
PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on

Point Clouds

Mutian Xu1* Runyu Ding1* Hengshuang Zhao2 Xiaojuan Qi1†

1The University of Hong Kong 2University of Oxford

mino1018@outlook.com, {ryding, xjqi}@eee.hku.hk, hengshuang.zhao@eng.ox.ac.uk

Abstract

We introduce Position Adaptive Convolution (PAConv),

a generic convolution operation for 3D point cloud process-

ing. The key of PAConv is to construct the convolution ker-

nel by dynamically assembling basic weight matrices stored

in Weight Bank, where the coefficients of these weight matri-

ces are self-adaptively learned from point positions through

ScoreNet. In this way, the kernel is built in a data-driven

manner, endowing PAConv with more flexibility than 2D

convolutions to better handle the irregular and unordered

point cloud data. Besides, the complexity of the learning

process is reduced by combining weight matrices instead of

brutally predicting kernels from point positions.

Furthermore, different from the existing point convolu-

tion operators whose network architectures are often heav-

ily engineered, we integrate our PAConv into classical

MLP-based point cloud pipelines without changing net-

work configurations. Even built on simple networks, our

method still approaches or even surpasses the state-of-

the-art models, and significantly improves baseline perfor-

mance on both classification and segmentation tasks, yet

with decent efficiency. Thorough ablation studies and vi-

sualizations are provided to understand PAConv. Code is

released on https://github.com/CVMI-Lab/PAConv.

1. Introduction

In recent years, the rise of 3D scanning technologies

has been promoting numerous applications that rely on 3D

point cloud data, e.g., autonomous driving, robotic manip-

ulation and virtual reality [35, 40]. Thus, the approaches

to effectively and efficiently processing 3D point clouds

are in critical needs. While remarkable advancements have

been obtained in 3D point cloud processing with deep learn-

ing [36, 37, 47, 25], it is yet a challenging task in view of the

sparse, irregular and unordered structure of point clouds.

*M. Xu and R. Ding contribute equally.
†Corresponding author

𝐹./0: 1×𝐶./0

𝐹,-: 𝑁×𝐶,-

(a) PointNet (b) PointConv

(c) KPConv (d) PAConv

kernel

scores

kernel

scores

O𝐹,- : 𝑁×(𝐶,-× 𝐶./0)

SOP
𝑃,-: 𝑁×3 𝐹./0: 1×𝐶./0

𝐹,-: 𝑁×𝐶,-

𝐹./0: 1×𝐶./0

𝑃,-: 𝑁×3 𝐹,-: 𝑁×𝐶,- 𝑃,-: 𝑁×3

𝐹./0: 1×𝐶./0

𝐹,-: 𝑁×𝐶,-

⊙

⊚

position

weights

SOP

Kernels

Kernels

⊚

KernelsKernel

Points
⊚

SOP

Weight

Bank

⊚

⊙ SOP

MLP

𝑓#
𝑓$
…

𝑓-

𝑝KL − 𝑝,

…

𝑝KN − 𝑝,

𝑝KM − 𝑝,

MLP1

MLP2

𝑓./0

𝑓#
𝑓$
…

𝑓-

𝑓#
𝑓$
…

𝑓-

𝑓#
𝑓$
…

𝑓-

𝑝KL − 𝑝,

…

𝑝KN − 𝑝,

𝑝KM − 𝑝, Score

Net

𝑓#
𝑓$
…

𝑓-

𝑝KL − 𝑝,

…

𝑝KN − 𝑝,

𝑝KM − 𝑝,

𝑓./0

𝑓./0
𝑓./0

Figure 1. Overview about convolutional sturctures of PointNet

[36], PointConv [52], KPConv [47] and our PAConv. It illustrates

the differences of these point-based convolutions. SOP denotes

symmetric operations, like MAX.

To tackle these difficulties, previous research can be

coarsely cast into two categories. The first line attempts

to voxelize the 3D point clouds to form regular grids such

that 3D grid convolutions can be adopted [33, 43, 39]. How-

ever, important geometric information might be lost due to

quantization, and voxels typically bring extra memory and

computational costs [10, 7].

Another stream is to directly process point cloud data.

The pioneering work [36] proposes to learn the spatial

encodings of points by combing Multi-Layer Perceptron

(MLP) [13] and global aggregation as illustrated in Fig. 1

(a). Follow-up works [37, 38, 48, 20, 51] exploit local ag-

gregation schemes to improve the network. Nonetheless, all

the points are processed by the same MLP, which limits the

capabilities in representing spatial-variant relationships.

Beyond MLP, most recent works design convolution-

like operations on point clouds to exploit spatial correla-

tions. To handle the irregularity of 3D point clouds, some

works [58, 50, 29] propose to directly predict the kernel

weights based on relative location information, which is

3173

https://github.com/CVMI-Lab/PAConv

further used to transform features just like 2D convolu-

tions. One representative architecture [52] in this line of

research is shown in Fig. 1 (b). Albeit conceptually effec-

tive, the methods severely suffer from heavy computation

and memory costs caused by spatial-variant kernel predic-

tion in practice. The efficient implementation also trade-

offs its design flexibility, leading to inferior performance.

Another group of works relate kernel weights with fixed

kernel points [2, 47, 32] and use a correlation (or interpo-

lation) function to adjust the weight of kernels when they

are applied to process point clouds. Fig. 1 (c) illustrates one

representative architecture [47]. However, the hand-crafted

combination of kernels may not be optimal and sufficient to

model the complicated 3D location variations.

In this paper, we present Position Adaptive Convolution,

namely PAConv, which is a plug-and-play convolutional op-

eration for deep representation learning on 3D point clouds.

