
LightTrack: Finding Lightweight Neural Networks for Object Tracking

via One-Shot Architecture Search

Bin Yan1,2,∗, Houwen Peng1,∗,†, Kan Wu1,3,∗, Dong Wang2, Jianlong Fu1, and Huchuan Lu2,4

1Microsoft Research Asia 2Dalian University of Technology
3Sun Yat-sen University 4Peng Cheng Laboratory

Abstract

Object tracking has achieved significant progress over

the past few years. However, state-of-the-art trackers be-

come increasingly heavy and expensive, which limits their

deployments in resource-constrained applications. In this

work, we present LightTrack, which uses neural architec-

ture search (NAS) to design more lightweight and efficient

object trackers. Comprehensive experiments show that our

LightTrack is effective. It can find trackers that achieve su-

perior performance compared to handcrafted SOTA track-

ers, such as SiamRPN++ [30] and Ocean [56], while us-

ing much fewer model Flops and parameters. Moreover,

when deployed on resource-constrained mobile chipsets,

the discovered trackers run much faster. For example, on

Snapdragon 845 Adreno GPU, LightTrack runs 12× faster

than Ocean, while using 13× fewer parameters and 38×
fewer Flops. Such improvements might narrow the gap be-

tween academic models and industrial deployments in ob-

ject tracking task. LightTrack is released at here.

1. Introduction

Object tracking is one of the most fundamental yet chal-

lenging tasks in computer vision. Over the past few years,

due to the rise of deep neural networks, object tracking

has achieved remarkable progress. But meanwhile, track-

ing models are becoming increasingly heavy and expensive.

For instance, the latest SiamRPN++ [30] and Ocean [56]

trackers respectively utilize 7.1G and 20.3G model Flops

as well as 11.2M and 25.9M parameters to achieve state-

of-the-art performance, being much more complex than the

early SiamFC [5] method (using 2.7G Flops and 2.3M pa-

rameters), as visualized in Fig. 1. Such large model sizes

and expensive computation costs hinder the deployment of

tracking models in real-world applications, such as cam-

era drones, industrial robotics, and driving assistant system,

where model size and efficiency are highly constrained.

∗Equal contributions. Work performed when Bin and Kan are interns

of MSRA. † Corresponding author: houwen.peng@microsoft.com.

Model FLOPs (Million)

V
O

T
2
0
1
9

 E

A
O

 (
%

)

SiamFC

(AlexNet)

SiamRPN

(AlexNet)

SiamDW-RPN

(CIResNet-22)

SiamRPN++

(ResNet-50)
SiamRPN++

(MobileNet-V2)

Ocean-offline

(ResNet-50)

SiamFC++

(GoogleNet)

The lower the better

T
h

e h
ig

h
er th

e b
etter

18

Handcrafted

64M

32M16M

LightTrack

(Ours)

530M FLOPs

33.3 EAO

1000 10000 100000600 200002000 30004000 7000 40000

Mobile Setting

(< 600M FLOPs)

8M4M2M

AutoML

400

20

22

24

26

28

30

32

34

36
790M FLOPs

35.7 EAO

Figure 1: Comparisons with state-of-the-art trackers in

terms of EAO performance, model Flops and parameters on

VOT-19 benchmark. The circle diameter is in proportion to

the size of model parameter. The proposed LightTrack is su-

perior than SiamFC [5], SiamRPN [31], SiamRPN++ [30],

SiamFC++ [52] and Ocean [56], while using much fewer

Flops and parameters. Best viewed in color.

There are two straightforward ways to tackle the com-

plexity and efficiency issues. One is model compression,

while the other is compact model designing. Existing off-

the-shelf compression techniques such as pruning and quan-

tization can reduce model complexity, while they inevitably

bring non-negligible performance degradation due to infor-

mation loss [21, 38]. On the other hand, handcrafting new

compact and efficient models is engineering expensive and

heavily relies on human expertise and experience [55, 15].

This paper introduces a new solution – automating

the design of lightweight models with neural architecture

search (NAS), such that the searched trackers can be car-

ried out in an efficient fashion on resource-limited hard-

ware platforms. It is non-trivial because that object track-

ers typically need ImageNet pre-training, while NAS algo-

rithms require the performance feedback on the target track-

ing task as supervision signals. Based upon recent one-

15180

shot NAS [41, 4, 20], we propose a new search algorithm

dedicated to object tracking task, called LightTrack. It en-

codes all possible architectures into a backbone supernet

and a head supernet. The backbone supernet is pre-trained

on ImageNet then fine-tuned with tracking data, while the

head supernet is directly trained on tracking data. The su-

pernets are trained only once, then each candidate architec-

ture inherits its weights from the supernets directly. Archi-

tecture search is performed on the trained supernets, using

tracking accuracy and model complexity as the supervision

guidance. On the other hand, to reduce model complexity,

we design a search space consisting of lightweight build-

ing blocks, such as depthwise separable convolutions [11]

and inverted residual structure [45, 23]. Such search space

allows the one-shot NAS algorithm to search for more com-

pact neural architectures, striking a balance between track-

ing performance and computational costs.

Comprehensive experiments verify that LightTrack is ef-

fective. It is able to search out efficient and lightweight

object trackers. For instance, LightTrack finds a 530M

Flops tracker, which achieves an EAO of 0.33 on VOT-

19 benchmark, surpassing the SOTA SiamRPN++ [30] by

4.6% while reducing its model complexity (48.9G Flops)

by 98.9%. More importantly, when deployed on resource-

limited chipsets, such as edge GPU and DSP, the discov-

ered tracker performs very competitive and runs much faster

than existing methods. On Snapdragon 845 Adreno 630

GPU [3], our LightTrack runs 12× faster than Ocean [56]

(38.4 v.s. 3.2 fps), while using 13× fewer parameters (1.97

v.s. 25.9 M) and 38× fewer Flops (530 v.s. 20,300 M). Such

improvements enable deep tracking models to be easily de-

ployed and run at real-time speed on resource-constrained

hardware platforms.

This work makes the following contributions.

• We present the first effort on automating the design of

neural architectures for object tracking. We develop

a new formulation of one-shot NAS and use it to find

promising architectures for tracking.

• We design a lightweight search space and a dedicated

search pipeline for object tracking. Experiments verify

the proposed method is effective. Besides, the searched

trackers achieve state-of-the-art performance and can be

deployed on diverse resource-limited platforms.

