
Beyond Short Clips: End-to-End Video-Level Learning

with Collaborative Memories

Xitong Yang1*, Haoqi Fan2, Lorenzo Torresani2,3, Larry Davis1, Heng Wang2

1University of Maryland, College Park 2Facebook AI 3Dartmouth

{xyang35,lsd}@cs.umd.edu {haoqifan,torresani,hengwang}@fb.com

Abstract

The standard way of training video models entails sam-

pling at each iteration a single clip from a video and op-

timizing the clip prediction with respect to the video-level

label. We argue that a single clip may not have enough

temporal coverage to exhibit the label to recognize, since

video datasets are often weakly labeled with categorical

information but without dense temporal annotations. Fur-

thermore, optimizing the model over brief clips impedes its

ability to learn long-term temporal dependencies. To over-

come these limitations, we introduce a collaborative mem-

ory mechanism that encodes information across multiple

sampled clips of a video at each training iteration. This

enables the learning of long-range dependencies beyond

a single clip. We explore different design choices for the

collaborative memory to ease the optimization difficulties.

Our proposed framework is end-to-end trainable and sig-

nificantly improves the accuracy of video classification at a

negligible computational overhead. Through extensive ex-

periments, we demonstrate that our framework generalizes

to different video architectures and tasks, outperforming the

state of the art on both action recognition (e.g., Kinetics-

400 & 700, Charades, Something-Something-V1) and ac-

tion detection (e.g., AVA v2.1 & v2.2).

1. Introduction

In recent years, end-to-end learning of 3D convolu-

tional networks (3D CNNs) has emerged as the prominent

paradigm for video classification [2,5,7,9,10,22,33,39,41–

43,45,47,53]. Steady improvements in accuracy have come

with the introduction of increasingly deeper and larger net-

works. However, due to their high computational cost and

large memory requirements, most video models are opti-

mized at each iteration over short, fixed-length clips rather

than the entire video.

Although widely used in modern video models, the clip-

level learning framework is sub-optimal for video-level
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Figure 1: Clip-level learning vs. our proposed end-to-end

video-level learning framework. (Action label: something

being deflected from something.)

classification. First, capturing long-range temporal struc-

ture beyond short clips is not possible as the models are

only exposed to individual clips during training. Second,

the video-level label may not be well represented in a brief

clip, which may be an uninformative segment of the video

or include only a portion of the action, as shown in Fig-

ure 1(a). Thus, optimizing a model over individual clips

using video-level labels is akin to training with noisy la-

bels. Recent attempts to overcome these limitations include

methods that build a separate network on top of the clip-

based backbone [20, 50, 56]. However, these approaches

either cannot be trained end-to-end with the backbone (i.e.,

the video model is optimized over pre-extracted clip-level

features) or require ad-hoc backbones which hinder their

application in the current landscape of evolving architec-

tures.

In this paper, we propose an end-to-end learning frame-

work that optimizes the classification model using video-

level information collected from multiple temporal loca-

tions of the video, shown in Figure 1(b). Our approach
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hinges on a collaborative memory mechanism that accumu-

lates video-level contextual information from multiple clips

sampled from the video. Within the same training iteration,

this contextual information is shared back with all the clips

to enhance the individual clip representations. The collabo-

rative memory allows the model to capture long-range tem-

poral dependencies beyond individual short clips by gen-

erating clip-specific memories that encode the relation be-

tween each local clip and the global video-level context.

Our experiments demonstrate that the proposed training

framework is effective and generic. Specifically, our ap-

proach does not make any assumption about the backbone

architecture. We empirically show that it consistently yields

significant gains in accuracy when applied to different state-

of-the-art architectures (e.g. SlowFast [10], R(2+1)D [43],

I3D-NL [47]). We also introduce and compare several de-

sign variants of the collaborative memory. Furthermore, we

demonstrate that the accuracy improvements come at a neg-

ligible computational overhead and without an increase in

memory requirements. Finally, we show that our frame-

work can be extended to action detection where it yields

significant improvements without requiring extra informa-

tion, such as optical flow and object detection predictions,

which are commonly used in previous work [38, 40]. We

summarize our major contributions as follows:

• A new framework that enables end-to-end learning of

video-level dependencies for clip-based models.

• A new collaborative memory mechanism that facili-

tates information exchange across multiple clips. We

explore different design choices and provide insights

about the optimization difficulties.

• Experiments demonstrating that our collaborative

memory framework generalizes to different backbones

and tasks, producing state of the art results for action

recognition and detection.

