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Abstract

Reducing inconsistencies in the behavior of different ver-

sions of an AI system can be as important in practice as re-

ducing its overall error. In image classification, sample-wise

inconsistencies appear as “negative flips”: A new model

incorrectly predicts the output for a test sample that was

correctly classified by the old (reference) model. Positive-

congruent (PC) training aims at reducing error rate while

at the same time reducing negative flips, thus maximizing

congruency with the reference model only on positive pre-

dictions, unlike model distillation. We propose a simple

approach for PC training, Focal Distillation, which enforces

congruence with the reference model by giving more weights

to samples that were correctly classified. We also found that,

if the reference model itself can be chosen as an ensemble of

multiple deep neural networks, negative flips can be further

reduced without affecting the new model’s accuracy.

1. Introduction

Imagine a “new and improved” version of the software

that manages your photo collection exhibiting mistakes ab-

sent in the old one. Even if the average number of errors has

decreased, every new mistake on your old photos feels like

a step backward (Fig. 1), leading to perceived regression.1

We tackle regression in the update of image classification

models, where an old (reference) model is replaced by a new

(updated) model. We call test samples that are correctly la-

beled by both the new and the old models positive-congruent.

On the other hand, negative flips are samples correctly clas-

sified by the old model but incorrectly by the new one. Their

*Currently at The Chinese University of Hong Kong. Work conducted

while at AWS.
1In the Software Industry, regression refers to the deterioration of per-

formance after an update. Even if the updated model has on average better

performance, any regression risks breaking post-processing pipelines, which

is why trained models are updated sporadically despite the steady stream of

improvements reported in the literature.
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Figure 1: Regression in model update: When updating an

old classifier (red) to a new one (dashed blue line), we correct

mistakes (top-right, white), but we also introduce errors that

the old classifier did not make (negative flips, bottom-left,

red). While on average the errors decrease (from 57% to

42% in this toy example), regression can wreak havoc with

downstream processing, nullifying the benefit of the update.

fraction of the total number is called negative flip rate (NFR),

which measures regression. There are also positive flips,

where the old model makes mistakes that the new one cor-

rects, which are instead beneficial.

Reducing the NFR could be accomplished by reducing the

overall error rate (ER). However, reducing the ER is neither

necessary nor sufficient to reduce the NFR. In fact, models

trained on the same data with different initial conditions, data

augmentations, and hyperparameters tend to yield similar

error rates, but with errors occurring on different samples.

For instance, two ResNet152 models trained on ImageNet

with just different initializations achieve the same accuracy

of 78.3% but differ on 10.4% of the samples in the validation

set (Fig. 2). Assuming an equal portion of positive and

negative flips, updating from one model to another incurs a

5.2%NFR. This can be reduced simply by trading errors
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Figure 2: Differences in overall accuracy vs. negative flip rates. We measure the accuracy gains and negative flip rates on

the ILSVRC12 [26] validation set when we update from various old models (y-axis) to new models (x-axis). Multiple CNN

architectures [16, 11, 36] are used for comparison. First we observe training the same architecture twice can cause regression.

If the new model has higher/lower capacity than the old one, the error rate decreases/increases (above/below the diagonal), but

the NFR is always positive. Note that in some cases the NFR is of the same order of the error rate change.

while maintaining an equal error rate. Thus, reducing the

ER is not necessary to reduce the NFR. Reducing the ER to

a value other than zero is not sufficient either: From Fig. 2

we see that, when updating an old AlexNet [16] to a new

Resnet-152 [11] ER reduces significantly, but we still suffer

a 3% NFR.

On the other hand, NFR can be made zero trivially by

copying the old model, albeit with no ER reduction. Model

distillation tries to bias the update towards the old model

while reducing the ER. However, we wish to mimic the old

model only when it is right. Thus, regression-free updates

are not achieved by ordinary distillation.

Reducing the error rate and the NFR are two separate and

independent goals. We call any training procedure that aims

to minimize both the error rate and the negative flip rate

Positive-Congruent (PC) training, or PCT for short.