2. Related Work

Object Tracking. In recent years, siamese trackers

have become popular in object tracking. The pioneer-

ing works are SiamFC and SINT [5, 47], which pro-

pose to combine naive feature correspondence with the

siamese framework. A large number of follow-up works

have been proposed and achieved significant improve-

ments [10, 18, 32, 34, 49]. They mainly fall into three

camps: more precise box estimation, more powerful back-

bone, and online update. More concretely, in contrast to

the multiple-scale estimation in SiamFC, later works like

SiamRPN [31] and SiamFC++ [52] leverage either anchor-

based or anchor-free mechanism for bounding box esti-

mation, which largely improve the localization precision.

Meanwhile, SiamRPN++ [30] and Ocean [56] take the pow-

erful ResNet-50 [22] instead of AlexNet [29] as the back-

bone to enhance feature representation capability. On the

other hand, ATOM [14], DiMP [6], and ROAM [53] com-

bine online update [40] with the siamese structure and

achieve state-of-the-art performance.

Though these methods achieve remarkable improve-

ments, yet they bring much additional computation work-

load and large memory footprint, thus limiting their us-

age in real-world applications. For example, deep learning

on mobile devices commonly requires model Flops to be

less than 600M Flops [7], i.e., mobile setting. However,

SiamRPN++ [30] with ResNet-50 backbone has 48.9G

Flops, which exceeds the mobile setting by ∼80 times.

Even SiamFC [5], using the shallow AlexNet, still cannot

satisfy the restricted computation workload when deployed

on embedded devices. In summary, there is a lack of stud-

ies on finding a good trade-off between model accuracy and

complexity in object tracking.

Neural Architecture Search. NAS aims at automating

the design of neural network architectures. Early methods

search a network using either reinforcement learning [58]

or evolution algorithms [51]. These approaches require

training thousands of architecture candidates from scratch,

leading to unaffordable computation overhead. Most re-

cent works resort to the one-shot weight sharing strategy

to amortize the searching cost [33, 41]. The key idea is to

train a single over-parameterized hypernetwork model, and

then share the weights across subnets. Single-path with uni-

form sampling [20] is one representative method in one-shot

regime. In each iteration, it only samples one random path

and trains the path using one batch data. Once the training

process is finished, the subnets can be ranked by the shared

weights. On the other hand, instead of searching over a

discrete set of architecture candidates, differentiable meth-

ods [37, 8] relax the search space to be continuous, such

that the search can be optimized by the efficient gradient

descent. Recent surveys on NAS can be found in [15].

NAS is primarily proposed for image classification and

recently extended to other vision tasks, such as image seg-

mentation [36] and object detection [19]. Our work is in-

spired by the recent DetNAS [9], but has three fundamental

differences. First, the studied task is different. DetNAS

is designed for object detection, while our work is for ob-

ject tracking. Second, DetNAS only searches for backbone

networks by fixing the head network with a pre-defined

handcrafted structure. This may lead to that the searched

15181

backbone is sub-optimal, because it is biased towards fitting

the fixed head, rather than the target task. In contrast, our

method searches backbone and head architectures simulta-

neously, aiming to find the most promising combination for

the target tracking task. Last, the search space is different.

We design a new search space for object tracking dedicated

to search for lightweight architectures.

3. Preliminaries on One-Shot NAS

Before introducing the proposed method, we briefly re-

view the one-shot NAS approach, which serves as the ba-

sic search algorithm discussed in this work. One-shot

NAS treats all candidate architectures as different subnets

of a supernet and shares weights between architectures that

have common components. More concretely, the architec-

ture search space A is encoded in a supernet, denoted as

N (A,W), where W is the weight of the supernet. The

weight W is shared across all the architecture candidates,

i.e., subnets α ∈ A in N . The search of the optimal archi-

tecture α∗ is formulated as a nested optimization problem:

α∗ = argmax
α∈A

Accval (N (α,W ∗(α))) ,

s.t. W ∗ = argmin
W

Ltrain(N (A,W)),
(1)

where the constraint function is to optimize the weight W

of the supernet N by minimizing the loss function Ltrain on

training dataset, while the objective function is to search

architectures via ranking the accuracy Accval of subnets

on validation dataset based on the learned supernet weight

W ∗. Only the weights of the single supernet N need to be

trained, and subnets can then be evaluated without any sepa-

rate training by inheriting trained weights from the one-shot

supernet. This greatly speeds up performance estimation of

architectures, since no subnet training is required, resulting

in the method only costs a few GPU days.

To reduce memory footprint, one-shot methods usually

sample subnets from the supernet N for optimization. For

simplicity, this work adopts the single-path uniform sam-

pling strategy, i.e., each batch only sampling one random

path from the supernet for training [33, 20]. This single-

path one-shot method decouples the supernet training and

architecture optimization. Since it is impossible to enu-

merate all the architectures α ∈ A for performance evalu-

ation, we resort to evolutionary algorithms [42, 20] to find

the most promising subnet from the one-shot supernet.

4. LightTrack

Searching lightweight architectures for object tacking is

a non-trivial task. There exist three key challenges.

• First, in general, object trackers need model pre-training

on image classification task for a good initialization,

while NAS algorithms require supervision signals from

target tasks. Searching architectures for object tracking

requires to consider both the pre-training on ImageNet

and the fine-tuning on tracking data.

• Second, object trackers usually contain two parts: a back-

bone network for feature extraction and a head network

for object localization. When searching for new architec-

tures, NAS algorithms needs to consider the two parts as

a whole, such that the discovered structures are suitable

for the target tracking task.

• Last but not the least, search space is critical for NAS al-

gorithms and it defines which neural architectures a NAS

approach might discover in principle. To find lightweight

architectures, the search space requires to include com-

pact and low-latency building blocks.

In this section, we tackle the aforementioned challenges

and propose LightTrack based on one-shot NAS. We first in-

troduce a new formulation of one-shot NAS specialized for

object tracking task. Then, we design a lightweight search

space consisting of depthwise separable convolutions [11]

and inverted residual structure [45, 23], which allows the

construction of efficient tracking architectures. At last, we

present the pipeline of LightTrack, which is able to search

diverse models for different deployment scenarios.