2. Related Work

Clip-Level Video Architectures. Since the introduction

of 3D CNNs [2, 22, 41] to video classification, new ar-

chitectures [5, 7, 9, 33, 39, 43, 45, 47, 53] have been pro-

posed to learn better spatiotemporal representations. Be-

sides models aimed at improving accuracy, several ar-

chitectures have been proposed to achieve better perfor-

mance/cost trade-offs [9, 24, 27, 32, 42, 51, 57]. Another

line of research involves the design of multiple-stream net-

works [5,10,11,36,46,53,54], where each stream consumes

a different type of input, e.g., RGB or optical flow. Besides

CNNs, transformer-based models, e.g., TimeSformer [3],

also show promising results. Unlike prior work focused on

the design of clip-level architecture, our paper proposes a

new framework to learn long-range dependencies using ex-

isting clip-level models. As we do not make any assumption

about the clip-level architecture, our framework generalizes

to different backbones and enables end-to-end training of

clip models with video-level contextual information.

Video-Level Classification. Several attempts have been

made to overcome the limitations of the single-clip train-

ing framework. Timeception [20] uses multi-scale temporal

convolutions to cover different temporal extents for long-

range temporal modeling. Timeception layers are trained

on top of a frozen backbone. Both TSN [46] and ECO [57]

divide the input video into segments of equal size and ran-

domly sample a short snippet or a single frame from each

segment to provide better temporal coverage during train-

ing. As the GPU memory cost grows linearly w.r.t. the

number of segments, TSN and ECO adopt lightweight 3D

CNNs or even 2D CNNs as backbones in order to process

multiple segments simultaneously. These simple backbones

limit the performance of the framework. In addition, TSN

uses averaging to aggregate the predictions from different

segments, whereas we propose a dedicated memory mech-

anism to model the video-level context. FASTER [56] and

SCSampler [25] explore strategies to limit the detrimental

impact of applying video-level labels to clips and to save

computational cost.

Another related work to our approach is LFB [50]. It

leverages context features from other clips to augment the

prediction on the current clip. Unlike our approach, context

features stored in LFB are pre-computed using a separate

model. As a result, the context features cannot be updated

during the training and the model used to extract these con-

text features is not optimized for the task. In contrast, our

framework is end-to-end trainable and the accumulated con-

textual information can back-propagate into the backbone

architecture. Note that storing context features is infeasi-

ble for large-scale video datasets, e.g., Kinetics, and LFB is

mainly designed for action detection applications.

Learning With Memories. Memory mechanisms [1, 15,

37, 49] have been widely used in Recurrent Neural Net-

works for language modeling in order to learn long-term

dependencies from sequential text data. Specifically, mem-

ory networks [49] have been proposed for question answer-

ing (QA), while Sukhbaatar et al. [37] have introduced

a strategy enabling end-to-end learning of these models.

RWMN [31] has extended the QA application on movie

videos. Grave et al. [15] have proposed to store past hid-

den activations as a memory that can be accessed through a

dot product with the current hidden activation.

These works are similar in spirit to our approach, but

our application is in a different domain with different

constraints and challenges. Moreover, our collaborative

memory mechanism is designed to capture the interactions

among the samples, is extremely lightweight and memory-

friendly, and is suitable for training computationally inten-

sive video models.
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3. End-to-End Video-Level Learning with Col-

laborative Memory

We start with an overview of the proposed framework,

then present different designs for the collaborative memory.

We conclude with a discussion of implementation strategies

to cope with the GPU memory constraint.

3.1. Overview of the Proposed Framework

Given a video recognition architecture (e.g., I3D [5],

R(2+1)D [43], SlowFast [10]) that operates on short, fixed-

length clips, our goal is to perform video-level learning in

an end-to-end manner. In particular, we aim to optimize the

clip-based model using video-level information collected

from the whole video. To achieve this, we start by sam-

pling multiple clips from the video within the same training

iteration in order to cover different temporal locations of the

video. The clip-based representations generated from mul-

tiple clips are then accumulated via a collaborative memory

mechanism that captures interactions among the clips and

builds video-level contextual information. After that, clip-

specific memories are generated to enhance the individual

clip-based representations by infusing the video-level infor-

mation into the backbone. Finally, the sampled clips are

jointly optimized with a video-level supervision applied to

the consensus of predictions from multiple clips.

Multi-clip sampling. Given a video V = {I0, ..., IT−1}
with T frames, we sample N clips {C0, ..., CN−1} from

the video at each training iteration. Each short clip Cn =
{Itn , ..., Itn+L−1} consists of L consecutive frames ran-

domly sampled from the full-length video where tn indi-

cates the index of the start frame. N is a hyper-parameter

that can be decided based on the ratio between the video

length and the clip length to ensure sufficient temporal cov-

erage. The sampled clips are then fed to the backbone

to generate clip-based representations {Xn}
N−1

n=0 , where

Xn = f(Cn), and f represents the clip-level backbone.