We first propose a simple method for PC training when

the old model is given. In this case, PCT is achieved by

minimizing an additional loss term along with the standard

classification loss (empirical cross-entropy). We consider

several variants for the additional loss, and find Focal Distil-

lation (FD), a variant of the distillation loss that we introduce

to bias the model towards positive congruence (Sect. 4.2), to

be most effective (Sect. 5).

We also explore the problem of “future-proofing” the

reference model to facilitate subsequent PC training. This

forward setting pertains to selecting the reference model,

rather than PC training new ones. Motivated by the obser-

vation above that different training instantiations can yield

the same error rate with different erroneous samples, we

propose a simple approach using ensembles. We show that

this results in lower regression. In practice, ensembles are

not viable at inference time in large-scale applications due

to the high cost. Nonetheless, this approach can be used as a

paragon for PC training of a single model in future works.

Our contributions can be summarized as follows: (i) We

formalize the problem of quality regression in pairs of clas-

sifiers, and introduce the first method for positive congruent

training (Sect. 3); (ii) we propose a variant of model distil-

lation (Sect. 4.2) to perform PC training of a deep neural

network (DNN); (iii) we show that reference models can be

adapted for future PC-Training by replacing a single model

with an ensemble of DNNs (Sect. 4.3). We conduct ex-

periments on large scale image classification benchmarks

(Sect. 5), providing both a baseline (Focal Distillation) and

a paragon (Ensemble) for future evaluation.

2. Related Work

PC training relates to the general areas of continual

learning [6, 15, 29, 31], incremental learning [23, 18], open

set recognition [1, 27], and sequential learning [10, 20].

The goal is to evolve a model to incorporate additional

data or concepts, as reviewed in [8, 21]. Specifically,

[10, 15, 19, 18, 23, 25, 35] aim at training with a growing

number of samples, classes, and tasks while maintaining sim-

ilar performance to previously learned classes/tasks [20, 24].

PC training does not restrict the new model to reuse the
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old model weights or architecture. Instead, it allows chang-

ing them along with the training algorithm, loss functions,

hyper-parameters, and training set. Unlike most work fo-

cused on reducing forgetting [5, 18, 19], PC training focuses

on reducing NFR.

PC Training has strong connections to knowledge distil-

lation [12] and weight consolidation [15], that aim to keep

a model close to a reference one, regardless of whether they

are correct or not. PC training focuses on enforcing similar-

ity only on cohorts that belong to negative flips.

Along a similar vein, backward-compatible training

[28, 30] aims to design new models that are inter-operable

with old ones. PC training is a form of backward-

compatibility, but prior literature still measures compatibility

using error rate, rather than NFR. As shown in experiments,

these methods do not directly help reduce the NFR. Implicit

negative flips during training of a single model are studied

in [32]. We also conduct experiments on the evolution of

negative flips during training of the new model.

3. Negative Flips in Model Updates

Let x ∈ X (e.g., an image) and y ∈ Y = {y1, . . . , yK}
(e.g., a label), identified with an integer in {1, . . . ,K}. Let

p denote an unknown distribution from which a dataset is

drawn D = {(xi, yi) ∼ p(x, y)}Ni=1. Let pold be the pseudo-

distribution associated with the old (reference) model, and

pnew the same for the new one.2 These are parametric func-

tions that, ideally, approximate the true posterior which is the

optimal (Bayesian) discriminant, in the sense of minimizing

the expected probability of error. More specifically, when

evaluated on the sample (xi, yi), p
new(·|·) takes the form

pnew(y = yi|x = xi) =
exp(〈~yi, φ

new
w (xi)〉)

∑K

j=1 exp(〈~yj , φ
new
w (xi)〉)

(1)

where ~yi ∈ R
K
≥0 is the “one-hot” (indicator) vector corre-

sponding to the categorical variable yi ∈ {1, . . . ,K}. pold

has a similar form but with a different architecture φ that has

known parameters. We refer to φw as the model or discrimi-

nant. The final class prediction of the model, φw, is denoted

by ŷ, where, ŷ (xi) = argmaxy p (y|xi).