4.1. Tracking via One-Shot NAS

Current prevailing object trackers (such as [31, 14, 6]) all

require ImageNet pre-training for their backbone networks,

such that the trackers can obtain good image representa-

tion. However, for architecture search, it is impossible to

pre-train all backbone candidates individually on ImageNet,

because the computation cost is very huge (ImageNet pre-

training usually takes several days on 8 V100 GPUs just

for a single network). Inspired by one-shot NAS, we in-

troduce the weight-sharing strategy to eschew pre-training

each candidate from scratch. More specifically, we encode

the search space of backbone architectures into a supernet

Nb. This backbone supernet only needs to be pre-trained

once on ImageNet, and its weights are then shared across

different backbone architectures which are subnets of the

one-shot model. The ImageNet pre-training is performed

by optimizing the classification loss function Lcls
pre-train as

W
p

b = argmin
Wb

Lcls
pre-train(Nb(Ab,Wb)), (2)

where Ab represents the search space for backbone ar-

chitectures, while Wb denotes the parameter of the back-

bone supernet Nb. The pre-trained weight W
p

b are shared

across different backbone architectures and serve as the ini-

tialization for the subsequent search of tracking architec-

tures. Such weight-sharing scheme allows the ImageNet

pre-training to be performed only on the backbone supernet

15182

instead of each subnet, thereby reducing the training costs

by orders of magnitude.

Deep neural networks for object tracking generally con-

tain two parts: one pre-trained backbone network for fea-

ture extraction and one head network for object localization.

These two parts work together to determine the capacity of

a tracking architecture. Therefore, for architecture search,

it is critical to search the backbone and head networks as

a whole, such that the discovered structure is well-suited

to tracking task. To this end, we construct a tracking su-

pernet N consisting of the backbone part Nb and the head

part Nh, which is formulated as N = {Nb,Nh}. The back-

bone supernet Nb is first pre-trained on ImageNet by Eq. (2)

and generates the weight W
p

b . The head supernet Nh sub-

sumes all possible localization networks in the space Ah

and shares the weight Wb across architectures. The joint

search of backbone and head architectures is conducted on

tracking data, which reformulates the one-shot NAS as

α∗
b , α

∗
h = argmax

αb,αh∈A

Acctrk
val (N (αb,W

∗
b (αb);αh,W

∗
h (αh))) ,

s.t. W ∗
b ,W

∗
h = argmin

Wb←W
p

b
,Wh

Ltrk
train(N (Ab,Wb;Ah,Wh)),

(3)

where the constraint function is to train the tracking super-

net N and optimize the weights Wb and Wh simultaneously,

while the objective function is to find the optimal backbone

α∗
b and the head α∗

h via ranking the accuracy Acctrk
val of can-

didate architectures on validation set of the tracking data.

The evaluation of Acctrk
val only requires inference because the

weights of the architectures αb and αh are inherited from

W ∗
b (αb) and W ∗

h (αh) (without the need of extra training).

Note that, before starting the supernet training, we use the

pre-trained weight W
p

b to initialize the parameter Wb, i.e.,

Wb ← W
p

b , which speeds up convergence while improving

tracking performance. During search, it is unaffordable to

rank the accuracy of all the architectures in search space,

the same as previous work [20, 9], we resort to evolutionary

algorithms [42, 20] to find the most promising one.

Architecture Constraints. In real-world deployments,

object trackers are usually required to satisfy additional

constraints, such as memory footprint, model Flops, energy

consumption, etc. In our method, we mainly consider the

model size and Flops, which are two key indicators when

evaluating whether a tracker can be deployed on specific

resource-constrained devices. We preset budgets on net-

works’ Params and Flops and impose constraints as

Flops(α∗
b) + Flops(α∗

h) ≤ Flopsmax,

Params(α∗
b) + Params(α∗

h) ≤ Paramsmax.
(4)

The evolutionary algorithm is flexible in dealing with differ-

ent budget constraints, because the mutation and crossover

processes can be directly controlled to generate proper can-

didates to satisfy the constraints [20]. Search can also be

Table 1: Search space and supernet structure. “Nchoices”

represents the number of choices for the current block.

“Chn” and “Rpt” denote the number of channels per block

and the maximum number of repeated blocks in a group, re-

spectively. “Stride” indicates the convolutional stride of the

first block in each repeated group. The classification and

regression heads are allowed to use different numbers of

channels, denoted as C1, C2 ∈ {128, 192, 256}. The input

is a search image with size of 256×256×3.

Input Shape Operators Nchoices Chn Rpt Stride

B
ac

k
b

o
n

e

2562 × 3 3× 3 Conv 1 16 1 2

1282 × 16 DSConv 1 16 1 1

1282 × 16 MBConv 6 24 2 2

642 × 24 MBConv 6 40 4 2

322 × 40 MBConv 6 80 4 2

162 × 80 MBConv 6 96 4 1

C
ls

H
ea

d 162 × 128 DSConv 6 C1 1 1

162 × C1 DSConv / Skip 3 C1 7 1

162 × C1 3x3 Conv 1 1 1 1
R

eg
H

ea
d 162 × 128 DSConv 6 C2 1 1

162 × C2 DSConv / Skip 3 C2 7 1

162 × C2 3x3 Conv 1 4 1 1

repeated many times on the same supernet once trained, us-

ing different constraints (e.g., Flopsmax = 600M or others).

These properties naturally make one-shot paradigm practi-

cal and effective for searching tracking architectures spe-

cialized to diverse deployment scenarios.

4.2. Search Space

To search for efficient neural architectures, we use depth-

wise separable convolutions (DSConv) [11] and mobile in-

verted bottleneck (MBConv) [45] with squeeze-excitation

module [24, 23] to construct a new search space. The space

is composed of a backbone part Ab and a head part Ah,

which are elaborated in Tab. 1.

Backbone Space Ab. There are six basic building blocks

in the backbone space, including MBConv with kernel sizes

of {3, 5, 7} and expansion rates of {4, 6}. Backbone can-

didates are constructed by stacking the basic blocks. All

candidates in the space have 4 stages with a total stride of

16. In each stage, the first block has a stride of 2 for fea-

ture downsampling. Except for the first two stages, each

stage contains up to 4 blocks for search. There are 14 lay-

ers in the backbone space, as listed in Tab. 1 (i.e., the lay-

ers with a choice number of 6). This space contains about

614≈7.8×1010 possible backbone architectures for search.

Head Space Ah. A head architecture candidate contains

two branches: one for classification while the other for re-

gression. Both of them include at most 8 searchable layers

(see Tab. 1). The first layer is a DSConv with kernel sizes of

{3, 5} and channel numbers of {128, 192, 256}. The subse-

quent 7 layers follow the same channel setting as the first

layer, and have kernel choices of {3, 5}. An additional skip

15183

Classification

Loss

Tracking Validation Set

Phase1: Pretraining

Backbone Supernet

Phase2: Training

Tracking Supernet

Phase3: Searching with

Evolutionary Algorithm on Tracking Supernet

. . .