In the traditional clip-level classification, Xn is directly

used to perform the final prediction via a classifier h :

yn = h(Xn) = h(f(Cn)), where yn is the vector of classi-

fication scores.

Collaborative memory. Our approach hinges on a col-

laborative memory mechanism that accumulates informa-

tion from multiple clips for learning video-level dependen-

cies and then shares this video-level context back with the

individual clips, as illustrated in Figure 2. Specifically, the

collaborative memory involves two stages:

• Memory interactions: A global memory of the whole

video is constructed by accumulating information from

multiple clips: M = Push({Xn}
N−1

n=0 ). The global

memory is then shared back with the individual clips

in order to generate clip-specific memories: Mn =
Pop(M, Xn).

𝑊!: 1×1×1

𝑿𝑵"𝟏

𝑊$: 1×1×1

𝑿𝒏

𝑊!: 1×1×1

GAP

Sigmoid

&𝑿𝒏

𝑑′×𝑑′

𝑙×ℎ×𝑤×𝑑′

𝑙ℎ𝑤×𝑑′

𝑙ℎ𝑤×𝑑′

𝑙×ℎ×𝑤×𝑑

𝑙×ℎ×𝑤×𝑑

𝑊&: 1×1×1 𝑊': 1×1×1

𝑿𝟎

𝑑′×𝑙ℎ𝑤 𝑙ℎ𝑤×𝑑′

𝑙×ℎ×𝑤×𝑑′

𝑙×ℎ×𝑤×𝑑

𝓜

𝑴𝒏

Memory Push

Memory 
Pop

Context 
Infusion

... 

1×1×1×𝑑

Figure 2: Collaborative memory with associative memory

and feature gating. The feature maps are shown as the shape

of their tensors, e.g., l × h × w × d. GAP denotes global

average pooling. ⊗ and ⊙ indicate matrix and elementwise

multiplication, respectively.

• Context infusion: The individual clip-based represen-

tations are infused with video-level context. This is

done by means of a gating function g that enhances

each clip representation with the information stored in

the clip-specific memory: X̂n = g(Xn,Mn).

Video-level supervision. To facilitate the joint optimiza-

tion over multiple clips, we apply a video-level loss that

takes into account the clip-level predictions as well as the

video-level prediction aggregated from all N sampled clips.

Formally, we first aggregate the clip-level predictions via

average pooling over N clips: H = 1

N

∑N−1

n=0
h(X̂n) =

1

N

∑N−1

n=0
h(g(f(Cn),Mn)). Then our video-level loss can

be written as

Lvideo =
1

N

N−1
∑

n=0

L(h(X̂n)) + αL(H). (1)

L denotes the cross-entropy loss for classification and α is

the weight to balance the two terms which account for the

clip-level losses and the video-level loss aggregated from all

N clips. All the parameters (i.e., f , g, and h) are optimized

end-to-end w.r.t. this objective.

3.2. Collaborative memory

Our idea of collaborative memory is generic and can be

implemented in a variety of ways. In this section we intro-

duce a few possible designs. We empirically evaluate these

different options in Section 4.3.

Memory interactions. The design of memory interac-

tions should follow two principles: 1) The memory foot-

print for storing the global memory should be manageable;

2) Interactions with the memory should be computation-

ally efficient. The first principle implies that the memory
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consumption should not grow with the number of clips N .

Thus, simply storing all clip-based features is not feasible.

– Average Pooling: Let the clip-based representation

Xn be a k × d matrix, where k is the spatial-temporal reso-

lution (i.e., height×width×length) and d is the number of

channels. A simple strategy is to perform a global average

pooling over all sampled clips: M = Push({Xn}
N−1

n=0 ) =

Pool({XnWI}
N−1

n=0 ). WI ∈ R
d×d′

is a learnable weight

matrix to reduce the dimensionality from d to d′. This

global information can be simply shared back with all the

clips: Mn = Pop(M, Xn) = M.