PAConv (shown in Fig. 1 (d)) constructs its convolutional

kernels by dynamically assembling basic weight matrices

in Weight Bank. The assembling coefficients are self-

adaptively learned from relative point positions by MLPs

(i.e. ScoreNet). Our PAConv is flexible to model the com-

plicated spatial variations and geometric structures of 3D

point clouds while being efficient. Specifically, instead

of inferring kernels from point positions [52] in a brute-

force way, PAConv bypasses the huge memory and com-

putational burden via a dynamic kernel assembling strategy

with ScoreNet. Besides, unlike kernel point methods [47],

our PAConv gains flexibility to model spatial variations in a

data-driven manner and is much simpler without requiring

sophisticated designs for kernel points.

We conduct extensive experiments on three challenging

benchmarks on top of three generic network backbones.

Specifically, we adopt the simple MLP-based point net-

works PointNet [36], PointNet++ [37] and DGCNN [51]

as the backbones, and replace their MLPs with PAConv

without changing other network configurations. With these

simple backbones, our method still achieves the state-of-

the-art performance on ModelNet40 [53] and considerably

improves the baseline by 2.3% on ShapeNet Part [61] and

9.31% on S3DIS [1] with decent model efficiency. It’s also

worth noting that recent point convolution methods often

use complicated architectures and data augmentations tai-

lored to their operators [47, 25, 30] for evaluation, making

it difficult to measure the progress made by the convolu-

tional operator. Here, we adopt simple baselines and aim

to minimize the influence of network architectures to better

assess the performance gain from the operator – PAConv.

2. Related Work

Mapping point clouds into regular 2D or 3D grids (vox-

els). Since point cloud data has irregular structure in 3D

space, early works [44, 21, 6] project point clouds to multi-

view images and then utilize conventional convolutions for

feature learning. Yet, this 3D-to-2D projection is not robust

to occluded surfaces or density variations. Tatarchenko et

al. [45] propose to map local surface points onto a tangent

plane and further uses 2D convolutional operators, and FP-

Conv [25] flattens local patches onto regular 2D grids with

soft weights. However, they heavily rely on the estimation

of tangent planes, and the projection process will inevitably

sacrifice the 3D geometry information. Another technique

is to quantize the 3D space and map points into regular vox-

els [39, 33, 3, 34], where 3D convolutions can be applied.

However, the quantization will inevitably lose fine-grained

geometric details, and the voxel representation is limited by

the heavy computation and memory cost. Recently, to ad-

dress the above issues, sparse representations [43, 10, 7] are

employed to obtain smaller grids with better performance.

Nevertheless, they still suffer from the trade-off between the

quantization rate and the computational efficiency.

Point representation learning with MLPs. Many meth-

ods [36, 37, 18, 28, 14] process unstructured point clouds

directly with point-wise MLPs. PointNet [36] is the pio-

neering work which encodes each point individually with

shared MLPs and aggregates all point features with global

pooling. However, it lacks the ability to capture local 3D

structures. Several follow-up works address this issue by

adopting hierarchical multi-scale or weighted feature ag-

gregation schemes to incorporate local features [37, 19, 23,

16, 18, 28, 55, 17, 14, 60, 54, 56]. Other approaches use

graphs to represent point clouds [38, 42, 51, 49, 57], and

the point features are aggregated through local graph opera-

tions, aiming to capture local point relationships. Nonethe-

less, they all adopt the shared MLPs to transform point

features, which limits the model capabilities in capturing

spatial-variant information.

Point representation learning with point convolutions.

More recently, lots of attempts [24, 58, 50, 52, 29, 47,

32, 30] focus on designing point convolutional kernels.

PointCNN [24] learns an X -transformation to relate points

with kernels. However, this operation cannot satisfy permu-

tation invariant, which is crucial for modeling un-ordered

point cloud data. In addition, [41, 11, 58, 50, 52, 29] pro-

pose to directly learn the kernel of local points based on

point positions. Nevertheless, these methods directly pre-

dict kernels, which has much higher complexity (memory

and computation) in the learning process.

Another type of point convolutions associate weight ma-

trices with pre-defined kernel points in 3D space [2, 5, 47,

32, 26, 22]. However, the positions of kernels have cru-

cial influence on the final performance [47] and need to be

specifically optimized for different datasets or backbone ar-

chitectures. Besides, the above approaches [47, 32, 22] gen-

erate kernels through combining pre-defined kernels using

hand-crafted rules which limit the model flexibility, lead-

3174

ing to inferior performance [22]. Different from them, our

method adaptively combines weight matrices in a learn-able

manner, which improves the capability of the operator to fit

irregular point cloud data.

Dynamic and conditioned convolutions. Our work is also

related to dynamic and conditional convolutions [8, 9, 59].

Brabandere et al. [8] propose to dynamically generate

position-specific filters on pixel inputs. In [9], through

learning the offsets on kernel coordinates, the original ker-

nel space is deformed to adapt to different scales of objects.

Further, CondConv [59] generates the convolution kernel

by combining several filters through a routing function that

outputs the coefficients for filter combination, which is sim-

ilar with our dynamic kernel assembly. Yet, the predicted

kernels in CondConv [59] are not position-adaptive, while

the unstructured point clouds require the weights that adapt

to different point locations.

3. Method

In this section, we first revisit the general formulation of

point convolutions. Then we introduce PAConv with dy-

namic kernel assembly. Finally, we compare PAConv with

prior relevant works to demonstrate our advantages.