Correlation

Head SuperNet

Tracking

Loss

Evolutionary

Search

Tracking Performance

& Model Complexity

Potential operators

Input or output operators

Fully trained operators

Searched operators

Potential output layers

Searched output layers

Search

Images

Examplar

Images
Examplar

Image

Search

Images

Backbone SuperNet

ImageNet Training Set Tracking Training Set

. . .

Backbone SuperNet

. . .

Backbone SuperNet

Correlation

Head SuperNet

. . .

Backbone SuperNet

. . .

Backbone SuperNet

Figure 2: Search pipeline of the proposed LightTrack. There are three phases: pretraining backbone supernet, training

tracking supernet, and searching with evolutionary algorithm on the tracking supernet. Better view in color with zoom-in.

connection is used to enable elastic depth of head archi-

tectures [58]. Different from the backbone space, the head

does not include the kernel choice of 7 because the feature

resolution has been relatively low. The head space contains

about (3× 38)
2
≈3.9×108 possible architectures for search.

In addition, at present, there is no definitive answer to the

question of which layer’s feature is more suitable for object

tracking. We thereby add a new dimension in the search

space to allow the one-shot method to determine the out-

put feature layer automatically. Specifically, during super-

net training, we randomly pick up an end layer from the last

eight blocks in the backbone supernet, and use the output

of the picked layer as the extracted feature. Such strategy is

able to sample different possible blocks, and allows evolu-

tionary search algorithm to evaluate which layer is better.

It is worth noting that the defined search space contains

architectures ranging from 208M to 1.4G Flops with param-

eter sizes from 0.2M to 5.4M. Such space is much more

lightweight than existing handcrafted networks. For ex-

ample, the human-designed SiamRPN++ with ResNet-50

backbone has 48.9G FLOPs with 54M Params [22], being

orders of magnitude more complex than architectures in the

designed search space. This low-complexity space makes

the proposed one-shot NAS algorithm easier to find promis-

ing lightweight architectures for tracking.

4.3. Search Pipeline

Our LightTrack includes three sequential phases: pre-

training backbone supernet, training tracking supernet, and

searching with evolutionary algorithm on the trained super-

nets. The overall pipeline is visualized in Fig. 2.

Phase 1: Pre-training Backbone Supernet. The back-

bone supernet Nb encodes all possible backbone networks

in the search space Ab. The structure of Nb is presented in

Tab. 1. As defined in Eq. (2), the pre-training of the back-

bone supernet Nb is to optimize the cross-entropy loss on

ImageNet. To decouple the weights of individual subnets,

we perform uniform path sampling for the pre-training.

In other words, in each batch, only one random path is

sampled for feedforward and backward propagation, while

other paths are frozen.

Phase 2: Training Tracking Supernet. The structure of

the tracking supernet N is visualized in Fig. 2 (middle). In

essence, it is a variant of Siamese tracker [30, 56]. Specifi-

cally, it takes a pair of tracking images as the input, compris-

ing an exemplar image and a search image. The exemplar

image represents the object of interest, while the search im-

age represents the search area in subsequent video frames.

Both inputs are processed by the pre-trained backbone net-

work for feature extraction. The generated two feature maps

are cross-correlated to generate correlation volumes. The

head network contains one classification branch and one re-

gression branch for object localization. The architecture of

the head supernet can be found in Tab. 1.

The training also adopts the single-path uniform sam-

pling scheme, but involving the tracking head and metrics.

In each iteration, the optimizer updates one random path

sampled from the backbone and head supernets. The loss

function Ltrk
train in Eq. (3) includes the common-used binary

cross-entropy loss for foreground-background classification

and the IoU loss [54] for object bounding-box regression.

Phase 3: Searching with Evolutionary Algorithm.

The last phase is to perform evolutionary search on the

trained supernet. Paths in the supernet are picked and eval-

uated under the direction of the evolutionary controller. At

first, a population of architectures is initialized randomly.

The top-k architectures are picked as parents to generate

child networks. The next generation networks are gener-

ated by mutation and crossover. For crossover, two ran-

domly selected candidates are crossed to produce a new

15184

Table 2: Comparisons on VOT-19 [28]. (G) and (M) represent using GoogleNet and MobileNet-V2 as backbones, respectively. DiMPr

indicates the real-time version of DiMP, as reported in [28]. Ocean(off) denotes the offline version of Ocean [56]. Some values are missing

because either the tracker is not open-resourced or the online update module does not support precise Flops estimation.

SiamMask

[50]

SiamFC++(G)

[52]

SiamRPN++(M)

[30]

ATOM

[14]

TKU

[48]

DiMPr

[6]

Ocean(off)

[56]

Ours

Mobile

Ours

LargeA

Ours

LargeB

EAO(↑) 0.287 0.288 0.292 0.301 0.314 0.321 0.327 0.333 0.340 0.357

Accuracy(↑) 0.594 0.583 0.580 0.603 0.589 0.582 0.590 0.536 0.540 0.552

Robustness(↓) 0.461 0.406 0.446 0.411 0.349 0.371 0.376 0.321 0.315 0.310

FLOPs(G)(↓) 15.5 17.5 7.0 - - - 20.3 0.53 0.78 0.79

Parameters(M)(↓) 16.6 13.9 11.2 8.4 - 26.1 25.9 1.97 2.62 3.13

one. For mutation, a randomly selected candidate mutates

its every choice block with probability 0.1 to produce a new

candidate. Crossover and mutation are repeated to gener-

ate enough new candidates that meet the given architecture

constraints in Eq.(4).

One necessary detail is about Batch Normalization [26].

During search, subnets are sampled in a random way from

the supernets. The issue is that the batch statistics on one

path should be independent of others [20, 9]. Therefore,

we need to recalculate batch statistics for each single path

(subnet) before inference. We sample a random subset from

the tracking training set to recompute the batch statistics

for the single path to be evaluated. It is extremely fast and

takes only a few seconds because no back-propagation is

involved.

5. Experiments

5.1. Implementation Details

Search. Following the search pipeline, we first pre-train

the backbone supernet on ImageNet for 120 epochs using

the following settings: SGD optimizer with momentum 0.9

and weight decay 4e-5, initial learning rate 0.5 with lin-

ear annealing. Then, we train the head and the backbone

supernets jointly on tracking data. The same as previous

work [56], the tracking data consists of Youtube-BB [43],

ImageNet VID [44], ImageNet DET [44], COCO [35] and

the training split of GOT-10K [25]. The training takes 30

epochs, and each epoch uses 6×105 image pairs. The whole

network is optimized using SGD optimizer with momentum

0.9 and weight decay 1e-4. Each GPU hosting 32 images,

hence the mini-batch size is 256 images per iteration. The

global learning rate increases linearly from 1e-2 to 3e-2 dur-

ing the first 5 epochs and decreases logarithmically from

3e-2 to 1e-4 in the rest epochs. We freeze the parameters

of the backbone in the first 10 epochs and set their learning

rate to be 10× smaller than the global learning rate in the

rest epochs. Finally, to evaluate the performance of paths in

the supernet, we choose the validation set of GOT-10K [25]

as the evaluation data, since it does not have any overlap

with both the training and the final test data.

