
CondenseNet V2: Sparse Feature Reactivation for Deep Networks

Le Yang1∗ Haojun Jiang1∗ Ruojin Cai2 Yulin Wang1 Shiji Song1 Gao Huang1† Qi Tian3

1Department of Automation, Tsinghua University, Beijing, China

Beijing National Research Center for Information Science and Technology (BNRist),
2Cornell University 3Huawei Cloud & AI

{yangle15, jhj20, wang-yl19}@mails.tsinghua.edu.cn, rc844@cornell.edu,

{shijis, gaohuang}@tsinghua.edu.cn, tian.qi1@huawei.com

Abstract

Reusing features in deep networks through dense con-

nectivity is an effective way to achieve high computational

efficiency. The recent proposed CondenseNet [14] has shown

that this mechanism can be further improved if redundant fea-

tures are removed. In this paper, we propose an alternative

approach named sparse feature reactivation (SFR), aiming

at actively increasing the utility of features for reusing. In

the proposed network, named CondenseNetV2, each layer

can simultaneously learn to 1) selectively reuse a set of most

important features from preceding layers; and 2) actively

update a set of preceding features to increase their utility for

later layers. Our experiments show that the proposed mod-

els achieve promising performance on image classification

(ImageNet and CIFAR) and object detection (MS COCO) in

terms of both theoretical efficiency and practical speed.

1. Introduction

Deep convolutional neural networks (CNNs) have

achieved remarkable success in the past few years [30, 7, 15].

However, their state-of-the-art performance is usually fueled

with sufficient computational resources, which hinders de-

ploying deep models on low-compute platforms, e.g., mobile

phones and Internet of Things (IoT) products. This issue

has motivated a number of researchers on designing efficient

CNN architectures [15, 3, 11, 40, 24, 31]. Among these

efforts, DenseNet [15] is a promising architecture that im-

proves the computational efficiency by reusing early features

with dense connections.

Recently, it has been shown that dense connectivity may

introduce a large number of redundancies when the network

becomes deeper [14]. In a dense network, the output of a

layer will never be modified once it is produced. Given that

∗Equal contribution.
†Corresponding author.

(a) DenseNet (b) CondenseNet

(c) Ours

Removed connection

Features from   -th layer

Convolutional layer

Reactivation connection

Input features of           -th layer

Copy

Figure 1. Different feature reuse patterns in (a) DenseNet [15], (b)

CondenseNet [14] and (c) Ours.

shallow features will be repeatedly processed by their follow-

ing layers, directly exploiting them in deep layers might be

inefficient or even redundant. CondenseNet [14] alleviates

this problem via strategically pruning less important connec-

tions in DenseNet. ShuffleNetV2 [24] shares a similar spirit,

where early features are dropped according to layer-distance,

leading to an exponentially decaying of long-distance feature

re-usage. Although both models show their effectiveness,

we hypothesize that straightforwardly abandoning long con-

nections is overly aggressive. These early features which are

considered to be “obsolete ” at deeper layers may contain

useful information, which can benefit network generalization

ability, and potentially contribute to a more efficient model

if properly utilized.

In this paper, instead of directly discarding obsolete fea-

tures, we are interested in whether we can revive them to

make obsolete features useful again. To this end, we devel-

op a novel module to conduct feature reactivation, which

learns to update shallow features and enables them to be

more efficiently reused by deep layers. Our main idea is

illustrated in Figure 1. Compared to DenseNet [15] and

CondenseNet [14], where earlier features keep unchanged

3569



throughout the whole feed-forward process, we propose to

allow the outputs of a layer to be reactivated by later layers.

Such a way keeps features maps always “fresh” at each dense

layer, and therefore the redundancy in dense connections can

be largely reduced.