3.1. Negative Flips

In Fig. 1 we illustrate the different errors occuring after

a model upgrade, comparing the predictions ŷold and ŷnew.

The consistent areas are where φold
w and φnew

w are both either

correct (ŷold(xi) = ŷnew(xi) = yi) or incorrect (ŷold(xi) 6=
yi, ŷ

new(xi) 6= yi). Positive flips occur when samples were

2In addition to having different architectures, the models can be trained

with different optimization schemes, minimizing different loss functions,

on different datasets. For simplicity, below we consider the case of models

with same or different architectures, trained on the same dataset D using

the same loss function and optimization scheme.

incorrectly predicted by φold
w , but correctly predicted by φnew

w .

The most relevant to this paper are negative flips, where

samples flipped from correct φold
w to incorrect predictions

φnew
w . The negative flip rate (NFR) measures the fraction

of samples that are negatives

NFR =
1

N

N
∑

i=1

1(ŷnew
i 6= yi, ŷ

old
i = yi) (2)

where, 1(·) is the indicator function.

3.2. Persistence of Negative Flips

Deep neural network (DNN) classifiers are usually trained

by minimizing the empirical cross-entropy (CE) loss:

min
w

LCE(φ,w) = min
w

1

N

N
∑

i=1

− log pw (yi|xi) (3)

This objective is minimized by Stochastic Gradient Descent

(SGD) [14] annealed to convergence to or near a local mini-

mum.3 The final discriminant is determined by (a) the DNN

architecture φ, (b) the training methodology, including opti-

mization scheme and associated hyper-parameters such as

learning rate and momentum, (η, µ), (c) the dataset on which

the model is trained D and (d) the initialization w(0). Un-

less explicitly enforced, a new model is typically not “close”

to an old one. Even if based on the same architecture and

trained on the same dataset, different runs on SGD can con-

verge to distant points in the loss landscape [4]. What is

similar along limit cycles of solutions is the average error

rate in the training set, which is minimal; what is different is

the samples on which errors occur. These are negative flips,

measured empirically in Fig. 2. There, we measure the differ-

ence of error rates and NFR between pairs of models trained

on the ILSVRC12 [26] dataset4. We observe that, from ear-

lier architecture design such as AlexNet [16], to recent ones

such as DenseNet [13], although the overall error rates have

dropped, the NFR remain non-negligible. In many cases, the

NFR is of the same order of magnitude as the accuracy gain

from the model update. This stubborn phenomenon calls for

a dedicated solution that does not rely on reducing the error

rate to zero in order to have regression-free model updates.

4. Positive Congruent Training

In most applications, the reference model is inherited and

cannot be changed directly, so PC training is limited to the

new model. However, in some cases we may get to design

3In reality, the landscape of DNNs trained with CE does not comprise

isolated (Morse) critical points, but rather “wide valleys” [7, 3], and con-

vergence is only forced by annealing the learning rate, without which the

solution travels on limit cycles.
4All models in this experiment are publicly available in the PyTorch [22]

online model zoo
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Approach F D q
Naive Basline 1(ŷold(xi) = yi) Cross Entropy ~yi

Focal Distillation - KL (FD-KL) α+ β · 1(ŷold(xi) = yi) τ -scaled KL-Divergence pold(y|xi)
Focal Distillation - Logit Matching (FD-LM) α+ β · 1(ŷold(xi) = yi) ℓ2 distance φold

w (xi)

Table 1: Different approaches for targeted positive congruent training and the corresponding choices of F , D, and q in the PC

loss functions.

the reference model, aiming to make it easily updated with

PCT. For the first “backward” case, we first present a simple

approach to reducing NFR and achieve PCT. The idea is to

simultaneously maximize the “both correct” region in Fig. 1,

which measures positive congruence, along with the overall

accuracy of the new model on the training set.