– Associative Memory: Although avg/max pooling

is capable of collecting information from multiple clips,

it fails to capture the inter-clip dependencies and the clip-

specific information cannot be retrieved from the global

memory M. This motivates us to design a new mechanism

that enables the retrieval of clip-specific information when

needed. Inspired by associative networks [1, 18], we pro-

pose to accumulate the clip-level features using the outer

product operator to generate the global memory M:

Push({Xn}
N−1

n=0 ) =
1

N

N−1
∑

n=0

(XnWk)
T (XnWv). (2)

Given the n-th clip, we obtain its clip-specific memory by:

Mn = Pop(M, Xn) = (XnWq)M, (3)

where Wk,Wv,Wq ∈ R
d×d′

are learnable weight matri-

ces for memory interactions and dimension reduction. Note

that this memory design can be viewed as implementing

a form of video-level inter-clip attention, where the clip-

based representation Xn attends to features generated from

all sampled clips of the video in proportion to their simi-

larities: Mn = 1

N

∑N−1

m=0

[

(XnWq)(XmWk)
T
]

(XmWv).
However, unlike the self-attention mechanism [44, 47], our

design is more efficient in both computation and memory

consumption as it does not require to store all clip-level fea-

tures or perform pairwise comparison between all the clips.

Context Infusion. One way to incorporate the clip-

specific memory Mn with the clip-level features Xn is

through a residual connection: X̂n = MnWO +Xn, where

WO ∈ R
d′×d is a linear transformation to match the fea-

ture dimensionality. However, as we will show in our ex-

periments (Figure 5), this design tends to overfit to the clip-

specific memory during training and leads to inferior perfor-

mance. As Mn stores much more information than a single

clip-level feature Xn, the model mostly relies on Mn during

training and makes little use of Xn.

In light of the above observation, we propose to infuse

context information into the clip-level features through a

feature gating operation. Rather than allowing the model

to directly access the clip-specific memory Mn, feature gat-

ing forces the model to recalibrate the strengths of different

clip-level features using the contextual information. For-

mally, the enhanced features are computed as

X̂n =
(

J + σ(M̂nWO)
)

⊙Xn, (4)

where σ is the sigmoid activation function, ⊙ is the elemen-

twise multiplication and J is an all-ones matrix for residual

connection. M̂n is obtained by averaging the spatial and

temporal dimensions of Mn: M̂n = GAP (Mn). Our fea-

ture gating operation can be considered as a channel-wise

attention mechanism similar to context gating [30, 53] and

the SE block [19]. However, the attention weights in our

method are generated by video-level contextual informa-

tion, instead of self-gating values that capture channel-wise

relationships within the same clip. Experimental results

show that our proposed feature gating design alleviates the

optimization difficulties during training and enables a more

effective use of the video-level contextual information.

3.3. Coping with the GPU Memory Constraint

A challenge posed by video-level learning is the need to

jointly optimize over multiple clips under a fixed and tight

GPU memory budget. In this section, we discuss two simple

implementations that allow end-to-end training of video-

level dependencies under this constraint.

Batch reduction. Let B be the size of the mini-batch

of videos used for traditional clip-level training. Our ap-

proach can be implemented under the same GPU mem-

ory budget by reducing the batch size by a factor of N :

B̂ = round(B/N). This allows us to load into the mem-

ory N clips for each of the B/N different videos. In or-

der to improve the clip diversity for updating the batch-

norm [21] parameters within a mini-batch, we propose to

calculate batch-norm statistics using only the clips from dif-

ferent videos. Although this implementation cannot handle

arbitrarily large N , it is simple, efficient and we found it

applicable to most settings in practice. For example, a typ-

ical choice of batch size for training clip-based models is a

8-GPU machine with B = 64; our approach can be imple-

mented under this memory setup by using in each iteration

B̂ = 16 different videos, and by sampling from each of

them N = 4 clips.

Multi-iteration. Instead of directly loading N clips into

one mini-batch, we can also unroll the training of a video

into N iterations. Each iteration uses one of the N clips.

This implementation is memory-friendly and consumes the

same amount of memory as the standard single-clip training

framework. It allows us to process arbitrarily long videos

with arbitrarily large N . When incorporating the collab-

orative memory, we simply perform a two-scan process:

the first scan generates the clip-based features to build the

global memory M and the second scan generates the clas-

sification output of each clip conditioned on M.
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Kinetics-400 with CM. The horizon-
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all models use 30 crops for inference.
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Model Baseline Ours △ FLOPs

Slow-only-50 8×8 [10] 74.4 76.8 +2.4 1.03×

I3D-50+NL 32×2 [47] 74.9 77.5 +2.4 1.02×

R(2+1)D-50 16×2 [43] 75.7 78.0 +2.3 1.01×

SlowFast-50 4×16 [10] 75.6 77.8 +2.2 1.02×

SlowFast-50 8×8 [10] 76.8 78.9 +2.1 1.03×

Table 1: Generalization to different back-

bone architectures. We report the video-level

accuracy on Kinetics-400 for both standard

clip-level training (“Baseline”) and video-

level training with CM (“Ours”).