Although the feature reactivation procedure effectively

reduces the redundancy in dense connections, naively reac-

tivating all features will introduce excessive extra compu-

tation, which still hurts the overall efficiency. In fact, it is

unnecessary to reactivate all features since a large number of

them can be already effectively reused without any change

in dense connections, resulting in that only sparse feature

reactivation (SFR) is required. For this purpose, we develop

a cost-efficient SFR module which actively and selectively

reactivates early features at each layer, using the increments

learned from the newly produced feature maps. Importantly,

both the features to be updated and the updating formulas are

determined automatically via learning. During the training

process, we first assume all previous features require reacti-

vating, and then gradually remove the reactivation that have

less effect on feature re-usage. Moreover, the resulting SFR

modules can be converted to efficient group convolutions at

test time. As a consequence, the proposed method involves

minimal extra computational cost or latency and keeps early

features “fresh” even through very deep layers, which leads

to a significant efficiency gain.

We implement SFR on the basis of the efficient Con-

denseNet [14], where the SFR along with the learned group

convolutions (LGCs) [14] can be learned compatibly to im-

prove the efficiency of dense networks. The resulting net-

work, CondenseNetV2, are empirically evaluated on image

classification benchmarks (ImageNet and CIFAR) and the

COCO object detection task. The results demonstrate that

SFR significantly boosts the performance by encouraging

long-distance feature reusing, and that CondenseNetV2 com-

pares favorably with even state-of-the-art light-weighted

deep models. We also show that SFR can be plugged into

any CNNs that adopt the concatenation based feature reusing

mechanism to further improve their efficiency, such as Shuf-

fleNetV2 [24].

2. Related Work

Efficient network architectures. Designing better net-

work architectures is an effective way to improve the compu-

tation efficiency of deep networks. Efficient building units

are introduced for light-weighted CNN architectures. For

instance, MobileNets [11, 31, 10] propose inverted residuals

and linear bottlenecks to build network architectures. Sand-

glass blocks, which flip the inverted residuals, are developed

in MobileNeXts [41]. Cheap operations are developed for

generating features in GhostNet [5]. In addition, shuffle

layer and learned group convolution (LGC) are employed

by ShuffleNets [40, 24] and CondenseNet [14], respectively.

Recent study also shows that developing dynamic neural

networks [6] can obviously improve the efficiency of deep

models, such as [13, 37, 34]. In this paper, we follow the first

line of the research and propose a novel efficient unit named

SFR module. The proposed deep models with SFR module

retains the simplicity of CondenseNet while significantly

improves its accuracy on image classification and detection

tasks for mobile applications.

Densely connected neural network. Compared to

ResNet [7] and it variants [36, 39], DenseNet architec-

tures [15, 14, 13, 37] can achieve a higher computational

efficiency by encouraging feature reuse. However, super-

fluous re-usage may introduce redundant connections. To

address this problem, existing work mainly proposes to re-

move dense connections to feature maps that are less use-

ful [14, 33], or to discard long-range connections according

to a predefined probability [24]. However, as these seeming-

ly redundant connections may have large potential in deep

layers if properly utilized, we propose to conduct sparse

feature reactivation to deal with the redundant connections

rather than pruning them.

Filter pruning. Although the sparsifying procedure in S-

FR module is related to filter pruning methods [35, 9, 18, 8,

22], our method differs greatly from filter pruning methods

in the way dealing with the redundant connections. Instead

of removing connections between layers where the feature

re-usage is superfluous, our approach aims at building reac-

tivation connections to revive obsolete features to increase

their utility. Notably, our reactivation idea is orthogonal

to filter pruning, and both are utilized for building Con-

denseNetV2. Additionally, compared with recent work [26],

which proposes to graft new weights to the unimportant fil-

ters, the proposed SFR module reactivates obsolete features

to improve efficiency.