To achieve PC Training, we use the following objective

function

min
w

LCE (φ
new, w) + λLPC(φ

new, w;φold) (4)

where LCE is defined in (3) and LPC(φ
new, φold, w) is the

positive congruence (PC) loss with multiplier λ. We propose

a generic form of the PC loss function as

λLPC(φ
new, w;φold) = F(xi)D(φnew

w (xi), q(xi)), (5)

where F is a filter function F ∈ f : X → R≥0 that applies a

weight for each training sample based on the model outputs

and D is a distance function that measures the difference

of the new model’s outputs to a certain target vector q(xi)
conditioned on xi. The PC loss serves to bias training to-

wards maximal positive congruence. Favoring iso-error-rate

solutions [4] with maximal positive congruence can lead to

lower NFR relative to the reference model. In Table 1 we

illustrate the different choices of F and D. We introduce

different PC losses in the the next two sections.

4.1. Naive Baseline

We first consider a simple PC loss that measures CE on

the samples where the old model made correct predictions,

denoted as

Lnaive
PC =

1

N

N
∑

i=1

−1(ŷold(xi) = yi) log p
new
w (yi|xi). (6)

This is just a re-weighting of samples that the old models

classified correctly by a factor 1 + λ. The resulting model is

labeled “Naive” in the experiments in Sect. 5. This method

does not help reduce the NFR: It is hard to find a suitable

hyperparameter λ that gives sufficient weights to positive

samples without inducing rote memorization. We now ex-

plore a more direct way to pass information from the old

model to the new one.

4.2. Focal Distillation

Knowledge distillation [12] aims at biasing the new model

to be “close” to the old one during training. In this sense

it has the potential to reduce the NFR, but also to reduce

positive flips, which are instead beneficial. Focal Distillation

(FD) mitigates this risk by using the loss

LFocal
PC = −

N
∑

i=1

[α+ β · 1(ŷold(xi) = yi)]D(φnew
w , φold

w ), (7)

which penalizes a distance D between the output of the

two models, weighted by a filtering function F = α + β ·
1(ŷold(xi) = yi), to the target q = φold

w (xi). The filter

function applies a basic weight α for all samples in the

training set and an additional weight to the samples correctly

predicted by the old model. This biases the new model

towards the old one for positive samples in the old model,

thus imposing a cost on NFR as well as the overall error

rate. When α = 1 and β = 0, focal distillation reduces

to ordinary distillation [12]. When α = 0 and β > 0, we

are only applying the distillation objective to the training

samples predicted correctly by the old model. We assess

these choices empirically in Sec. 5.2.

A possible choice of D is the temperature scaled KL-

divergence of [12]:

DKL(φnew
w , φold

w ) = KL

[

σ(
φnew
w (xi)

τ
), σ(

φold
w (xi)

τ
)

]

. (8)

Here, σ is the “Softmax” function as shown in Eq. (1) and τ
is the temperature scaling factor. In Sec. 4.2, we found that

τ has to be set to a large number (e.g. τ = 100) for this PC

loss to reduce NFR. In this case, the above approaches the

distance among “logits” [12, 2]

DLM(φnew
w , φold

w ) =
1

2
‖φnew

w (xi)− φold
w (xi)‖

2
2. (9)

In Sect. 5 we compare various settings of FD with the naive

baseline and observe that training with the FD can indeed

reduce the NFR at the cost of a slight increase n average

accuracy for the new model.

4.3. PC Training by Ensembles

The fact that there are iso-error sets in the loss landscape

of DNN (loci in weight space that correspond to models with
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equal error rate3) [4] can be used to our advantage to reduce

NFR as outlined in the introduction. In some cases, one

may be able to choose both the new and the old models in a

manner that reduces the NFR. Geometrically, one can think

of each model as representing an iso-error equivalence class:

A sphere in the space of models, centered at zero error, where

all models achieve the same error rate but differ by which

samples they mistake. Since cordal averaging reduces the

distance to the origin [34] and therefore the average distance

to other models (for instance, future PC trained ones), we

hypothesize that replacing each model with an ensemble

trained on the same data might reduce the NFR.