3.1. Overview

Given N points in a point cloud P = {pi|i =
1, ..., N} ∈ R

N×3, the input and output feature map of P
in a convolutional layer can be denoted as F = {fi|i =
1, ..., N} ∈ R

N×Cin and G = {gi|i = 1, ..., N} ∈
R

N×Cout respectively, where Cin and Cout are the chan-

nel numbers of the input and output. For each point pi, the

generalized point convolution can be formulated as:

gi = Λ({K(pi, pj)fj |pj ∈ Ni}), (1)

where K(pi, pj) is a function which outputs convolutional

weights according to the position relation between the cen-

ter point pi and its neighboring point pj . Ni denotes all

the neighborhood points, and Λ refers to the aggregation

function in terms of MAX, SUM or AVG. Under this defi-

nition, 2D convolution can be regarded as a special case of

the point convolution. For instance, for a 3× 3 2D convolu-

tion, the neighborhood Ni lies in a 3 × 3 rectangular patch

centered on pixel i , and K is a one-to-one mapping from a

relative position (pi, pj) to the corresponding weight matrix

K(pi, pj) ∈ R
Cin×Cout in a fixed set of 3× 3 (Fig. 2. (a)).

However, the simple one-to-one mapping kernel func-

tion defined on images is not applicable for 3D point clouds

owing to the irregular and unordered characteristics of point

clouds. Specifically, the spatial positions of 3D points are

continuous and thus the number of possible relative offsets

(pi, pj) is infinite, which cannot be mapped into a finite-

sized set of kernel weights. Therefore, we redesign the

kernel function K to learn a position-adaptive mapping by

dynamic kernel assembly. First, we define a Weight Bank

composed of several weight matrices. Then, a ScoreNet is

designed to learn a vector of coefficients to combine the

weight matrices according to point positions. Finally, the

dynamic kernels are generated by combining the weight

matrices and its associated position-adaptive coefficients.

The details are shown in Fig. 2. (b) and elaborated below.

3.2. Dynamic Kernel Assembling

Weight Bank. We first define a Weight Bank B =
{Bm|m = 1, ...,M}, where each Bm ∈ R

Cin×Cout is a

weight matrix, and M controls the number of weight matri-

ces stored in the Weight Bank B.

Intuitively, larger M contributes to more diversified

weight matrices for kernel assembly. Yet, too many weight

matrices may bring redundancies and cause heavy mem-

ory/computation overheads. We find that setting M to 8 or

16 is appropriate, which is discussed in Sec. 6.2. Equipped

with Weight Bank, the next is to establish a mapping from

discrete kernels to continuous 3D space. To this end, we

propose ScoreNet to learn coefficients to combine weight

matrices and produce dynamic kernels fitting to point cloud

inputs, which is detailed as follows.

ScoreNet. The goal of ScoreNet is to associate relative po-

sitions with different weight matrices in Weight Bank B.

Given the specific position relation between a center point

pi and its neighbor point pj , ScoreNet predicts the position-

adaptive coefficients Sm
ij for each weight matrix Bm.

The inputs of ScoreNet are based on position relations.

We explore different input representations as illustrated in

Sec. 6.1. For the sake of clarity, here we denote this input

vector as (pi, pj) ∈ R
Din . The ScoreNet outputs a normal-

ized score vector as:

Sij = α(θ(pi, pj)), (2)

where θ is a non-linear function implemented using Multi-

layer Perceptrons (MLPs) [13] and α indicates Softmax nor-

malization. The output vector Sij = {Sm
ij |m = 1, ...,M},

where Sm
ij represents the coefficient of Bm in constructing

the kernel K(pi, pj). M is the number of weight matrices.

Softmax ensures that the output scores are in range (0, 1).
This normalization guarantees that each weight matrix will

be chosen with a probability, with higher scores implying

stronger relations between the position input and the weight

matrix. Sec. 6.1 presents the comparison of different nor-

malization schemes.

Kernel generation. The kernel of PAConv is derived by

softly combining weight matrices in Weight Bank B with

the corresponding coefficients predicted from ScoreNet:

K(pi, pj) =

M∑

m=1

(Sm
ijBm). (3)

3175

Input features

2D grid data

3D point data

Kernels

a) 2D 𝟑×𝟑 Convolution

𝑝L
𝑝,

𝑝L

Weight Bank 𝓑

𝑀

𝐶,-×𝐶
./0

…

Output feature

𝑔,SOP
𝑓Z
…

𝑓#
9×𝐶,-

Output featureDynamic

kernels
Input features

𝑔,

𝐾×𝐶,-

… SOP
𝑓[
…

𝑓#

b) Position Adaptive Convolution

𝑓,-

𝑆,## , 𝑆,#$, … , 𝑆,#\

Weight coefficientsRelative positions

𝑆,[# , 𝑆,[$, … , 𝑆,[\(𝑝, , 𝑝;)
…

(𝑝, , 𝑝#)
𝐾×𝐷,- 𝐾: 𝑎𝑛𝑦 𝑛𝑢𝑚𝑏𝑒𝑟

ScoreNet

𝜃
𝑆,L#
𝑆,L$

𝑆,L\

B#

B$

Bg

×
×

×

……
𝒦 𝑝,, 𝑝L = j

kl#

\
𝑆,Lk𝐵k

Kernel Generation

…

𝑓,-

9×𝐶,-
×𝐶./0

…One-to-one

mapping

𝐾×𝐶,-
×𝐶./0

∑𝑝,

Figure 2. PAConv. (a) shows the traditional 2D convolution operators where SOP means symmetric operations, like MAX. (b) illustrates

how our PAConv designs the kernel function K(pi, pj), including defining Weight Bank B, learning ScoreNet and generating kernels.

By doing this, our PAConv constructs the convolution ker-

nel in a dynamic data-driven manner, where the score coef-

ficients Sm
ij are self-adaptively learned from point positions.

Our position-adaptive convolution gains flexibility in mod-

eling irregular geometric structures of 3D point clouds with

the kernel assembly strategy.

3.3. Weight Regularization

While a large size of Weight Bank implies more weight

matrices are available, the diversity of weight matrices is

not ensured since they are randomly initialized and may

converge to be similar with each other. To avoid this, we

design a weight regularization to penalize the correlations

between different weight matrices, which is defined as:

Lcorr =
∑

Bi,Bj∈B,i 6=j

|
∑

BiBj |

||Bi||2||Bj ||2
. (4)

This enforces weight matrices to be diversely distributed,

further promises the diversity in the generated kernels.