3. Method

A recently confirmed inefficiency in DenseNet [15] archi-

tecture lies in the presence of long-distance connections [14],

where the deeper layers seem to consider the early features

as “obsolete” ones and ignore them during learning new

representations. CondenseNet [14] and ShuffleNetV2 [24]

alleviate this inefficiency through strategically pruning redun-

dant connections and exponentially discarding cross-layer

connections, respectively. In this paper, we postulate in this

paper that directly abandoning shallow features can be an

overly aggressive design. To be specific, we find that by

involving a learnable sparse feature reactivation (SFR) mod-

ule with a negligible computational cost at each layer, the

originally “obsolete” features can be “reactivated” and hence

effectively exploited by the later layers. In this section, we

first describe the details of the proposed SFR module, and

then implement it to build our light-weighted networks.

3570



3.1. Sparse Feature Reactivation

Feature reuse mechanism. We first formulate the feature

reusing mechanism introduced in [15]. Assume that a stan-

dard network block of L layers produces L feature maps

x1,x2, . . . ,xL, where xℓ is the output of the ℓ-th layer and

x0 denotes the input feature. Since all previous layers are

connected to the ℓ-th layer via the dense connections, the

composite function Hℓ(·) of the ℓ-th layer will take all of

x0, . . . ,xℓ−1 as inputs:

xℓ = Hℓ([x0,x1, . . . ,xℓ−1]). (1)

In CondenseNet [14], learned group convolutions (LGC) are

employed in Hℓ(·) to automatically learn the input group-

ings and remove unimportant connections, while in Shuf-

fleNetV2 [24], inputs of Hℓ will be dropped according to

their distance to layer ℓ. Consequently, both of them remove

the superfluous long-distance connections between layers,

which are proven effective in term of efficiency. However,

given that the output xℓ will never change once it is produced,

a side effect is that these seemingly less useful features from

shallow layers tend to be permanently discarded by deeper

layers. This static design may impede exploring more effi-

cient feature reusing mechanisms. To this end, we propose a

cost-efficient sparse feature reactivation module, enabling

obsolete features to be cheaply revived.

Reactivating obsolete features. We start by describing

the details of feature reactivation. For ℓ-th layer, we intro-

duce a reactivation module denoted by Gℓ(·). The module

takes xℓ as input, and its output yℓ is used to reactive fea-

tures from preceding layers. In this paper, we define the

reactivation operation, U(·, ·), as adding1 the increment yℓ.

A dense layer with feature reactivation can be written as

xin
ℓ ← [x0,x1, . . . ,xℓ−1], xℓ=Hℓ(x

in
ℓ ), (2)

yℓ=Gℓ(xℓ), xout
ℓ =U(xin

ℓ ,yℓ), (3)

[x0,x1, . . . ,xℓ−1]← xout
ℓ , (4)

where xout
ℓ is the reactivated output feature. With Hℓ(·), the

ℓ-th layer learns to produce new feature xℓ. Additionally,

previous representations (xi, i=1, ..ℓ−1) will be reactivated

to increase their utility.

Obviously, it is unnecessary to reactivate all features since

a large number of them can be effectively reused without

any change (shown in DenseNet [15]). We also empirically

observe that dense reactivation will introduce much com-

putation and degrade the overall efficiency of the network.

Therefore, we seek to automatically find the features required

to be reactivated and merely refresh them. In the following,

1Other reactivation schemes may also be considered, such as applying

channel-wise attention or spatial attention. However, in this paper, we note

that a straightforward sum has already achieved good performance.

this aim is formulated by a pruning based approach and

can be achieved gradually during training (shown in Figure

2). The resulting architecture is named as sparse feature

reactivation (SFR) module.

Sparsify feature
reactivation

Group 1

Group 2

Group 3

Group 1

Group 2

Group 3
Learned Sparse

Connections Previous features

All-zero tensor

Reactivated features

Identity connection

Figure 2. Sparsify the feature reactivation.