In particular, we assume that φold and φnew are trained

independently, each from a collection of models {φold
j }Nj=1

and {φnew
j }Nj=1. We combine the results from all the models

by averaging their discriminants

pensemble (y|xi) = σ





1

L

L
∑

j=1

φold
wj

(y|xi)



 . (10)

where L is the number of models in the ensemble. Similarly,

we can define φnew. Note that models in each ensemble are

trained independently with different initialization.

We test our hypothesis empirically in Sect. 5 where we

find that, indeed, the NFR between the two ensembles is

lower than that between any two individual models.

While this may not seem surprising at first, since ensem-

bles reduce error rate, we note that, as anticipated in the

introduction, NFR can be reduced independently of ER. In

fact, empirically we observe that the NFR decreases more

rapidly than the average error as the size of the ensemble

grows (Fig. 3), indicating that ensembling improves PC train-

ing beyond simply lowering the average error rate. Note the

this phenomenon holds for any pair of ensembles with either

the same or different architectures. This makes it suitable as

a paragon to explore the upper limit of PC training. While

test-time ensembles are not practical at scale, this obser-

vation points to promising areas of future investigation by

collapsing ensembles.

5. Experiments

We test the methods presented on image classification

tasks using ImageNet [9] and iNaturalist [33]. We start

with the simplest case: same architecture and training data,

different training runs. We compare baseline methods for

PCT and emsembles. We then extend the approaches to

encompass 1) architecture changes; 2) changing number

of training samples per class; 3) increase in the num-

ber of classes. Finally, we present empirical evidence on

the source of negative flips and how PC training affects them.

Relative NFR. Since overall error rate (ER) is an upper

bound to the NFR, comparison is challenging across datasets

PCT Approach
Error Rate (%) NFR Rel. NFR

#Params
φold φnew (%) (%)

No Treatment 30.24 30.29 6.44 30.48 12M

Naive 30.24 29.34 5.72 27.95 12M

BCT [28] 30.24 29.66 6.39 30.88 12M

FD-KL 30.24 30.63 2.50 11.70 12M

FD-LM 30.24 30.47 2.35 11.06 12M

Ensemble 26.07 25.98 1.70 8.85 187M

(a) ILSVRC12

PCT Approach
Error Rate (%) NFR Rel. NFR

#Params
φold φnew (%) (%)

No Treatment 40.69 41.06 7.77 31.91 14M

Naive 40.69 45.47 11.07 41.05 14M

FD-KL 40.69 41.81 2.83 11.41 14M

FD-LM 40.69 41.78 2.71 10.94 14M

Ensemble 35.68 35.42 2.01 8.82 221M

(b) iNaturalist

Table 2: Experiments on training the same model architec-

ture multiple times on three datasets: (a) ILSVRC12 [26], (b)

iNaturalist [33]. Applying PC training in the case can signif-

icantly reduce the NFR without hurting the new model’s ac-

curacy. Among them, the focal distillation works the best for

the backward compatibility setting. “Ensemble” refers to PC

training with ensembles in the forward setting. “Rel. NFR”

refers to the relative NFR value shown in Eq.11. “#Params”

refers to the number of parameters of the new model.

with different ERs. For this reason, we introduce the relative

NFR:

NFRrel =
NFR

(1− ERold) ∗ ERnew

, (11)

where ERnew and ERold denote the error rate of φnew and φold.

The denominator is the expected error rate on the subset

of samples predicted correctly by the old model. This is a

naive estimation of NFR if the two models are independent

of each other. The relative NFR is a measure of reduction

in regression from a PCT method which factors out overall

model accuracy.