4. Experiments

To demonstrate the advantages of our end-to-end video-

level learning framework, we conduct extensive experi-

ments on four action recognition benchmarks with different

backbone architectures. We implement our models and con-

duct the experiments using the PySlowFast codebase [8].

4.1. Experimental Setup

Datasets. Kinetics [23] (K400 & K700) is one of the most

popular datasets for large-scale video classification. Cha-

rades [35] is a multi-label dataset with long-range activi-

ties. Something-Something-V1 [14] is a dataset requiring

good use of temporal relationships for accurate recognition.

Following the standard protocol, we use the training set for

training and report top-1 accuracy on the validation set.

Backbones. We evaluate our framework using different

backbone architectures including I3D [47], R(2+1)D [43,

45], Slow-only [10] and SlowFast [10], optionally aug-

mented with non-local blocks (NL) [47]. We attach the pro-

posed collaborative memory to the last convolutional layer

of these backbones for joint training.

Training. We first train the backbones by themselves fol-

lowing their original schedules [10, 45], then re-train the

backbones in conjunction with our collaborative memory

for video-level learning. When training on Kinetics, we

use synchronous SGD with a cosine learning schedule [28].

For Charades and Something-Something-V1, we follow

the recipe from PySlowFast [8] and initialize the network

weights from the models pre-trained on Kinetics, since

these two datasets are relatively small. For the video-level

training, we employ the batch reduction strategy to handle

the GPU memory constraint by default and apply the linear

scaling rule [13] to adjust the training schedule accordingly.

Inference. Following [10,47], we uniformly samples 3×
10 crops from each video for testing (i.e., 3 spatial crops

and 10 temporal crops). The global memory M is aggre-

gated from 10 spatially centered crops and shared for the

inference of all 30 crops. We employ the multi-iteration ap-

proach from Section 3.3 during inference to overcome the

GPU memory constraint. The softmax scores of all 30 clips

are averaged for the final video-level prediction.

4.2. Evaluating Collaborative Memory

For all the experiments in this section we use the associa-

tive version of the collaborative memory with feature gating

since, as demonstrated in ablation studies (Section 4.3), this

design provides the best results.

Effectiveness of video-level learning. We begin by pre-

senting an experimental comparison between our proposed

video-level learning and the standard clip-level training ap-

plied to the same architecture. For this evaluation we use

the Slow-only backbone with 50 layers, which can be con-

sidered as a 3D ResNet [17]. In order to investigate the im-

pact of temporal coverage on video-level learning, we train

models using different numbers of sampled clips per video:

N ∈ {1, 3, 5, 7, 9}. N = 1 corresponds to the conventional

clip-level training, as we only sample one clip per video.

In such case the collaborative memory (CM) is limited to

perform “self-attention” within the single clip. For N > 1,

CM captures video-level information across the N clips.

Figure 3 shows the video-level accuracy achieved by the

different models, all using the same testing setup of 3× 10
crops per video. Note that under this setting all models

“look” at the same number of clips for each video in test-

ing. As shown in Figure 3, our CM framework significantly

improves the video-level accuracy. For example, when the

clip length is 8×8 (8 frames with a temporal stride of 8),

using CM with N = 9 yields a remarkable 2.6% improve-

ment compared with training using a single clip (74.5% vs.

77.1%). When the clip has a shorter length (i.e., 8×2), our

method gives an even larger gain, 3.2% (73.2% vs. 76.4%).

As expected, the improvement from our method increases

with the number of sampled clips N . The performance sat-

urates when N ≥ 7. To keep the training time more man-

ageable, we use N = 5 by default.
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Multi-clip Memory End-to-end Top-1

X X 74.5

X X 75.5

X X 75.9

X X X 76.8

(a) Evaluating different components of

our video-level learning framework.

Setting Associative Gating Top-1

Multi-clip (w/o memory) 75.5

CM (avgpool) X 75.8

CM (residual) X 76.0

CM (default) X X 76.8

(b) Comparing different designs of our collaborative

memory mechanism.

Setting #Param. Top-1

α = 1 49.2 M 76.8

α = 2 40.9 M 76.8

α = 4 36.7 M 76.8

α = 8 34.6 M 76.4

(c) Varying channel reduc-

tion ratio α = d/d
′

.

Model Stage-wise Top-1

Slow-only
76.1

X 76.8

R(2+1)D
77.7

X 78.0

(d) Stage-wise training vs. training

everything from scratch.