Sparse feature reactivation (SFR). WLOG, we assume

that the reactivation module Gℓ(·) consists of a regular 1×1

convolutional layer followed by batch normalization (B-

N) [16] and a rectified linear unit (ReLU) [27]. The size of

the filter weight matrix F in Gℓ(·) is represented as (O, I),
where O and I denote the number of output and input chan-

nels2. In each Gℓ(·), we divide xℓ into G groups, and the F

is split correspondingly among the input channel dimension

to obtain G groups F1, . . . ,FG, and each of them has the

size of (O, I/G). To sparsify the reactivation connections,

we further define a sparse factor S, which may differ from

G, and allow each group to only select O
S output channels to

reactivate after training.

During training, in each Gℓ(·), the connection pattern

is controlled by G binary masks. Therefore, we aim at

learning these binary masks Mg ∈ {0, 1}O×
I

G , g=1, ..., G
to screen out unnecessary connections in Fg by zeroing the

corresponding values. In other words, the weight of g-th

group can be obtained by Mg ⊙ Fg, where ⊙ denotes the

element-wise multiplication.

We then introduce how to train a network with SFR mod-

ules in an end-to-end manner. Inspired by [14], the whole

training process consists of S − 1 sparsification stages fol-

lowed by an optimization stage. Assuming that E denotes

the total number of training epochs, we set the training e-

pochs of each sparsification stage to E
2(S−1) and optimization

stage to E
2 . During training, the SFR module first reactivates

all features, and then gradually removes the superfluous con-

nections. Therefore, at the beginning of training, we set all

Mg to all-ones matrices, thus all input feature maps in g-th

group are connected with all output features. During spar-

sification, the importance of reactivating i-th output within

g-th group is measured by the L1-norm of the corresponding

weights
∑I/G

j=1 |F
g
i,j |. At the end of each sparsification stage,

O
S output features whose L1-norms are smaller than others

are pruned in g-th group, and M
g
i,j is set to zero for all j in

g-th group for each pruned output feature map i. Note that,

if i-th output feature map is pruned from every input group,

2We can apply max-pooling on the absolute value of the 4D weights,

F ∈ R
O×I×k×k , to generate the matrix with the size of (O, I) when

dealing with larger convolutional kernels.

3571



the i-th feature map in y will equal to 0, which implies that

the i-th feature map from previous layers do not need to

reactivate. Therefore, after training, each input group will

only update the outputs with a portion of 1/S, which means

that for final Mg, we have
∑O

i=1
M

g
i,j =

O
S

. The higher the

value of S, the sparser the connection pattern is.

Convert to standard group convolution. At test time,

our SFR model can be implemented using a standard group

convolution and an index layer, allowing for efficient com-

putation in practice. This is illustrated in Figure 3: the

converted group convolution contains G groups with output

and input channels as (OG
S , I). After generating the interme-

diate features with the group convolution, the index layer is

applied to rearrange the features by their indices to obtain

the yℓ. Note that the intermediate features with the same

index will first be summed and then arranged according to

the index.

Group 1

Group 2

Group 1

Rearrange by
Index

Intermediate
Features

Group 2

Group 3

Intermediate
Features

Group 3

1
2

3
4

5
6

1
3

1
2

4
6

1
3

1
2

4
6

1
2

3
4

5
6

Figure 3. Convert to standard group convolution (S=3 and G=3).

3.2. Architecture Design

Architecture of CondenseNetV2. Based on the proposed

SFR module, the new dense layer of CondenseNetV2 is

shown in Figure 4 (right), which is designed on the basis of

CondenseNet [14]. In the proposed architecture, the LGC

first selects important connections and the new represen-

tations xℓ are generated based on these selected features

using Eq. (2). Then, the SFR module takes xℓ as input

and learns to reactivate the obsolete representations. The

refreshed features can be derived by Eq. (3). Following

[14], we shuffle the output channels of each convolutional

layer to ensure communication between different groups.

It is worth knowing that the CondenseNetV2 is essentially

different from CondenseNet [14]: the outputs of each layer

in CondenseNet [14] will never change once it is produced.

Therefore, the potential re-usage of previous features can be

blocked. In contrast, old features can be reactivated in each

layer of CondenseNetV2, resulting in a more efficient and

effective feature reuse mechanism.