5.1. Implementation Details

Unless otherwise noted, we minimize the CE loss (3) with

batch-size 2048 for 90 epochs on each dataset. The learning

rate starts at 0.1 and decreases by 1/10 every 30 epochs. We

use λ = 1 for Eq. 4. Focal distillation and ensembles are

implemented with PyTorch [22]. Models in Fig. 2 are from

the PyTorch model zoo.

5.2. Positive Congruent Training

We start with the same architecture [11] trained twice on

the same dataset, either ILSVRC12 [26] or iNaturalist [33],
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and report results on their official validation sets in Table 25.

Variants of PCT include the naive baseline in Eq. 6, which

unfortunately does not reduce the NFR markedly. Yet it is

worth noting that, due to the fact that models are not inde-

pendent, being trained on the same data, their relative NFR

are always less than 100%. We additionally evaluate the

recently proposed BCT method [28] for aligning representa-

tion between models. It does not reduce NFR.

Focal distillation in Eq. 7 (FD) has two variants, either

using the KL-divergence after soft-max (FD-KL) or match-

ing logits before soft-max (FD-LM). In FD, there are two

parameters, α and β, controlling the filter function F . We set

α = 1 and β = 5 in this set of experiments. The results on

ILSVRC12 are summarized in Table 2a. We see that training

with both variants of focal distillation, we can reduce the

NFR from 6% to around 2.5%, a 60% relative reduction. We

also note that the reduction of NFR comes as the cost of a

slightly increased error rate of the new model.

Finally we evaluate the ensemble approach. We use

two independently trained ensembles each composed of 16
ResNet-18 [11] for φold and φold. We see ensembles achieve

the lowest absolute NFR, as low as 1.7%. Even when dis-

counting the accuracy gain of ensembles, we also observe

better relative NFR than other approaches in the backward

setting. The price to pay is computational cost, a multiplier

depending on the number of models in the ensemble.

Training from scratch vs fine-tuning. In practical scenar-

ios, we often fine-tune from an existing model pretrained on

a large-scale dataset. To compare the impact of this, on the

ImageNet dataset we trained all models from scratch but on

the iNaturalist dataset [33] we fine-tune from model weights

pretrained on ImageNet. As shown in Table 2b, we observe

starting from a common pretrained model does not guarantee

regression-free. We observe a 7% NFR without treatment

in finetuning on iNaturalist. But with PC training, we can

reduce the NFR to 2.01%
Distances in focal distillation In focal distillation we pre-

sented two different choices of distance. In Table 2, we

observe that the logit matching distance function (FD-LM)

leads to marginally better NFR reduction. It is also worth to

note that the KL-divergence only effectively reduces NFR

when the temperature scaling parameter τ becomes large,

say 100, at which point it resembles logit matching [12].

Weights and focus in focal distillation In Focal Distillation,

we use a default focal weight β = 5 and a base weight

α = 1. We now experiment changing the focal weight and

base weight and report results in Table 3. First note two

special cases: 1) α = 0 and β = 1, when we only apply

distillation to samples classified correctly by the old model,

which is ineffective: The new model must still learn the old

model’s behavior from all samples in order to be able to

5We follow the common practice to use the official validation sets on

these datasets as test set and a small portion training set for validation.

α β φnew Error Rate (%) NFR (%) Rel. NFR(%)

0 0 30.29 6.44 30.48

0 1 31.52 5.25 23.88

1 0 31.12 3.90 17.96

1 1 30.59 2.75 12.89

1 2 30.79 2.73 12.71

1 5 30.47 2.35 11.06

1 10 30.44 2.39 11.26

1 20 33.55 6.94 29.65

Table 3: Effect of different α and β values in focal dis-

tillation. We train ResNet-18 for both φold and φnew on

ILSVRC12 dataset [26]. We use the logit matching distance

function for focal distillation because it has better effect in

reducing NFR.

overcome negative flips. 2) α = 1 and β = 0, corresponding

to ordinary distillation, which can help reduce NFR only to

a limited extent. Focal Distillation is most effective when

α = 1 and β is between 5 to 10, reducing NFR to 2.35%.