Model Batch reduction Multi-iteration Top-1

Slow-only
X 76.6

X 76.8

R(2+1)D
X 77.9

X 78.0

(e) Comparing different ways of training CM:

batch reduction vs. multi-iteration.

Model
Temporal stride

CM

2 4 8 16

Slow-only 73.2 74.3 74.4 74.4 76.8

R(2+1)D 75.7 76.4 75.0 72.2 78.0

(f) Comparing CM with backbones using

clips with large temporal strides.

Table 2: Ablation experiments on Kinetics-400. Top-1 video-level accuracy (%) is reported. Unless otherwise stated, we use

Slow-only [10] with 50 layers and the input clip length is 8× 8. R(2+1)D is also 50 layers with a clip length of 16× 2.

Figure 4 shows the clip-level accuracy at different tem-

poral locations of a video, according to their temporal or-

der. When N = 1, the clips from the middle of the video

have much higher accuracy than the clips from the begin-

ning or the end of the video, as the middle clips tend to

include more relevant information. CM significantly im-

proves the clip-level accuracy by augmenting each clip with

video-level context information (i.e., N ≥ 3), especially for

clips near the boundary of the video. This is a clear indica-

tion that our memory mechanism is capable of capturing

video-level dependencies and sharing them effectively with

the clips within the video to boost the recognition accuracy.

Generalization to different backbones. As we do not

make any assumption about the backbone, our video-level

end-to-end learning framework can be seamlessly inte-

grated with different architectures and input configurations

(e.g., clip length, sampling stride, etc.). As shown in Ta-

ble 1, CM produces consistent video-level accuracy gains of

over 2% on top of state-of-the-art video models, including

I3D with non-local blocks [47], the improved R(2+1)D net-

work [43, 45] and the recent SlowFast network [10]. Note

that we achieve these improvements with only negligible

additional inference cost, about 1-3% more FLOPs com-

pared to the backbone themselves.

4.3. Ablation Studies

Assessing the components in our framework. Unlike

most prior work on video-level modeling [20, 50], our

framework is end-to-end trainable. To show the benefits of

end-to-end learning in improving the backbone, we conduct

an ablation that freezes the parameters of the backbone and

only updates the parameters from the collaborative mem-

ory and the FC layers for classification. As shown in Ta-

ble 2a, end-to-end learning improves the performance by

1.1% compared with learning video-level aggregation on

top of the frozen backbones (76.8% vs. 75.9%).

Table 2a also shows the result of video-level learning

without using CM. This is done by optimizing multiple

clips per video but without sharing any information across

the clips. Interestingly, this simple setup also delivers a

good improvement over the single-clip learning baseline

(75.5% vs. 74.5%). The gain comes from the joint opti-

mization over multiple clips of a video, which again con-

firms the importance of video-level learning for classifica-

tion. Our CM framework achieves the best performance

with all the components enabled.

Collaborative memory design. Our default design uses

the associative memory for memory interactions and a fea-

ture gating operation for context infusion. In Table 2b, we

explore other design choices by replacing the associative

memory with average pooling or substituting the feature

gating with a residual connection.

We observe that all these variants offer improvement

over the naı̈ve video-level learning setup without the mem-

ory. However, the gain provided by average pooling is rel-

atively small, which is not surprising given that there is

no the inter-clip interaction. While we also witness a per-

formance drop by removing the feature gating operation,

the reason behind it is different. As shown by the train-

ing/validation error curves in Figure 5, the model without

feature gating achieves lower training error but higher vali-

dation error. This suggests that the model degenerates dur-

ing training due to over-fitting to the video-level context.

In Table 2c we ablate the number of channels used in
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Figure 5: Video-level training/validation errors on Kinetics-

400 for different designs of the collaborative memory.

CM (d′ in Eq. 2, 3), which can be controlled by the channel

reduction ratio α = d/d′. We can see that the results remain

unchanged as long as the reduction ratio is reasonable (α ≤
4). We use α = 4 as the default value in our experiments

since it introduces fewer extra parameters.

Training strategies. Recall that we adopt a stage-wise

training strategy: the backbones are first trained using stan-

dard clip-level training recipes and then re-trained in con-

junction with CM for video-level learning. In Table 2d, we

compare this strategy with training everything from scratch

(equivalent training iterations are used for both strategies).

Experiments on two different backbones show that training

everything from scratch yields slightly worse results. We

hypothesize that stage-wise training allows the optimization

in the second stage to focus on effective long-range model-

ing thanks to the well-initialized backbone. We note that

non-local networks are also trained in a stage-wise way.