The architecture of CondenseNetV2 follows the exponen-

tially increasing growth rate and fully dense connectivity

design principle [14]. Based on the newly designed SFR-

DenseLayer, we develop our CondenseNetV2 as presented in

Table 1. The squeeze and excite (SE) module [12] and hard-

swish nonlinearity function (HS) are also applied following

[10]. The presented architecture provides a basic design

for reference, further hyper-parameters tuning or network

architecture searching can further boost the performance.

LGC 1x1

GC 3x3

BN ReLU

BN ReLU

LGC 1x1

GC 3x3

SFR Module

BN ReLU

BN ReLU

Input Input

OutputOutput

Figure 4. A dense layer in CondenseNet (left), and CondenseNetV2

(right). (LGC: learned group convolution; GC: group convolution)

Table 1. Network architecture of CondenseNetV2. The number of

layers and the growth rate of i-th dense block are denoted by di
and ki, respectively. SE and HS denote whether using SE and HS

module in this block.

Input Operator d k SE HS

224×224 Conv2d 3×3 (stride 2) - - - -

112×112 SFR-DenseLayer d1 k1 - -

112×112 AvgPool 2×2 (stide 2) - - - -

56×56 SFR-DenseLayer d2 k2 - -

56×56 AvgPool 2×2 (stride 2) - - - -

28×28 SFR-DenseLayer d3 k3 - 1

28×28 AvgPool 2×2 (stride 2) - - - -

14×14 SFR-DenseLayer d4 k4 1 1

14×14 AvgPool 2×2 (stride 2) - - - -

7×7 SFR-DenseLayer d5 k5 1 1

1×1 AvgPool 7×7 - - - -

1×1 Conv2d 1×1 - - 1 -

1×1 FC - - - -

3.3. Sparse Feature Reactivation in ShuffleNetV2

As SFR is able to be plugged into any CNNs with the

feature reusing mechanism, we claim that ShuffleNetV2 [24]

can also benefit from the proposed SFR module. The imple-

mentation details are illustrated in Figure 5. We refer to the

modified ShuffleNetV2 with sparse feature reactivation as

SFR-ShuffleNetV2. Note that in SFR-ShuffleNetV2, only

basic units conduct the feature reactivation, and the units

for spatial down sampling keep unchanged. The detailed

architecture is provided in the Appendix.

4. Experiments

We empirically demonstrate the effectiveness of the pro-

posed SFR module and CondenseNetV2 on image clas-

sification and object detection tasks, and compare with

state-of-the-art light-weighted CNN architectures. Code is

available at https://github.com/jianghaojun/

CondenseNetV2.

Dataset. Experiments are conducted on several benchmark

visual datasets, including CIFAR-10 and CIFAR-100 [17],

3572



Conv 1x1

DWC 3x3

Conv 1x1

Channel
Shuffle

Channel
Split

Conv 1x1

DWC 3x3

Conv 1x1

Channel
Split

SFR Module

BN ReLU

BN 

BN ReLU

BN ReLU

BN

BN ReLU

Input

Output

Input

Output
Channel
Shuffle

Figure 5. A building unit in ShuffleNetV2 (left), and the Shuf-

fleNetV2 implemented with SFR module (right). (DWC: depth-

wise convlution)

ImageNet (ILSVRC2012 [4]), and MS COCO object detec-

tion benchmark [21].

The CIFAR-10 and CIFAR-100 datasets consist of 32×32
RGB images, with 10 and 100 classes of natural scene ob-

jects, respectively. Both CIFAR datasets contain 50,000

training images and 10,000 test images. On the two CIFAR

datasets, following [15], we apply a set of transformations to

augment the training set. The ImageNet (ILSVRC2012 [4])

classification dataset contains 1.2 million training images

and 50,000 validation images, with 1000 classes. Data aug-

mentation schemes are applied at training and we adopt a

224×224 center crop at test time. On MS COCO dataset,

following [29, 19], we use the trainval35k split as training

data and report the results in mean Average Precision (mAP)

on minival split with 5000 images.