Impact of ensemble size In ensemble experiments on

ILSVRC12, we used a default ensemble size of 16. In Fig-

ure 3 we explore the behavior of NFR as the number of

components in an ensemble changes. Although the accuracy

plateaus with the growing ensemble size, the NFR keeps

decreasing in a logarithmic scale. This observation is also

confirmed in the case of ensembles with different architec-

tures. Although having a large ensemble is impractical for

real-world applications, these results corroborate the geo-

metric picture sketched in Sect. 4.3 and suggest that it may

be possible to achieve zero NFR in a model update without

having to drive the ER to zero, which may be infeasible, as

suggested in the Introduction.

5.3. Other Changes in Model Updates

Having studied the simplest case of PC training, we now

move to more practical cases of image classification model

updates. We enumerate and study the following types of

changes: 1) model architecture; 2) number of training sam-

ples per class; 3) number of classes.

Changing model architectures to a larger model, with ei-

ther a similar architecture (Resnet-18 to Resnet-50) or a

dissimilar one (ResNet18 to DenseNet-161) , yields results

summarized in Table 4. A larger model is expected to have

a lower overall error rate. However, without any treatment,

it still suffers from a significant number of negative flips.

We then apply the focal distillation approach in this case,

we see a redution in NFR, although the new model incurs a

slight increase in error rate. We also observe that ensembles

reduce NFR, this time without increasing the new model’s

error rate. This is noteworthy because the two ensembles in

this case do not share any information other than the dataset

on which they are trained. In Fig. 3 we also visualize the
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Figure 3: The effect of ensemble size (number of individual

models) on error rates and the NFRs when both the old

and new models are both independently trained ensembles.

Results are reported on ILSVRC12. (a) shows the results

when the old model and new one are both composed of

ResNet-18 [11] models. (b) shows the case when the old

model is an ensemble of ResNet-18 [11] models and the new

one is formed by ResNet-50 [11] models. In both case, the

error rates plateau quickly but the NFRs keep decreasing as

the ensemble size increases.

trend of NFR vs. the ensemble size. It suggests that, even

in the case of architecture changes, it may be possible to

achieve zero NFR.

Increasing training samples per visual category is shown

in Table 5a for the ILSVRC12 dataset, with the old model

trained on all 1000 classes using 50% of the samples per cat-

egory, and the new model trained on 100% set. We observe

that all new models decrease the ER, but PC trained ones

achieve better reduction of NFR.

Increasing the number of classes is tested on ILSVRC12

with the old model trained on a random subset of 500 classes

and the new model on the entire ILSVRC12 training set.

We use ResNet-50 for this study. The evaluation is done

on the validation subset which comprises all samples of the

original 500 classes on which the older model is trained on.

The results are shown in Table 5b. Since the number of

Approach
Error Rate (%) NFR Rel. NFR

#params
φold φnew (%) (%)

No Treatment 30.24 25.85 4.89 27.12 25M

Naive 30.24 24.41 3.78 22.20 25M

FD-KD 30.24 26.32 2.90 15.79 25M

FD-LM 30.24 26.53 2.92 15.78 25M

Ensemble 26.07 22.20 1.64 9.99 409M

(a) ResNet-18 → ResNet-50

Approach
Error Rate (%) NFR Rel. NFR

#params
φold φnew (%) (%)

No Treatment 30.24 22.86 4.03 25.24 25M

Naive 30.24 21.60 3.28 21.76 25M

FD-KD 30.24 23.52 2.50 15.24 25M

FD-LM 30.24 23.83 2.56 15.40 25M

(b) ResNet-18 → DenseNet161

Table 4: Experiments of PC training methods in changes of

model architectures on ILSVRC12 [26]. Here the old model

architecture is ResNet-18 [11]. We experiment with the

new models with both Resnet-50 [11] and Denset161 [13]

architectures. Results suggest that PC training method are

effective in reducing regression in the face of model archi-

tecture changes.