3.4. Relation to Prior Work

• Relation to PointCNN [24]. PointCNN designs an MLP-

based X -transformation to permute point features and asso-

ciate them with corresponding kernels by weighted combi-

nation. However, the operator cannot preserve permutation-

invariance which is important for point cloud processing.

Our PAConv, nevertheless, learns kernels from position re-

lations, naturally maintaining shape information, and utilize

the symmetric function to ensure permutation-invariant.

• Relation to PointConv [52]. PAConv differs from Point-

Conv in the following folds: 1) PointConv treats convolu-

tional kernels as nonlinear functions of point positions and

densities. Instead, PAConv regards each weight matrix as

a basis to capture certain spatial relations. These bases

are further dynamically assembled via learnable ScoreNet

to model continuous point position relations. 2) Our in-

sight yields the following designs customized for PAConv,

which is more flexible and effective: (a) Softmax normal-

ization optimizes kernel scores as a whole, where higher

scores imply stronger links between Bm and spatial rela-

tions. We can also use other norms (e.g. Sigmoid, Tanh

in Table 5). (b) Lcorr encourages Bm to be independent

with each other; (c) More generic feature aggregation op-

eration can be exploited: PAConv uses max-pooling, while

Efficient PointConv can only realize sum-pooling.

• Relation to KPConv [47]. PAConv and KPConv both

strive to design the kernel function in a position adaptive

way, yet there exists two key differences: 1) KPConv gener-

ates fixed kernel points with corresponding weights offline

by optimization, where the kernel point space may need

to be specifically tuned for different point cloud datasets,

which is sensitive to hyper-parameters. However, our PA-

Conv defines weight matrices without requiring the estima-

tion of kernel point locations. 2) KPConv uses hand-crafted

relation to combine weight matrices, which may be sub-

optimal and limited in flexibility. In contrast, PAConv de-

fines a learnable ScoreNet to predict a vector coefficients

adapted to point positions. PAConv is more flexible in both

kernel design and weight learning, easily to be integrated

with different architectures.

4. Backbone Network Architectures

The network configurations largely vary across recent

point cloud networks [52, 18, 32, 47, 25], yet most of them

3176

can be considered as different variants of the classical point-

wise MLP-based networks [52, 18, 47]. To assess the ef-

fectiveness of PAConv and minimize the impact from com-

plicated network architectures, we employ three classical

and simple MLP-based network backbones for different 3D

tasks, and integrate our PAConv without further modifica-

tions of network architectures.

Networks for object-level tasks. The object-level tasks

deal with individual 3D objects, which can be effectively

solved using lightweight networks without down-sampling

layers. Thus the scale/resolution of the point cloud is

fixed through the whole network. PointNet [36] and

DGCNN [51] are two representatives, which are chosen as

the backbones for object classification and shape part seg-

mentation. We directly replace the MLPs in the encoders

of PointNet and EdgeConv [51] of DGCNN with PAConv

without changing the original network architectures.

DGCNN [51] computes pairwise distance in feature

space and takes the closest k points for each point, which

brings huge computational cost and memory usage. Instead,

we search the k-nearest neighbors in 3D coordinate space.

Network for scene-level tasks. For large-scale scene-level

segmentation tasks, it is necessary to employ the networks

with encoder (downsampling) and decoder (upsampling).

This effectively enlarges the receptive field of the network

while achieving faster speed and less memory usage. Point-

Net++ [37] is such a pioneering architecture.

For the encoder, we follow PointNet++ which uses it-

erative farthest point sampling (FPS) to downsample point

clouds. When building neighborhoods, PointNet++ finds all

points within a ball centered at the query point. The ball ra-

dius is critical for performance and need to be tuned for dif-

ferent point cloud scales, thus we directly search k-nearest

neighbor for flexibility. In addition, we adopt the simplest

Single-scale grouping (SSG) approach instead of sophisti-

cated MSG and MRG. The learned features are thus directly

propagated to the next layer without feature fusion tricks.

Similar to object-level tasks, we directly replace the

MLPs in the encoding layers of PointNet++ with PAConv.

Our decoder is the same as PointNet++. The detailed net-

work architectures are shown in the supplementary material.

5. Experiments

We integrate PAConv into different point cloud networks

mentioned in Sec. 4 and evaluate it on object classifica-

tion, shape part segmentation and indoor scene segmenta-

tion. We implement a CUDA layer to efficiently realize PA-

Conv, which is presented in the supplementary material.

5.1. Object Classification

Dataset. First we evaluate our model on ModelNet40 [53]

for object classification. It consists 3D meshed models from

40 categories, with 9, 843 for training and 2, 468 for testing.

Method (time order) Input Accuracy

MVCNN [44] multi-view 90.1

OctNet [39] hybrid grid octree 86.5

PointwiseCNN [15] 1K points 86.1

PointNet++ [37] 1K points 90.7

PointNet++ [37] 5K points+normal 91.9

SpecGCN [48] 2K points+normal 92.1

PCNN [2] 1K points 92.3

SpiderCNN [58] 1K points+normal 92.4

PointCNN [24] 1K points 92.5

PointWeb [18] 1K points+normal 92.3

PointConv [52] 1K points+normal 92.5

RS-CNN [29] w/o vot. 1K points 92.4

RS-CNN [29] w/ vot. 1K points 93.6

KPConv [47] 1K points 92.9

InterpCNN [32] 1K points 93.0

DensePoint [28] 1K points 93.2

Point2Node [12] 1K points 93.0

3D-GCN [26] 1K points 92.1

FPConv [25] 1K points 92.5

Grid-GCN [57] 1K points 93.1

PosPool [30] 5K points 93.2

PointNet [36] 1K points 89.2

PAConv (*PN) w/o vot. 1K points 93.2 (4.0↑)

DGCNN [51] 1K points 92.9

PAConv (*DGC) w/o vot. 1K points 93.6

PAConv (*DGC) w/ vot. 1K points 93.9 (1.0↑)

Table 1. Classification accuracy (%) on ModelNet40 [53].