4.1. Efficiency of Sparse Feature Reactivation

In this subsection, we conduct a series of experiments on

densely connected networks with sparse feature reactivation

to verify its effectiveness.

Reactivated features. As the proposed SFR module is de-

signed for reactivating the redundant features to improve the

network efficiency, a natural question is whether the utility

of these obsolete features indeed shows great importance

at later layers after being reactivated. To investigate this

question, Figure 6 and 7 visualize the learned weights for

CondenseNet [14] and CondenseNetV2 to verify whether

those reactivation will indeed encourage feature reuse.

Figure 6 shows detailed weight strength (averaged abso-

lute value of non-pruned weights) between a filter group of a

certain layer (corresponding to a column in the figure) and an

input feature map (corresponding to a row in the figure). For

each layer, there are four filter groups (consecutive columns).

Red dots are connections with significant contributions and

(a) (b)

CondenseNet V2

Figure 6. Norm of weights between layers per filter group of Con-

denseNet and CondenseNetV2 trained on CIFAR-10.

white dots are connections that have been pruned. One can

observe that connections in CondenseNet are more concen-

trated in neighbor layers, while long-distance connections

appear more frequently in CondenseNetV2 (shown by dense

colored dots in the top-right corner). This implies that later

layers make more use of feature maps produced by early

layers in CondenseNetV2 than in CondenseNet.

Figure 7 shows the overall connection strength between

two layers in the CondenseNet and CondenseNetV2. The

color shows the L1-norm of weights between layers and

red means large weight. We notice that the top-right parts

of figures for CondenseNetV2 are more brilliant than these

corresponding areas of figures for CondenseNet, which im-

plies that the utility of early features largely increases in

CondenseNetV2. As the performance of CondenseNetV2 is

shown to be superior to CondenseNet, we can conclude that

the dense network will benefit from sparse feature reactiva-

tion. This validates our hypothesize: although the features

produced by early layers seem unimportant at deep layers in

dense networks, they may have potential after being reacti-

vated. Moreover, from the results in Figure 7 in (b) and (d),

we further observe that early features are more frequently

utilized at deep layers in the model trained on ImageNet than

the model trained on CIFAR-10, from which we can infer

that the reactivated early features show more importance in

complicate tasks.

Necessity of sparse feature reactivation. Although the

dense feature reactivation can improve the network perfor-

mance, the involved extra computation is much, which de-

grades the overall efficiency of the network. Therefore, it is

necessary to make the reactivation sparse. We conduct ex-

periments on CIFAR-10 using CondenseNetV2 with S = 1
and S > 1. The experimental results are shown in Figure

8 (b). From the results, we observe that the dense feature

reactivation (S = 1) becomes inefficient due to the heavy

extra computational overheads. On the contrary, conducting

sparse feature reactivation (S > 1) can deal with the afore-

mentioned problems effectively, and therefore, can boost the

network performance with minor extra computation.

The hyper-parameters in SFR module. We conduct the

experiments with CondenseNetV2 on CIFAR-10 for evalua-

3573



CondenseNet V2

1 5 11 16 21 26 31 36 1 5 11 16 21 26 31 36

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

CondenseNet CondenseNet V2

Target layer (t)Target layer (t)

S
o

u
rc

e
 l
a

y
e

r 
(s

)

S
o

u
rc

e
 l
a

y
e

r 
(s

)

S
o

u
rc

e
 l
a

y
e

r 
(s

)

S
o

u
rc

e
 l
a

y
e

r 
(s

)

Target layer (t) Target layer (t)

(b) (d)(c)(a)

Figure 7. Norm of weights between layers per filter block of CondenseNet ((a) and (c)) and CondenseNetV2 ((b) and (d)). The models are

trained on CIFAR-10 ((a) and (b)) and ImageNet ((c) and (d)).