Approach
Error Rate (%) NFR Rel. NFR

#params
φold φnew (%) (%)

No Treatment 28.58 23.65 3.98 19.47 25M

Naive 28.45 24.46 3.27 18.68 25M

FD-KD 28.45 25.20 2.89 15.84 25M

FD-LM 28.45 24.77 2.85 16.09 25M

Ensemble 26.39 22.09 2.75 16.88 100M

(a) Increase in # samples

Approach
Error Rate (%) NFR Rel. NFR

#params
φold φnew (%) (%)

No Treatment 19.30 23.65 8.05 41.90 25M

Naive 19.28 23.74 7.70 40.20 25M

FD-KD 19.28 24.14 7.07 36.29 25M

FD-LM 19.28 25.11 7.37 36.35 25M

Ensemble 17.53 21.98 6.72 37.06 100M

(b) Increase in # classes

Table 5: Experiments of training data change on

ILSVRC12 [26] dataset. We use Renset-18 architecture

for both φold and φold.

categories increase for the newer model, so does the total

error on the validation set. Yet, PC training is able to reduce

NFR.

5.4. Prediction of negative flips

First we look at the potential relationship between a test

sample being a negative flip and its prediction uncertainty. In
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Figure 4: Distribution of sample uncertainty estimated

by [17], measured on test validation set of ILSVRC12 [26].

Here we use ResNet-18 [11] as the model architecture in ex-

periment’s. Top: Uncertainty histogram of negative flipped

samples and other test samples between two ResNet-18 mod-

els trained without PC training. Bottom: Uncertainty his-

togram of negative flippped sample in two model pairs, the

first without PC training. The new model in the second

pair is trained with focal distillation based PC training. The

y-axes are in log-scale.

this experiment we use the uncertainty estimated by a deep

ensemble of ResNet-18 [11] as described in [17]. We visu-

alize the results in Fig. 4. We observe that test samples that

become negative flips have relatively high estimated uncer-

tainty but our measure does not clearly separate them from

other samples. We also visualize the histogram of uncer-

tainty estimates before and after we apply focal distillation

based PCT, as shown in Fig. 4. We observe that PCT with

focal distillation reduces the NFR with an almost uniform

chance for samples with different level of uncertainty. This

observation may suggest alternate strategies to designing PC

training methods.

The second study is on the evolution of negative flip rates

during the training of the new model. We visualize the

relative NFRs and error rates at every epoch when training a

new model. We present results for both training without PCT

and with focal distillation based PCT (FD-LM) in Fig. 5. Our

first observation is that the NFRs change in a similar trend

as the new models’ error rates and reduce as the models

are trained longer. By applying PCT during training, we

observe that the relative NFR drops faster in early epochs

compared with no treatment. As training goes on, the new

Figure 5: Evolution of error rates and relative NFR during

training of the new models on ILSVRC12 [26]. We com-

pare focal distillation-based PC training with no treatment.

Generally NFR follows the trend of the error rate during

trainig. Focal distillation lead to a gap in relative NFR in

early epochs and keeps the gap as training evolves.

model with PCT maintains the same gap in NFR until the

training terminates.

6. Discussion

Large-scale DNN-based classifiers are typically only a

part of more complex systems that involve additional post-

processing. In the simplest cases, the output of the DNN is

used to map the data to a metric space, where it is clustered

and searched. In more complex cases, classifiers are part

of an elaborate system that includes high-level reasoning.

In all cases, changing the classifier can break the system,

which is why DNN models are seldom updated despite the

steady improvements reported in the literature. PC training

could enable seamless adoption of improved models, and

ensure steady progress and increased accessibility to the

state of the art in image classification. In this paper, we

have merely scratched the surface of PC training, as the

methods proposed have obvious limitations: Ensembling is

not viable in large-scale systems, even though it achieves the

highest NFR reduction. Focal distillation reduces the NFR,

but at the price of a slight increase in error rate. Further

exploration is needed to identify methods that can achieve

paragon performance at the baseline cost of single model

distillation.
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