*PN and *DGC respectively denote using PointNet [36] and

DGCNN [51] as the backbones. “vot.” indicates multi-scale infer-

ence following [29]. PAConv obviously improves two baselines

and surpasses other methods.

Implementation. As mentioned in Sec. 4, PAConv is uti-

lized to replace the MLPs of the encoders in PointNet and

EdgeConv of DGCNN. We sample 1, 024 points for training

and testing following [36]. Following [51], the training data

are augmented by randomly translating objects and shuf-

fling points. We do not add Lcorr (Sec. 3) while still achiev-

ing high performance due to the simplicity of the task.

Result. Table 1 summarizes the quantitative compar-

isons. PAConv significantly improves the classification ac-

curacy with 4.0%↑ on PointNet and 1.0%↑ on DGCNN.

Especially, the accuracy achieved by DGCNN+PAConv is

93.9%, which is an excellent result compared with recent

works. Following RS-CNN [29], we perform voting tests

with random scaling and average the predictions during

test. Without voting, the accuracy of the released RS-CNN

model drops to 92.4%, while PAConv still gets 93.6%. By

eliminating the post-processing factor, the results without

voting better reflects the performance gained purely from

model designs and show the effectiveness of our PAConv.

5.2. Shape Part Segmentation

Dataset. PAConv is also evaluated on ShapeNet Parts [61]

for shape part segmentation. It contains 16, 881 shapes with

3177

Method (time order) Cls. mIoU Ins. mIoU

PointNet [36] 80.4 83.7

PointNet++ [37] 81.9 85.1

SynSpecCNN [62] 82.0 84.7

SPLATNet [43] 83.7 85.4

PCNN [2] 81.8 85.1

SpiderCNN [58] 82.4 85.3

SpecGCN [48] - 85.4

PointCNN [24] 84.6 86.1

PointConv [52] 82.8 85.7

Point2Seq [27] - 85.2

PVCNN [31] - 86.2

RS-CNN [29] w/o vot. 84.2 85.8

RS-CNN [29] w/ vot. 84.0 86.2

KPConv [47] 85.1 86.4

InterpCNN [32] 84.0 86.3

DensePoint [28] 84.2 86.4

3D-GCN [26] 82.1 85.1

DGCNN [51] 82.3 85.2

PAConv (*DGC) w/o vot. 84.2 86.0

PAConv (*DGC) w/ vot. 84.6 (2.3↑) 86.1 (0.9↑)

Table 2. Shape part segmentation results (%) on ShapeNet

Parts [61]. *DGC indicates using DGCNN [51] as the backbone.

“vot.” indicates multi-scale inference following [29]. PAConv sig-

nificantly improves both Class and Instance mIoU on DGCNN.

Figure 3. Visualization of shape part segmentation results on

ShapeNet Parts. The first row is the ground truth, and the sec-

ond row is the predictions of our PAConv. From left to right are

motorbike, lamp, aeroplane, chair and pistol.

16 categories and is labeled in 50 parts where each shape

has 2− 5 parts. 2, 048 points are sampled from each shape

and each point is annotated with a part label.

Implementation. We displace EdgeConv in DGCNN [51]

with PAConv and follow the official train/validation/test

split of [51]. No data augmentations are used. Similar to

the classification task, we do not employ Lcorr and the same

voting strategy during test is applied following [29].

Result. Table 2 lists the instance average and class average

mean Inter-over-Union (mIoU), where PAConv notably lifts

the performance of DGCNN on both class mIoU (2.3%↑)

and instance mIoU (0.9%↑). PAConv also outperforms RS-

CNN without voting (w/o vot.) Besides, our method sur-

passes or approaches other methods with much lower com-

putational efficiency (analyzed in Sec. 5.3). Fig. 3 visual-

Method (time order) Pre-proc. mIoU FLOPs

PointNet [36] BLK 41.1 -

SegCloud [46] BLK 48.9 -

TangentConv [45] BLK 52.6 -

PointCNN [24] BLK 57.26 -

ParamConv [50] BLK 58.3 -

PointWeb [18] BLK 60.28 -

PointEdge [17] BLK 61.85 -

GACNet [49] BLK 62.85 -

Point2Node [12] BLK 62.96 -

KPConv rigid [47] Grid 65.4 -

KPConv deform[47] Grid 67.1 2042

FPConv [25] BLK 62.8 -

SegGCN [22] BLK 63.6 -

PosPool [30] Grid 66.7 2041

PointNet++ [37] BLK 57.27 991

PA w/o Lcorr (*PN2) BLK 65.63 -

PA† w/ Lcorr (*PN2) BLK 66.01 -

PA w/ Lcorr (*PN2) w/o vot. BLK 66.33 -

PA w/ Lcorr (*PN2) w/ vot. BLK 66.58 (9.31↑) 1253

Table 3. Segmentation results (%) and #FLOPs/sample (M) on

S3DIS Area-5 [1]. BLK and Grid signify using block sampling

and grid sampling in data pre-processing, respectively. PA denotes

PAConv, *PN2 refers to applying PointNet++ [37] as the back-

bone, and PA† symbolizes the CUDA implementation of PAConv.

“vot.” indicates multi-scale inference following [29].

izes segmentation results. The mIoU of each class is shown

in the supplementary material.

5.3. Indoor Scene Segmentation

Dataset. Large-scale scene segmentation is a more chal-

lenging task. To further assess our method, we employ

Stanford 3D Indoor Space (S3DIS) [1] following [18, 32,

30], which includes 271 rooms in 6 areas. 273 million

points are scanned from 3 different buildings, and each

point is annotated with one semantic label from 13 classes.