5.41
5.36

5.2
5.17

5.0

5.1

5.2

5.3

5.4

5.5

1 2 4 8

Te
st

 E
rr

o
r 

(%
)

Group Number

4.5

4.9

5.3

5.7

6.1

0.3 0.5 0.7 0.9 1.1

FLOPs (M)

S=1

S=2

S=4

S=8

(a) (b)

Figure 8. (a): SFR module with different group number (G) in

CondenseNetV2. (b): CondenseNetV2 with different sparse factor

(S) for SFR module.

tion. We fix the group number and the condense factor for

LGC layers, and we only compare different settings for SFR

module. In Figure 8 (a), the sparse factor is fixed to 4 and

we show the effect of group number G which actually does

not affect the FLOPs of the network. One can observe that

as G increases, the performance improves gradually. This is

due to that a finer-grained sparsification, which corresponds

to a large G, is usually able to achieve higher efficiency. In

Figure 8 (b), we compare CondenseNetV2s with varying s-

parse factors in SFR module. A network with a sparse factor

S of 1 means that all reactivation connections are preserved

(dense reactivation). If S is increased to 4, then each layer

only keeps a quarter of reactivation connections. The results

show that S = 4 outperforms other settings. Also, all the set-

tings with S > 1 perform better than the setting with S = 1,

indicates that removing a set of unnecessary connections is

indeed important for building efficient CondenseNetV2.

4.2. Experiments on ImageNet

Implementation details. Following the common practice

[11, 40, 24], the proposed network has three levels of com-

putational complexity. The CondenseNetV2 with different

sizes are summarized in Table 2, where d and k are number

of layers and growth rate of each dense block, respectively.

In all experiments, we use the same condense factor (C),

group number (G), and sparse factor (S) for all LGCs and

SFR modules in the network. CondenseNetV2 are trained

using the stochastic gradient descent (SGD) optimizer with

an initial learning rate of 0.4, the cosine learning rate [23],

and The batch size of 1024. To compare with SOTA base-

Table 2. Network configurations for ImageNet models.

Setting {d} {k} C, S,G

CondenseNetV2-A 1-1-4-6-8 8-8-16-32-64 8

CondenseNetV2-B 2-4-6-8-6 6-12-24-48-96 6

CondenseNetV2-C 4-6-8-10-8 8-16-32-64-128 8

Table 3. Top-1 and Top-5 classification error rate (%) on ImageNet.

Model FLOPs Top-1 err. Top-5 err.

CondenseNet-A [14] 56M 43.5 20.2

CondenseNetV2-A 46M 35.6 15.8

CondenseNet-B [14] 132M 33.9 13.1

CondenseNetV2-B 146M 28.1 9.7

ShuffleNetV2 1.0× [24] 146M 30.6 11.1

SFR-ShuffleNetV2 1.0× 150M 29.9 10.9

ShuffleNetV2 1.5× [24] 299M 27.4 9.4

SFR-ShuffleNetV2 1.5× 306M 26.5 8.6

lines, we implement an Augmented Setting differing from

the original setting in [14]. More details can be found in

Appendix C.

Results on ImageNet. We conduct experiments on Ima-

geNet to evaluate the effectiveness of the proposed methods.

As the SFR module can be deployed in both CondenseNet

and ShuffleNetV2, we first compare the original model and

the network with SFR module in Table 3. From the results,

we can see that the latter clearly exceeds the former. The

computational cost of CondenseNetV2-A is 18% lower than

CondenseNet-A (46M v.s. 56M). Using SFR on ShuffleNet

can also boost the efficiency with minor extra FLOPs (few-

er than 3%). Moreover, we conduct ablation studies on

ImageNet to show how each additional design benefit the o-

riginal CondenseNet. The results are shown in Table 4, from

which we observe that implementing the proposed SFR can

boost the performance of CondenseNet by a large margin.