We also compare the two methods to cope with the GPU

memory constraint (Section 3.3). As shown in Table 2e,

the accuracy of the two methods is almost the same and the

difference is within the margin of randomness, which makes

sense as the two methods are technically identical.

Limitations of temporal striding. One simple way to in-

crease the temporal coverage of a video model is to use

larger temporal strides when sampling the frames of the in-

put clips. We compare our video-level learning framework

with this strategy in Table 2f. Note that we keep the tempo-

ral strides of CM the same as the original backbones, i.e., 8
frames for Slow-only and 2 frames for R(2+1)D.

We can see that increasing the temporal coverage

through striding yields only a modest gain in accuracy. No-

tably, using a very large stride even hurts performance for

some architectures like R(2+1)D. In contrast, our approach

can learn long-range dependencies and improves the perfor-

mances of short clip-based backbones by large margins.

4.4. Comparison with the State of the Art

Previous experimental results are from Kinetics-400.

To demonstrate that our method can generalize to differ-

ent datasets, we further evaluate our method on Kinetics-

700 [4], Charades [35] and Something-Something-V1 [14].

Methods Pretrain
Only GFLOPs

Top-1RGB × crops

I3D [5] ImageNet ✗ 216×N/A 75.7

S3D-G [53] ImageNet ✗ 142.8×N/A 77.2

LGD-3D-101 [34] ImageNet ✗ N/A 81.2

I3D-101+NL [47] ImageNet ✓ 359×30 77.7

ip-CSN-152 [42] Sports1M ✓ 109×30 79.2

CorrNet-101 Sports1M ✓ 224×30 81.0

MARS+RGB [6] none ✓ N/A 74.8

DynamoNet [7] none ✓ N/A 77.9

CorrNet-101 [45] none ✓ 224×30 79.2

SlowFast-101 8×8 [10] none ✓ 106×30 77.9

SlowFast-101 16×8 [10] none ✓ 213×30 78.9

SlowFast-101+NL 16×8 [10] none ✓ 234×30 79.8

Ours (R(2+1)D-101 32×2) none ✓ 243×30 80.5

Ours (SlowFast-101 8×8) none ✓ 128×30 80.0

Ours (SlowFast-101+NL 8×8) none ✓ 137×30 81.4

Table 3: Comparison with the state-of-the-art on Kinetics-

400.

Methods Pretrain
GFLOPs

Top-1
× crops

SlowFast-101+NL 8×8 [10] K600 115×30 70.6

SlowFast-101+NL 16×8 [10] K600 234×30 71.0

SlowFast-50 4×16∗ K600 36×30 66.1

SlowFast-101 8×8∗ K600 126×30 69.2

SlowFast-101+NL 8×8∗ K600 135×30 70.2

Ours (SlowFast-50 4×16) K600 37×30 68.3

Ours (SlowFast-101 8×8) K600 128×30 70.9

Ours (SlowFast-101+NL 8×8) K600 137×30 72.4

Table 4: Comparison with the state-of-the-art on Kinetics-

700. ∗ indicates results reproduced by us.

Among them, Charades has longer-range activities (30 sec-

onds on average), whereas Something-Something-V1 in-

cludes mostly human-object interactions. We compare the

results with the state of the art in Table 3, 4, 5 and 6. Our

proposed CM framework yields consistent gains of over 2%
for different variants of SlowFast on all datasets. These

improvements are very significant given that SlowFast is

among the best video backbones.

On Kinetics-400 and Kinetics-700, our method estab-

lishes a new state of the art, as shown in Table 3 and 4. No-

tably, we achieve these results without pre-training on other

datasets or using optical flow. Similarly, our method outper-

forms the state of the art on both Charades (in Table 5) and

Something-Something-V1 (in Table 6). On Charades, our

CM framework yields more than 3% gains (e.g., 44.6% vs

41.3%). This demonstrates that CM performs even better

on datasets that have longer videos and require longer-term

temporal learning. Note that our method significantly out-
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Methods Pretrain
GFLOPs

Top-1
× crops

TRN [55] ImageNet N/A 25.2

I3D-101+NL [47] ImageNet+K400 544 × 30 37.5

STRG [48] ImageNet+K400 630 × 30 39.7

Timeception [20] K400 N/A 41.1

LFB (I3D-101+NL) [50] K400 N/A 42.5

SlowFast-101+NL [10] K400 234×30 42.5

AVSlowFast-101+NL [52] K400 278×30 43.7

SlowFast-50 16×8∗ K400 131×30 39.4

SlowFast-101+NL 16×8∗ K400 273×30 41.3

Ours (SlowFast-50 16×8) K400 135×30 42.9

Ours (SlowFast-101+NL 16×8) K400 277×30 44.6

Table 5: Comparison with the state-of-the-art on Charades.
∗ indicates results reproduced by us.

