling can

successfully learn where to collect the knowledge, thus gen-

erating more useful filters for each region.

Figure 3. Visualisation of the learned dynamic sampling strategy.

The red dots represent the sampled position in the support image

that used to predict filter weights for the corresponding query fea-

ture position (green dot). With dynamic sampling, our model can

utilize the truly informative positions to generate DMF.

Do we have to delete the pooling layer? The only dif-

ference between our backbone and the commonly-used

ResNet12 is that we delete the last pooling layer, as dis-

cussed before. Tab. 2(b) shows the result when keeping

this layer. The deletion of the pooling layer brings 0.64%
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Support 1Align0AlignCANQuery 2Align ODE Align

Figure 4. Comparison of aligned query feature maps from different

methods for 5-way 1-shot tasks on miniImageNet.

improvement on 1-shot and 1.16% improvement on 5-shot.

One reason is that when score map is larger, we can assign

the loss function ℓf with more dense ground truth. More-

over, by abandoning this pooling layer, we can avoid infor-

mation loss, thus helping learn better meta-filters.

Effectiveness of group convolution Our model is varied by

different numbers of groups, as in Tab. 2(c). It reflects that

as number of groups decreases, calculation between DMF

and the corresponding region on query images gets simpler.

When the number of groups equals to 1, this calculation de-

generates from dot product between two vectors to element-

wise product between scalar and vector, which is the same

as in FEAT and CAN. This severely hurts the ability to ex-

press the whole information, leading to the worst perfor-

mance. On the other hand, the profit brought by increasing

number of groups saturates at different status, with 64 for 1-

shot tasks and 160 for 5-shot tasks, and more groups would

result in more computation consumption but along with per-

formance drop. This means our assumption of shared infor-

mation among channels in Sec. 4.2 holds. Since support

knowledge only comes from one image for 1-shot tasks,

the amount of information is less than that in 5-shot tasks.

Hence, 64 filters each position are sufficient for handle 1-

shot tasks, while the number of filters needs to be increased

to 160 for 5-shot tasks to deal with more information.

Instantiation We compare four different kinds of instanti-

ations of our propose methods as follows: (1) 0 align: The

whole model is used without DMF, where the support and

query features extracted with backbone network are directly

delivered to meta-classifier. (2,3) 1/2 align: The DMF is

used with fixed number of recursion. (4) ODE align: Neu-

ral ODE is used in place of recursive alignment, which is

our final model. The results in Tab. 2(d) show that using

one alignment can improve the model with no alignment by

1.28% on 1-shot and 0.77% on 5-shot, which verifies the

motivation of using dynamic meta-filter for feature align-

ment. Furthermore, an interesting fact is that while using

more alignments can slightly improve the performance on

1-shot tasks, the 5-shot accuracy dramatically decreases,

with a 0.95% gap between models with 1 and 3 alignments.

This phenomenon reflects the inflexibility of fixed number

recursive alignment when dealing with different types of

tasks. Compared to this, using ODE align can boost the

performance on both 1-shot and 5-shot tasks. Similar re-

sults are shown in Fig. 4, where we present three pairs of

support and query images and the corresponding query fea-

ture maps from the above instantiations of our model along

with CAN. We find that (1) With our dynamic alignment,

the results are generally better than the ones generated by

CAN and model with no alignment. Our DMF is able to fo-

cus on the target object, which suggests the efficacy of our

method. (2) The model with one and two alignments can

only handle different data. While both models can correctly

align the image in the first row, the model trained with two

alignments can have better representation than that with one

alignment in the second row, and it is opposite in the third

row. In contrast, the ODE align can correctly highlight the

query feature in all circumstances, which proves our claim

of the requirement of adaptive alignment.

5.4. Further Discussion

Our proposed dynamic meta-filter works well with the

adaptive alignment in several few-shot learning datasets as

shown. However, it cannot be ignored that some extreme

conditions would weaken our method. For example, when

the target object appears in very different parts of support

and query images, e.g., upper left and lower right, it would

be hard for our model to learn such an alignment. Even

though such a case is too extreme to hurt the performance,

finding a remedy for that will be a potential future work.

6. Conclusion

We propose to learn a novel class recognition network

for few-shot learning with a novel dynamic meta-filter gen-

erated from the few-shot inputs. We dynamically sam-

ple a relevant neighbour for each feature position of few

shot input and further predict position-specific and channel-

specific filter weights based on the sampled neighbourhood

to facilitate novel class recognition. This formulation is

able to better capture position based semantic context of the

few-shot example and thus enjoys better dynamical knowl-

edge adaptation for few-shot learning. This is demonstrated

by the fact that we establish new state-of-the-arts on major

benchmarks miniImageNet and tieredImageNet.
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