Retrain. After evolutionary search, we first retrain the

discovered backbone network for 500 epochs on Imagenet

using similar settings as EfficientNet [46]: MSProp opti-

mizer with momentum 0.9 and decay 0.9, weight decay

1e-5, dropout ratio 0.2, initial learning rate 0.064 with a

warmup in the first 3 epochs and a cosine annealing, Au-

toAugment [12] policy and exponential moving average are

adopted for training. Next, we fine-tune the discovered

backbone and head networks on the tracking data. The fine-

tuning settings in this step are similar to those of the super-

net fine-tuning. The main differences include two aspects.

1) The searched architecture is trained for 50 epochs, which

is longer than that of the tracking supernet fine-tuning. (2)

The global learning rate increases from 2e-2 to 1e-1 during

the first 5 epochs and then decreases from 1e-1 to 2e-4 in

the rest epochs.

Test. The inference follows the same protocols as in

[5, 31]. The feature of the target object is computed once

at the first frame, and then consecutively matched with sub-

sequent search images. The hyper-parameters in testing are

selected with the tracking toolkit [56], which contains an

automated parameter tuning algorithm. Our trackers are im-

plemented using Python 3.7 and PyTorch 1.1.0. The exper-

iments are conducted on a server with 8 Tesla V100 GPUs

and a Xeon E5-2690 2.60GHz CPU.

5.2. Results and Comparisons

We compare LightTrack to existing hand-designed ob-

ject trackers with respect to model performance, complex-

ity and run-time speed. The performance is evaluated on

four benchmarks, including VOT-19 [28], GOT-10K [25],

TrackingNet [39] and LaSOT [16], while the speed is tested

on resource-constrained hardware platforms, involving Ap-

ple iPhone7 PLUS, Huawei Nova 7 5G, and Xiaomi Mi

8. Moreover, we provide three versions of LightTrack

under different resource constraints, i.e., LightTrack Mo-

bile (≤600M Flops, ≤2M Params), LargeA (≤800M Flops,

≤3M Params) and LargeB (≤800M Flops, ≤4M Params).

VOT-19. This benchmark contains 60 challenging se-

quences, and measures tracking accuracy and robustness si-

multaneously by expected average overlap (EAO). As re-

ported in Tab. 2, LightTrack-Mobile achieves superior per-

formance compared to existing SOTA offline trackers, such

as SiamRPN++ [30] and SiamFC++ [52], while using >10

times fewer model Flops and Params. Furthermore, com-

15185

Table 3: Comparisons on GOT-10k [25]. (R) and (G) represents ResNet-50 and GoogleNet, respectively.

DaSiam

[57]

SiamRPN++(R)

[30]

ATOM

[14]

Ocean-offline

[56]

SiamFC++(G)

[52]

Ocean-online

[56]

DiMP-50

[6]

Ours

Mobile

Ours

LargeA

Ours

LargeB

AO(↑) 0.417 0.518 0.556 0.592 0.595 0.611 0.611 0.611 0.615 0.623

SR0.5(↑) 0.461 0.618 0.634 0.695 0.695 0.721 0.712 0.710 0.723 0.726

FLOPs(G)(↓) 21.0 48.9 - 20.3 17.5 - - 0.53 0.78 0.79

Parameters(M)(↓) 19.6 54.0 8.4 25.9 13.9 44.3 26.1 1.97 2.62 3.13

Table 4: Comparisons on TrackingNet test set [39]. (A) and (R) represent AlexNet and ResNet-50, respectively.

RTMDNet

[27]

ECO

[13]

DaSiam

[57]

C-RPN

[17]

ATOM

[14]

SiamFC++(A)

[52]

SiamRPN++(R)

[30]

DiMP-50

[6]

Ours

Mobile

Ours

LargeA

Ours

LargeB

P(%) 53.3 55.9 59.1 61.9 64.8 64.6 69.4 68.7 69.5 70.0 70.8

Pnorm(%) 69.4 71.0 73.3 74.6 77.1 75.8 80.0 80.1 77.9 78.8 78.9

AUC(%) 58.4 61.2 63.8 66.9 70.3 71.2 73.3 74.0 72.5 73.6 73.3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Overlap threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

S
u
c
c
e
s
s

ra
te

Success plots of OPE on LaSOT

[0.555] LightTrack-LargeB
[0.550] LightTrack-LargeA
[0.543] SiamFCpp-GoogLeNet
[0.538] LightTrack-Mobile
[0.534] DiMP-18
[0.526] Ocean-offline
[0.515] ATOM
[0.500] SiamFCpp-AlexNet
[0.496] SiamRPNpp
[0.397] MDNet
[0.390] VITAL
[0.336] SiamFC
[0.335] StructSiam

0 5 10 15 20 25 30 35 40 45 50

Location error threshold

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P
re

c
is

io
n

Precision plots of OPE on LaSOT

[0.561] LightTrack-LargeB
[0.552] LightTrack-LargeA
[0.547] SiamFCpp-GoogLeNet
[0.537] LightTrack-Mobile
[0.534] DiMP-18
[0.526] Ocean-offline
[0.505] ATOM
[0.491] SiamRPNpp
[0.474] SiamFCpp-AlexNet
[0.373] MDNet
[0.360] VITAL
[0.339] SiamFC
[0.337] StructSiam

Figure 3: Comparisons on LaSOT test dataset [16].

pared to the trackers with online update, such as ATOM [14]

and DiMPr [6], LightTrack-LargeB is also competitive, sur-

passing them by 5.6% and 3.6% respectively. This demon-

strates the efficacy of the proposed one-shot search algo-

rithm and the discovered architecture.

GOT-10K. GOT-10K [25] is a new benchmark cover-

ing a wide range of common challenges in object track-

ing, such as deformation and occlusion. Tab. 3 shows that

LightTrack obtains state-of-the-art performance, compared

to current prevailing trackers. The AO score of LightTrack-

Mobile is 1.6% and 1.9% superior than SiamFC++(G) [52]

and Ocean(off) [56], respectively. Besides, if we loosen

the computation constraint, the performance of LightTrack

will be further improved. For example, LightTrack-LargeB

outperforms DiMP-50 [6] by 1.2%, while using 8× fewer

Params (3.1 v.s. 26.1 M).