Methods Pretrain Only RGB Top-1

S3D-G [53] ImageNet ✗ 48.2

ECO [57] none ✗ 49.5

Two-stream TSM [27] ImageNet ✗ 52.6

MARS+RGB+Flow [6] K400 ✗ 53.0

NL I3D-50+GCN [48] ImageNet ✓ 46.1

GST-50 [29] ImageNet ✓ 48.6

MSNet [26] ImageNet ✓ 52.1

CorrNet-101 [45] Sports1M ✓ 53.3

SlowFast-50 8×8* K400 ✓ 50.1

SlowFast-101+NL 8×8* K400 ✓ 51.2

Ours (SlowFast-50 8×8) K400 ✓ 52.3

Ours (SlowFast-101+NL 8×8) K400 ✓ 53.7

Table 6: Comparison with the state-of-the-art on Something

-Something-V1. ∗ indicates results reproduced by us.

performs other recent work on long-range temporal model-

ing (e.g., Timeception [20], LFB [50]).

4.5. Collaborative Memory for Action Detection

In this section, we show that the benefits of our frame-

work also extend to the task of action detection. We evaluate

our method on AVA [16], which includes 211k training and

57k validation video segments. AVA v2.2 provides more

consistent annotations than v2.1 on the same data. We re-

port mean average precision (mAP) over 60 frequent classes

on the validation set following the standard protocol.

Adaptation to action detection. Adapting our approach

to action detection is straightforward. Instead of randomly

sampling multiple clips from the whole video, we sample

clips within a certain temporal window tn ∈ [t−w, t+w] to

detect action at time t, where tn indicates the center frame

of the nth sampled clip and 2w + 1 is the window size.

As AVA includes sparse annotations at one frame per sec-

Methods Pretrain mAP

ACRN [38] K400 17.4†

AVSF-50 4×16 [52] K400 27.8†

AT (I3D) [12] K400 25.0

LFB(R50+NL) [50] K400 25.8

R50+NL∗ [50] K400 23.6

SF-50 4×16∗ [10] K400 23.6

Ours (R50+NL) K400 26.3

Ours (SF-50 4×16) K400 25.8

(a)

Methods Pretrain mAP

AVSF-101 8×8 [52] K400 28.6†

AIA(SF-50 4×16) [40] K700 29.8†

AIA(SF-101 8×8) [40] K700 32.3†

SF-101+NL 8×8 [10] K600 29.0

SF-50 4x16∗ [10] K700 26.9

SF-101 8x8∗ [10] K700 29.0

Ours (SF-50 4×16) K700 29.8

Ours (SF-101 8×8) K700 31.6

(b)

Table 7: Comparison with SOTA on (a) AVA v2.1 and (b)

v2.2. † indicates results with extra information other than

RGB frames, such as optical flow, audio and objection de-

tection predictions. ∗ indicates results reproduced by us.

ond, we simply sample the clips with a one-second stride

such that the sampled clips are centered at frames with an-

notations. In this way, the temporal window size increases

accordingly as we use a larger number of clips N during

training. After that, we jointly optimize these sampled clips

with their own annotations. The collaborative memory is

used to share long-range context information among sam-

pled clips. We use N = 9 in our experiments and follow

the schedule in AIA [40] for model training.

Quantitative results. We compare CM with the state of

the art on AVA in Table 7. Although the CM framework

is not specifically designed for action detection, it achieves

results comparable with the state of the art. In particular,

CM yields a consistent improvement of more than 2% for

different backbone networks (e.g., 2.9% gain for SlowFast-

50 4×16 backbone on AVA v2.2). This demonstrate that

we can effectively extend our method to the detection task

and achieve significant improvements as well. Note that

our method also outperforms LFB [50] when using the

same backbone (i.e., R50-I3D+NL) on AVA v2.1 (26.3%

vs. 25.8%).

5. Conclusions

We have presented an end-to-end learning framework

that optimizes classification models using video-level in-

formation. Our approach hinges on a novel collaborative

memory mechanism that accumulates contextual informa-

tion from multiple clips sampled from the video and then

shares back this video-level context to enhance the individ-

ual clip representations. Long-range temporal dependen-

cies beyond short clips are captured through the interac-

tions between the local clips and the global memory. Ex-

tensive experiments on both action recognition and detec-

tion benchmarks show that our framework significantly im-

proves the accuracy of video models at a negligible compu-

tational overhead.
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