Implementation. We employ PAConv to replace the MLPs

in the encoder of PointNet++ [37]. We follow [37] to pre-

pare the training data, where the points are uniformly sam-

pled into blocks of area size 1m × 1m, and each point is

represented by a 9-dimensional vector (XY Z, RGB and

a normalized location in the room). We randomly sample

4,096 points from each block on-the-fly, and all the points

are adopted for testing. Following [46], we utilize Area-5

as the test scene and all the other areas for training. The

data augmentations consist of random scaling, rotating, and

perturbing points. The same voting test scheme as in the

classification task is employed following [29].

NOTE: Different with our block sampling strategy, both

KPConv [47] and PosPool [30] voxelize point clouds into

grids. During training, the number of input points should be

extremely large (≈ 10 × ours) in their actual implementa-

tions. Although this brings more regular data structure and

3178

more context information for better performance, it suffers

from high memory usage during training.

Result. For the evaluation metrics, we use mean of class-

wise intersection over union (mIoU). As shown in Table 3,

our PAConv with Lcorr (w/ Lcorr) achieves the best mIoU

among all methods which use block sampling to pre-process

data. PAConv also considerably promotes PointNet++ by

9.31%↑. The result without voting (w/o vot.) is also listed.

The visualization of segmentation results is shown in Fig. 4.

The result of 6-fold cross-validation and the mIoU of each

category is provided in the supplementary material.

Time complexity. Moreover, we take 4, 096 points as the

input and test the time complexity (floating point opera-

tions/sample ‡) of KPConv deform [47] and PosPool [30] as

shown in Table 3. It demonstrates that our PAConv stands

out with much less computational FLOPs (38.6%↓).

6. Ablation Studies

To better understand PAConv, ablation studies are con-

ducted on S3DIS [1] dataset. Unless specified, no correla-

tion loss (Sec. 3.3) is added to PAConv in all experiments.

6.1. ScoreNet

ScoreNet input. We firstly explore different input repre-

sentations of ScoreNet. As illustrated in Table 4, when the

ScoreNet input carries information from all three axes, PA-

Conv can effectively utilize the rich relations to learn scores

and achieve the best performance.

Input mIoU

(xj − xi, xj , xi, eij) 63.12

(yj − yi, yj , yi, eij) 63.31

(zj − zi, zj , zi, eij) 64.77

(xj − xi, yj − yi, zj − zi, xi, yi, zi, eij) 65.63

Table 4. Segmentation results (%) of PAConv with differ-

ent ScoreNet input representations on S3DIS Area-5. While

(xj , yj , zj) represents the 3D coordinates of neighbor point,

(xi, yi, zi) indicates the center point position. eij refers to the

Euclidean distance between neighbor point j and center point i.

Score normalization. We also investigate widely-used nor-

malization functions in order to adjust the score distribu-

tion. Table 5 shows that Softmax normalization outper-

forms other schemes. It suggests that predicting scores for

all weight matrices as a whole (Softmax) is superior than

considering each score independently (Sigmoid and Tanh).

Score distribution in 3D space. More importantly, Fig. 5

shows the relationships between learned score distributions

and different spatial planes. Notably, for each weight ma-

trix Bi, Bj , Bk, the output scores are diversely distributed,

indicating that different weight matrices capture different

‡ FLOPs from torch.nn.module is calculated by https : / /

github.com/Lyken17/pytorch- OpCounter. FLOPs from

torch.nn.Parameter is also added manually.

Normalization Function mIoU

w/o normalization 64.28

Sigmoid 64.91

max(0, Tanh) 61.95

Softmax 65.63

Table 5. Segmentation results (%) on S3DIS Area-5 using PAConv

with different normalization functions in ScoreNet. Normalization

functions control the score distribution and determine the assem-

bling of weight matrices.

position relations. More explorations on ScoreNet are in-

cluded in the supplementary material.

6.2. The Number of Weight Matrices

We further conduct experiments to figure out the influ-

ence of the number of weight matrices as shown in Table 6.

When the number of weight matrices is 2, the performance

is 65.05%, only 0.58% apart from 16 weight matrices. This

can be attributed to our kernel assembly strategy as diverse

kernels will be generated even with only 2 weight matrices.

This definitely demonstrates the power of our proposed ap-

proach. However, when the number becomes larger, the rel-

ative performance boost fluctuates due to optimization is-

sues. Finally, we achieve the best and most stable perfor-

mance when the number is 16.

of weight matrices mIoU FLOPs(M)/ sample

2 65.05 561.8

4 64.86 651.1

8 64.39 839.1

16 65.63 1253

Table 6. Segmentation results (%) and #FLOPs/sample (M) of PA-

Conv on S3DIS Area-5 using different numbers of weight matri-

ces. Choosing more weight matrices ensures diversity of kernels

selection and assembling.

6.3. Weight Bank Regularization

As mentioned in Sec. 3.3, weight regularization encour-

ages weight matrices to have low correlations with each

other, thus promising more diversity of kernel assembling.

We utilize Pearson’s R [4] to measure the correlation be-

tween different weight matrices and report the average Pear-

son’s R (Lower Pearson’s R value means lower correla-

tions). As shown in Table 7, PAConv with the correlation

loss outperforms the baseline with 0.95 mIoU on the scene

segmentation task, and the Pearson’s R between weight ma-

trices remarkably drops.

Regularization mIoU Pearson’s R [4]

w/o regularization 65.63 0.5393

w/ correlation loss 66.58 -0.0333

Table 7. Segmentation results (%) on S3DIS Area-5 and Pearson’s

R of PAConv with /without Weight Regularization. Regularized by

correlation loss, weight matrices are low-correlated and diverse,

bringing performance gains.