TrackingNet. TrackingNet [39] is a large-scale short-

term tracking benchmark containing 511 video sequences

in test set. Tab. 4 presents that LightTrack-Mobile achieves

better precision (69.5%), being 0.8% higher than DiMP-

50 [6]. Besides, the Pnorm and AUC of LightTrack-Mobile

are comparable to SiamRPN++ and DiMP-50, while using

96% and 92% fewer model Params, respectively.
LaSOT. LaSOT [16] is by far the largest single object

tracking benchmark with high-quality frame-level annota-

tions. As shown in Fig. 3, LightTrack-LargeB achieves a

success score of 0.555, which surpasses SiamFC++(G) [52]

and Ocean-offline [56] by 1.2% and 2.9%, respectively.

Ocean (Offline) SiamRPN++ (MobileNet-V2) LightTrack-Mobile (Ours)

Xiaomi Mi 8, Snapdragon 845

Adreno 630 GPU

S
p
ee
d

 (
F
P
S

)
40

30

20

10

4
 x

1
2

 x

38.4

10.8

3.2
0

Apple iPhone 7 PLUS, A10 Fusion

PowerVR 7XT GT7600 Plus GPU

6
 x

1
7

 x

52.6

9.2
3.0

56

42

28

14

0

S
p
ee
d

 (
F
P
S

)

Huawei Nova 7 5G, Kirin 985

Mali-G77 GPU

3.0

4
 x

9
 x

27.4

7.2

28

21

14

7

0

S
p
ee
d

 (
F
P
S

)

Xiaomi Mi 8, Snapdragon 845

Hexagon 685 DSP

3
 x

5
 x

43.5

13.2
8.5

45

34

23

11

0

S
p
ee
d

 (
F
P
S

)

Figure 4: Run-time speed on resource-limited platforms.

Compared to the online DiMP-18 [6], LightTrack-LargeB

improves the success score by 2.1%, while using 12× fewer

Params (3.1 v.s. 39.3 M).

Speed. Fig. 4 summarizes the run-time speed of Light-

Track on resource-limited mobile platforms, , including Ap-

ple iPhone 7 Plus, Huawei Nova 7 and Xiaomi Mi 8. We

observe that SiamRPN++ [30] and Ocean [56] cannot run

at real-time speed (i.e., < 25 fps) on these edge devices,

such as Snapdragon 845 Adreno 630 GPU and Hexagon 685

DSP. In contrast, our LightTrack run much more efficiently,

being 3∼6× faster than SiamRPN++ (MobileNetV2 back-

bone), and 5∼17× faster than Ocean (offline) on Snap-

dragon 845 GPU and DSP [3], Apple A10 Fusion Pow-

erVR GPU [1], and Kirin 985 Mali-G77 GPU [2]. The

real-time speed allows LightTrack to be deployed and ap-

plied in resource-constrained applications, such as camera

drones where edge chipsets are commonly used. The speed

improvements also demonstrate that LightTrack is effective

and can find more compact and efficient object trackers.

5.3. Ablation and Analysis

Component-wise Analysis. We evaluate the effects of

different components in our LightTrack on VOT-19 [28],

and report the results in Tab. 5. Our baseline is a hand-

crafted mobile tracker, which takes MobileNetV3-large [23]

as the backbone (chopping off the last stage), and out-

puts features from the last layer with a stride of 16. The

head network stacks 8 layers of depthwise separable con-

15186

 Siamese Backbone

D
S

C
 5

x
5

D
S

C
 5

x
5

D
S

C
 3

x
3

D
S

C
 3

x
3

D
S

C
 3

x
3

D
S

C
 3

x
3

C
ls

 P
re

d

D
S

C
 3

x
3

D
S

C
 3

x
3

D
S

C
 3

x
3

D
S

C
 3

x
3

D
S

C
3
x
3

D
S

C
 5

x
5

D
S

C
 5

x
5

D
S

C
 5

x
5

R
e

g
 P

re
d

Regression Head

Classification Head

2
5

6
x

1
6

x
1

6

2
5

6
x

1
6

x
1

6

2
5
6
x
1
6
x
1
6

2
5

6
x

1
6

x
1

6

2
5

6
x

1
6

x
1

6

2
5

6
x

1
6

x
1

6

1
9

2
x

1
6

x
1

6

1
9
2
x
1
6
x
1
6

1
9

2
x

1
6

x
1

6

1
9

2
x

1
6

x
1

6

1
9

2
x

1
6

x
1

6

1
9

2
x

1
6

x
1

6

1
9
2
x
1
6
x
1
6

1
9

2
x

1
6

x
1

6

Examplar Image

3x128x128

9
6

x
1

6
x

1
6Search Image

3x256x256

S
te

m

D
S

C
 3

x
3

M
B

C
 4

7

x
7

2
4x

3
2x

3
2

2
4x

3
2x

3
2

4
0x

1
6x

1
6

4
0x

1
6x

1
6

4
0x

1
6x

1
6

4
0x

1
6x

1
6

8
0x

8
x

8

8
0x

8
x

8

8
0x

8
x

8

8
0x

8
x

8

9
6x

8
x

8

9
6x

8
x

8

9
6x

8
x

8

M
B

C
 6

7
x
7

M
B

C
 4

7
x
7

M
B

C
 4

7
x
7

M
B

C
 4

7
x
7

M
B

C
 6

7

x
7

M
B

C
 6

7
x
7

M
B

C
 4

5
x
5

M
B

C
 4

5
x
5

M
B

C
 6

3
x
3

M
B

C
 6

3
x
3

M
B

C
 4

5
x
5

M
B

C
 4

5
x
5

M
B

C
 4

3
x
3

M
B

C
 4

3
x
3

M
B

C
 6

3
x

3
M

B
C

 6
3

x
3

M
B

C
 4

3
x
3

M
B

C
 4

3
x
3

S
te

m

D
S

C
 3

x
3

M
B

C
 4

7
x
7

2
4

x
6

4
x

6
4

2
4

x
6

4
x

6
4

4
0
x
3
2
x
3
2

4
0
x
3
2
x
3
2

4
0
x
3
2
x
3
2

4
0
x
3
2
x
3
2

8
0
x
1
6
x
1
6

8
0
x
1
6
x
1
6

8
0
x
1
6
x
1
6

8
0
x
1
6
x
1
6

9
6
x
1
6
x
1
6

9
6
x
1
6
x
1
6

M
B

C
 6

7
x
7

M
B

C
 4

7
x
7

M
B

C
 4

7
x
7

M
B

C
 4

7
x
7

M
B

C
 6

7
x
7

M
B

C
 6

7
x
7

M
B

C
 4

5
x
5

M
B

C
 4

5
x
5

M
B

C
 6

3
x
3

M
B

C
 6

3
x
3

M
B

C
 4

5
x
5

M
B

C
 4

5
x
5

M
B

C
 4

3
x
3

M
B

C
 4

3
x
3

M
B

C
 6

3
x
3

M
B

C
 6

3
x
3

M
B

C
 4

3
x
3

M
B

C
 4

3
x
3 C

o
rr

el
at

io
n

Figure 5: The architecture searched by the proposed LightTrack (Mobile). The searchable layers are drawn in colors while

the fixed/pre-defined parts are plotted in grey. The “Stem” consists of a normal 2D convolution layer with kernel size of 3×3

and stride of 2, a BatchNorm layer, and a Swish activation layer. “DSConv” indicates depthwise separable convolution [11]

while “MBConv” denotes mobile inverted bottleneck [45] with squeeze excitation [24].

volution (DSConv) [11] in both classification and regres-

sion branches. For each DSConv, the kernel size is set

to 3×3 and the number of channels is 256. The EAO

performance of the baseline is 0.268. For ablation, we

add the components in the baseline into search and change

the handcrafted architectures with automatically searched

ones. As presented in Tab. 5 #2, when the backbone ar-

chitecture is automatically searched, the EAO performance

is improved by 2.4%. This demonstrates that the hand-

designed MobileNetV3-large backbone is not optimal for

object tracking, because it is primarily designed for image

classification, where the precise localization of the object

is not paramount. If we add the output feature layer into

search, the performance is further improved to 0.307. This

shows that our method can search out a better layer for fea-

ture extraction. The comparison between #4 and #1 shows

that the searchable head architecture is superior to the hand-

crafted one, inducing 2.9% EAO gains. When searching the

three components together, as shown in #5, the complete

LightTrack achieves better performance than only search-

ing parts of the tracking network.

Impact of ImageNet Pre-training. We pre-train the

searched architecture on ImageNet for 0, 200 and 500

epochs, and evaluate their impact for final tracking perfor-

mance. As reported in Tab. 6, no pre-training has a signif-

icantly negative impact on tracking accuracy. Better pre-

training allows the tracker to achieve higher performance.

Analysis of Searched Architecture. Fig. 5 visualizes the

LightTrack-Mobile architecture searched by the proposed

one-shot NAS method. We observe several interesting phe-

nomena. 1) There are about 50% of the backbone blocks

using MBConv with kernel size of 7x7. The underlying

reason may be that large receptive fields can improve the

localization precision. 2) The searched architecture chooses

the second-last block as the feature output layer. This may

reveals that tracking networks might not prefer high-level

features. 3) The classification branch contains fewer layers

than the regression branch. This may be attributed to the

Table 5: Ablation for searchable components. ✓ indicates auto-

matically searched, while ✗ denotes hand-designed.

Backbone Output Layer Head EAO

1 ✗ ✗ ✗ 0.268

2 ✓ ✗ ✗ 0.292

3 ✓ ✓ ✗ 0.307

4 ✗ ✗ ✓ 0.297

5 ✓ ✓ ✓ 0.333

Table 6: Impact of ImageNet Pre-training.

Epoch 0 Epoch 200 Epoch 500

Top-1 Acc (%) – 72.4 77.6

EAO on VOT-19 (%) 21.3 31.2 33.3

fact that coarse object localization is relatively easier than

precise bounding box regression. These findings might en-

lighten future works on designing new tracking networks.

6. Conclusion

This paper makes the first effort on designing lightweight

object trackers via neural architecture search. The proposed

method, i.e., LightTrack, reformulates one-shot NAS spe-

cialized for object tracking, as well as introducing an ef-

fective search space. Extensive experiments on multiple

benchmarks show that LightTrack achieves state-of-the-art

performance, while using much fewer Flops and parame-

ters. Besides, LightTrack can run in real-time on diverse

resource-restricted platforms. We expect this work might

be able to narrow the gap between academic methods and

industrial applications in object tracking field.

Acknowledgement. We would like to thank the review-

ers for their insightful comments. Lu and Wang are sup-

ported in part by the National Key R&D Program of China

under Grant No. 2018AAA0102001 and National Natural

Science Foundation of China under grant No. 61725202,

U1903215, 61829102, 91538201, 61771088, 61751212 and

Dalian Innovation leader’s support Plan under Grant No.

2018RD07.

15187

References

[1] https://en.wikipedia.org/wiki/Apple A10. 7

[2] https://www.hisilicon.com/en/products/Kirin/Kirin%20985.

7

[3] https://www.qualcomm.com/products/snapdragon-845-

mobile-platform. 2, 7

[4] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay

Vasudevan, and Quoc Le. Understanding and simplifying

one-shot architecture search. In ICML, 2018. 2

[5] Luca Bertinetto, Jack Valmadre, João F Henriques, Andrea

Vedaldi, and Philip H S Torr. Fully-convolutional siamese

networks for object tracking. In ECCVW, 2016. 1, 2, 6

[6] Goutam Bhat, Martin Danelljan, Luc Van Gool, and Radu

Timofte. Learning discriminative model prediction for track-

ing. In ICCV, 2019. 2, 3, 6, 7

[7] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once-for-all: Train one network and specialize it

for efficient deployment. In ICLR, 2019. 2

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-

ferentiable architecture search: Bridging the depth gap be-

tween search and evaluation. In ICCV, 2019. 2

[9] Yukang Chen, Tong Yang, Xiangyu Zhang, Gaofeng Meng,

Xinyu Xiao, and Jian Sun. DetNAS: Backbone search for

object detection. In NIPS, 2019. 2, 4, 6

[10] Zedu Chen, Bineng Zhong, Guorong Li, Shengping Zhang,

and Rongrong Ji. Siamese box adaptive network for visual

tracking. In CVPR, 2020. 2

[11] François Chollet. Xception: Deep learning with depthwise

separable convolutions. In CVPR, 2017. 2, 3, 4, 8

[12] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasude-

van, and Quoc V Le. Autoaugment: Learning augmentation

strategies from data. In CVPR, 2019. 6

[13] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ECO: Efficient convolution operators for

tracking. In CVPR, 2017. 7

[14] Martin Danelljan, Goutam Bhat, Fahad Shahbaz Khan, and

Michael Felsberg. ATOM: Accurate tracking by overlap

maximization. In CVPR, 2019. 2, 3, 6, 7

[15] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.