3179

https://github.com/Lyken17/pytorch-OpCounter
https://github.com/Lyken17/pytorch-OpCounter

Figure 4. Visualization of semantic segmentation results on S3DIS Area-5. The first row shows original scene inputs, the second row shows

the ground truth annotations, and the last row shows the scenes segmented by our PAConv. Each column denotes a scene in S3DIS Area-5.

x-y plane

x-z plane

y-z plane

𝑩𝒊 𝑩𝒋 𝑩𝒌

𝑩𝒊

𝑩𝒊

𝑩𝒋

𝑩𝒋

𝑩𝒌

𝑩𝒌

Figure 5. The spatial distribution of scores, where the input points

are randomly initialized in x-y, x-z, y-z plane, and are sent to a

trained ScoreNet. When the corresponding height of a point is

higher (or the color is closer to yellow), the output score of this

point is larger. It illustrates the relation between spatial positions

and score distributions for each weight matrix Bi, Bj , Bk.

6.4. Robustness Analysis

PAConv uses a symmetric function to aggregate neigh-

bor features, making it invariant to permutation and im-

proving its robustness to rotation. Besides, the kernels are

assembled by scores learned from diverse local spatial re-

lations that may cover different transformations, which fur-

ther enhances the robustness. We also evaluate our model in

this respect. As shown in Table 8, PAConv performs stably

well under various transformations.

Method None Perm. 90◦ 180◦ 270◦ +0.2 -0.2 ×0.8 ×1.2 jitter

PN2 59.75 59.71 58.15 57.18 58.19 22.33 29.85 56.24 59.74 59.05

PAConv 65.63 65.64 61.66 63.48 61.8 55.81 57.42 64.20 63.94 65.12

Table 8. Test mIoU (%) on S3DIS Area-5 of perturbing the trained

model. PN2 refers to our backbone PointNet++ [37]. We per-

form random permutation of points (Perm.), rotation around verti-

cal axis (90◦, 180◦, 270◦), translation in 3 directions (±0.2), scal-

ing (×0.8, ×1.2) and Gaussian jittering (Jitter).

7. Conclusion

We have presented PAConv, a position adaptive convo-

lution operator with dynamic kernel assembling for point

cloud processing. PAConv constructs convolution ker-

nels by combining basic weight matrices in Weight Bank,

with the associated coefficients learned from point positions

through ScoreNet. When embedded into simple MLP-based

networks without modifications of network configurations,

PAConv approaches or even surpasses the state-of-the-arts

and significantly outperforms baselines with decent model

efficiency. Extensive experiments and ablation studies illus-

trate the effectiveness of PAConv.

Acknowledgment

This work has been partially supported by HKU Start-up

Fund and HKU Seed Fund for Basic Research.

3180

References

[1] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M.

Fischer, and S. Savarese. 3d semantic parsing of large-scale

indoor spaces. In CVPR, 2016.

[2] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. ACM

Trans. Graph., 2018.

[3] Y. Ben-Shabat, M. Lindenbaum, and A. Fischer. 3dmfv:

Three-dimensional point cloud classification in real-time us-

ing convolutional neural networks. IEEE Robotics and Au-

tomation Letters, 2018.

[4] Jacob Benesty, Jingdong Chen, Yiteng Huang, and Israel Co-

hen. Pearson correlation coefficient. In Noise reduction in

speech processing. 2009.

[5] Alexandre Boulch. Convpoint: Continuous convolutions for

point cloud processing. Computers & Graphics, 2020.

[6] Alexandre Boulch, Bertrand Le Saux, and Nicolas Audebert.

Unstructured Point Cloud Semantic Labeling Using Deep

Segmentation Networks. In Eurographics Workshop on 3D

Object Retrieval, 2017.

[7] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d

spatio-temporal convnets: Minkowski convolutional neural

networks. In CVPR, 2019.

[8] Bert De Brabandere, Xu Jia, Tinne Tuytelaars, and Luc

Van Gool. Dynamic filter networks. In NeurIPS, 2016.

[9] Hang Gao, Xizhou Zhu, Stephen Lin, and Jifeng Dai. De-

formable kernels: Adapting effective receptive fields for ob-

ject deformation. In ICLR, 2020.

[10] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse

convolutional networks. In CVPR, 2018.

[11] Fabian Groh, Patrick Wieschollek, and Hendrik P. A. Lensch.

Flex-convolution (million-scale point-cloud learning beyond

grid-worlds). In ACCV, 2018.

[12] Wenkai Han, Chenglu Wen, Cheng Wang, Xin Li, and Qing

Li. Point2node: Correlation learning of dynamic-node for

point cloud feature modeling. In AAAI, 2020.

[13] Kurt Hornik. Approximation capabilities of multilayer feed-

forward networks. Neural Netw., 1991.

[14] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan

Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.

Randla-net: Efficient semantic segmentation of large-scale

point clouds. In CVPR, 2020.

[15] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. In CVPR, 2018.

[16] Qiangui Huang, Weiyue Wang, and Ulrich Neumann. Recur-

rent slice networks for 3d segmentation of point clouds. In

CVPR, 2018.

[17] L. Jiang, H. Zhao, S. Liu, X. Shen, C. Fu, and J. Jia. Hierar-

chical point-edge interaction network for point cloud seman-

tic segmentation. In ICCV, 2019.

[18] Li Jiang, Hengshuang Zhao, Shu Liu, Xiaoyong Shen, Chi-

Wing Fu, and Jiaya Jia. Hierarchical point-edge interaction

network for point cloud semantic segmentation. In ICCV,

2019.

[19] Roman Klokov and Victor Lempitsky. Escape from cells:

Deep kd-networks for the recognition of 3d point cloud mod-

els. In ICCV, 2017.

[20] Artem Komarichev, Zichun Zhong, and Jing Hua. A-cnn:

Annularly convolutional neural networks on point clouds. In

CVPR, 2019.