Neural architecture search: A survey. JMLR, 20(55):1–21,

2019. 1, 2

[16] Heng Fan, Liting Lin, Fan Yang, Peng Chu, Ge Deng, Sijia

Yu, Hexin Bai, Yong Xu, Chunyuan Liao, and Haibin Ling.

LaSOT: A high-quality benchmark for large-scale single ob-

ject tracking. In CVPR, 2019. 6, 7

[17] Heng Fan and Haibin Ling. Siamese cascaded region pro-

posal networks for real-time visual tracking. In CVPR, 2019.

7

[18] Junyu Gao, Tianzhu Zhang, and Changsheng Xu. Graph con-

volutional tracking. In CVPR, 2019. 2

[19] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. NAS-FPN:

Learning scalable feature pyramid architecture for object de-

tection. In CVPR, 2019. 2

[20] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot

neural architecture search with uniform sampling. In ECCV,

2020. 2, 3, 4, 6

[21] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. In ICLR, 2016. 1

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016. 2, 5

[23] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-

bilenetv3. In ICCV, 2019. 2, 3, 4, 7

[24] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In CVPR, 2018. 4, 8

[25] Lianghua Huang, Xin Zhao, and Kaiqi Huang. GOT-10k: A

large high-diversity benchmark for generic object tracking in

the wild. TPAMI, 2019. 6, 7

[26] Sergey Ioffe and Christian Szegedy. Batch Normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015. 6

[27] Ilchae Jung, Jeany Son, Mooyeol Baek, and Bohyung Han.

Real-Time MDNet. In ECCV, 2018. 7

[28] Matej Kristan, Jiri Matas, Ales Leonardis, et al. The sev-

enth visual object tracking VOT2019 challenge results. In

ICCVW, 2019. 6, 7

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.

Imagenet classification with deep convolutional neural net-

works. In NIPS, 2012. 2

[30] Bo Li, Wei Wu, Qiang Wang, Fangyi Zhang, Junliang Xing,

and Junjie Yan. SiamRPN++: Evolution of siamese visual

tracking with very deep networks. In CVPR, 2019. 1, 2, 5,

6, 7

[31] Bo Li, Junjie Yan, Wei Wu, Zheng Zhu, and Xiaolin Hu.

High performance visual tracking with siamese region pro-

posal network. In CVPR, 2018. 1, 2, 3, 6

[32] Feng Li, Cheng Tian, Wangmeng Zuo, Lei Zhang, and Ming-

Hsuan Yang. Learning spatial-temporal regularized correla-

tion filters for visual tracking. In CVPR, 2018. 2

[33] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. In UAI, 2019. 2,

3

[34] Xin Li, Chao Ma, Baoyuan Wu, Zhenyu He, and Ming-

Hsuan Yang. Target-aware deep tracking. In CVPR, 2019.

2

[35] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: Common objects in context. In ECCV, 2014. 6

[36] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-

Deeplab: Hierarchical neural architecture search for seman-

tic image segmentation. In CVPR, 2019. 2

[37] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS:

differentiable architecture searc. In ICLR, 2019. 2

[38] Yuanpei Liu, Xingping Dong, Wenguan Wang, and Jianbing

Shen. Teacher-students knowledge distillation for siamese

trackers. arXiv preprint arXiv:1907.10586, 2019. 1

[39] Matthias Muller, Adel Bibi, Silvio Giancola, Salman Al-

subaihi, and Bernard Ghanem. Trackingnet: A large-scale

15188

dataset and benchmark for object tracking in the wild. In

ECCV, 2018. 6, 7

[40] Hyeonseob Nam and Bohyung Han. Learning multi–domain

convolutional neural networks for visual tracking. In CVPR,

2016. 2

[41] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff

Dean. Efficient neural architecture search via parameters

sharing. In ICML, 2018. 2

[42] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In AAAI, 2019. 3, 4

[43] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin Pan,

and Vincent Vanhoucke. Youtube-boundingboxes: A large

high-precision human-annotated data set for object detection

in video. In CVPR, 2017. 6

[44] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, and Michael Bernstein. ImageNet Large

scale visual recognition challenge. IJCV, 2015. 6

[45] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In CVPR, 2018. 2, 3, 4,

8

[46] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model

scaling for convolutional neural networks. In ICML, 2019. 6

[47] Ran Tao, Efstratios Gavves, and Arnold W. M. Smeulders.

Siamese instance search for tracking. In CVPR, 2016. 2

[48] Ardhendu Shekhar Tripathi, Martin Danelljan, Luc

Van Gool, and Radu Timofte. Tracking the known and the

unknown by leveraging semantic information. In BMVC,

2019. 6

[49] Paul Voigtlaender, Jonathon Luiten, Philip HS Torr, and Bas-

tian Leibe. Siam R-CNN: Visual tracking by re-detection. In

CVPR, 2020. 2

[50] Qiang Wang, Li Zhang, Luca Bertinetto, Weiming Hu, and

Philip H. S. Torr. Fast online object tracking and segmenta-

tion: A unifying approach. In CVPR, 2019. 6

[51] Lingxi Xie and Alan Yuille. Genetic cnn. In ICCV, 2017. 2

[52] Yinda Xu, Zeyu Wang, Zuoxin Li, Ye Yuan, and Gang Yu.

SiamFC++: towards robust and accurate visual tracking with

target estimation guidelines. In AAAI, 2020. 1, 2, 6, 7

[53] Tianyu Yang, Pengfei Xu, Runbo Hu, Hua Chai, and An-

toni B Chan. ROAM: Recurrently optimizing tracking

model. In CVPR, 2020. 2

[54] Jiahui Yu, Yuning Jiang, Zhangyang Wang, Zhimin Cao, and

Thomas Huang. Unitbox: An advanced object detection net-

work. In ACM MM, 2016. 5

[55] Zhipeng Zhang and Houwen Peng. Deeper and wider

siamese networks for real-time visual tracking. In CVPR,

2019. 1

[56] Zhipeng Zhang, Houwen Peng, Jianlong Fu, Bing Li, and

Weiming Hu. Ocean: Object-aware anchor-free tracking. In

ECCV, 2020. 1, 2, 5, 6, 7

[57] Zheng Zhu, Qiang Wang, Bo Li, Wei Wu, Junjie Yan, and

Weiming Hu. Distractor-aware siamese networks for visual

object tracking. In ECCV, 2018. 7

[58] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. ICLR, 2017. 2, 5

15189