[21] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,

Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.

Deep projective 3d semantic segmentation. In Michael Fels-

berg, Anders Heyden, and Norbert Krüger, editors, Com-

puter Analysis of Images and Patterns, 2017.

[22] Huan Lei, Naveed Akhtar, and Ajmal Mian. Seggcn: Effi-

cient 3d point cloud segmentation with fuzzy spherical ker-

nel. In CVPR, 2020.

[23] Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-

organizing network for point cloud analysis. In CVPR, 2018.

[24] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In NeurIPS. 2018.

[25] Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang

Liu, Shuguang Cui, and Xiaoguang Han. Fpconv: Learning

local flattening for point convolution. In CVPR, 2020.

[26] Zhi-Hao Lin, Sheng-Yu Huang, and Yu-Chiang Frank Wang.

Convolution in the cloud: Learning deformable kernels in

3d graph convolution networks for point cloud analysis. In

CVPR, 2020.

[27] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias

Zwicker. Point2sequence: Learning the shape representa-

tion of 3d point clouds with an attention-based sequence to

sequence network. In AAAI, 2019.

[28] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming

Xiang, and Chunhong Pan. Densepoint: Learning densely

contextual representation for efficient point cloud process-

ing. In ICCV, 2019.

[29] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In CVPR, 2019.

[30] Ze Liu, Han Hu, Yue Cao, Zheng Zhang, and Xin Tong. A

closer look at local aggregation operators in point cloud anal-

ysis. In ECCV, 2020.

[31] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-

voxel cnn for efficient 3d deep learning. In NeurIPS, 2019.

[32] Jiageng Mao, Xiaogang Wang, and Hongsheng Li. Interpo-

lated convolutional networks for 3d point cloud understand-

ing. In ICCV, 2019.

[33] D. Maturana and S. Scherer. Voxnet: A 3d convolutional

neural network for real-time object recognition. In IROS,

2015.

[34] Hsien-Yu Meng, Lin Gao, Yu-Kun Lai, and Dinesh

Manocha. Vv-net: Voxel vae net with group convolutions

for point cloud segmentation. In ICCV, 2019.

[35] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-d

data. In CVPR, 2018.

[36] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, 2017.

3181

[37] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS. 2017.

[38] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel

Urtasun. 3d graph neural networks for rgbd semantic seg-

mentation. In ICCV, 2017.

[39] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In CVPR, 2017.

[40] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, Mi-

hai Dolha, and Michael Beetz. Towards 3d point cloud based

object maps for household environments. Robotics and Au-

tonomous Systems, 2008.

[41] Yiru Shen, Chen Feng, Yaoqing Yang, and Dong Tian. Min-

ing point cloud local structures by kernel correlation and

graph pooling. In CVPR, 2018.

[42] Martin Simonovsky and Nikos Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In CVPR, 2017.

[43] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

SPLATNet: Sparse lattice networks for point cloud process-

ing. In CVPR, 2018.

[44] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neural

networks for 3d shape recognition. In ICCV, 2015.

[45] M. Tatarchenko, J. Park, V. Koltun, and Q. Zhou. Tangent

convolutions for dense prediction in 3d. In CVPR, 2018.

[46] Lyne P. Tchapmi, Christopher B. Choy, Iro Armeni, JunY-

oung Gwak, and Silvio Savarese. Segcloud: Semantic seg-

mentation of 3d point clouds. In 3DV, 2017.

[47] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J.

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. In ICCV, 2019.

[48] Chu Wang, Babak Samari, and Kaleem Siddiqi. Local spec-

tral graph convolution for point set feature learning. In

ECCV, 2018.

[49] Lei Wang, Yuchun Huang, Yaolin Hou, Shenman Zhang, and

Jie Shan. Graph attention convolution for point cloud seman-

tic segmentation. In CVPR, 2019.

[50] S. Wang, S. Suo, W. Ma, A. Pokrovsky, and R. Urtasun.

Deep parametric continuous convolutional neural networks.

In CVPR, 2018.

[51] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. ACM Trans. Graph.,

2019.

[52] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In CVPR, 2019.

[53] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

CVPR, 2015.

[54] Mutian Xu, Junhao Zhang, Zhipeng Zhou, Mingye Xu, Xi-

aojuan Qi, and Yu Qiao. Learning geometry-disentangled

representation for complementary understanding of 3d ob-

ject point cloud. arXiv:2012.10921, 2021.

[55] Mingye Xu, Zhipeng Zhou, and Yu Qiao. Geometry sharing

network for 3d point cloud classification and segmentation.

In AAAI, 2020.

[56] Mingye Xu, Zhipeng Zhou, Junhao Zhang, and Yu Qiao. In-

vestigate indistinguishable points in semantic segmentation

of 3d point cloud. arXiv:2103.10339, 2021.

[57] Qiangeng Xu, Xudong Sun, Cho-Ying Wu, Panqu Wang, and

Ulrich Neumann. Grid-gcn for fast and scalable point cloud

learning. In CVPR, 2020.

[58] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In ECCV, 2018.

[59] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan

Ngiam. Condconv: Conditionally parameterized convolu-

tions for efficient inference. In NeurIPS, 2019.

[60] Zetong Yang, Yanan Sun, Shu Liu, Xiaojuan Qi, and Jiaya

Jia. Cn: Channel normalization for point cloud recognition.

In ECCV, 2020.

[61] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen,

Mengyan Yan, Hao Su, Cewu Lu, Qixing Huang, Alla Shef-

fer, and Leonidas Guibas. A scalable active framework

for region annotation in 3d shape collections. ACM Trans.

Graph., 2016.

[62] Li Yi, Hao Su, Xingwen Guo, and Leonidas J. Guibas. Sync-

speccnn: Synchronized spectral cnn for 3d shape segmenta-

tion. In CVPR, 2017.

3182