We further compare our networks with several efficient

network architectures designed by handcraft, including Mo-

bileNetV2 [31], CondenseNet [14], MobileNeXt [41] and

ShuffleNetV2[24]. The results are shown in Figure 9 (a).

One can observe that the proposed CondenseNetV2 outper-

forms these models in terms of the computational efficiency.

3574



0.2 0.4 0.6 0.8 1.0 1.2 1.4

Latency (s)

25

30

35

40

45

E
rr

o
r

(%
)

CondenseNet V2

CondenseNet

MobileNet V2

MobileNext

ShuffleNet V2

MobileNet V3

GhostNet

(b) 

50 100 150 200 250 300

FLOPs(M)

25.0

27.5

30.0

32.5

35.0

37.5

40.0

42.5

E
rr

o
r

(%
)

CondenseNet V2

CondenseNet

MobileNet V2

MobileNext

ShuffleNet V2

(a) 

10 15 20 25

Latency (ms)

26

28

30

32

34

36

38

E
rr

o
r

(%
)

SFR-ShuffleNet V2

MobileNet V2

MobileNext

ShuffleNet V2

MobileNet V3

GhostNet

(c) 

Figure 9. (a) Top-1 err. v.s. FLOPs on ImageNet. (b) Inference speed on the ARM processor. (c) Inference speed on iPhone XS Max.

Table 4. Ablations of CondenseNetV2-A on ImageNet.

Model SFR SE/HS Augmented

Setting

Top-1 err.

CondenseNet [14] 43.5

CondenseNetV2 X 39.8(↓3.7)

CondenseNetV2 X X 37.5(↓6.0)

CondenseNetV2 X X X 35.6(↓7.9)

In addition to the deep models in Figure 9, networks based

on neural architecture search (NAS) are further compared

with the proposed networks, including MobileNetV3 [10],

RegNetX [28], ProxylessNAS[1] and MnasNet [32]. The

results are summarized in Table 5. We group different mod-

els according to their computational costs. Importantly, the

proposed CondenseNetV2 does not leverage any technique

of NAS, however, it can outperform most of the competitive

baselines with similar FLOPs.

To show how our method can benefit from NAS, we

further deploy our SFR module on ShuffleNetV2+3, a

strengthened version of ShuffleNetV2 obtained by one-

shot NAS based on ShuffleNet Units. The proposed SFR-

ShuffleNetV2+ outperforms both MobileNet V3 and the

original ShuffleNetV2+, which confirms the effectiveness of

the proposed SFR module. More experiments on ImageNet

are provided in Appendix B.

Actual inference time. Since the proposed Con-

denseNetV2 is designed for edge devices, we further

measure the actual inference speed of CondenseNetV2 on

an ARM processor4 and an iPhone XS Max (with Apple

A12 Bionic). The single-thread mode with batch size 1 is

used following [10] and we use a 224×224 input image.

On the ARM processor, all models are implemented in

PyTorch1.6.0. From Figure 9 (b), one can observe that the

proposed CondenseNetV2 achieves faster runtime under the

same error compared with other light-weighted deep models.

3https://github.com/megvii- model/ShuffleNet-

Series/tree/master/ShuffleNetV2%2B
4Quad-Core ARM Cortex-A57 MPCore combined with Dual-Core N-

VIDIA Denver 2 64-Bit CPU.

Table 5. Comparison of Top-1 and Top-5 classification error rate (%)

with state-of-the-art efficient deep learning models on ImageNet.

(L., M., and S. represent Large, Medium, Small, respectively.)

Model FLOPs Params
Top-1 Top5

err. err.

ShuffleNetV2 0.5× [24] 41M 1.4M 38.9 17.4

0.4 MobileNetV2 [31] 43M – 43.4 –

MobileNeXt-0.35 [41] 80M 1.8M 35.3 –

CondenseNetV2-A 46M 2.0M 35.6 15.8

ShuffleNetV2 1.0× [24] 146M 2.3M 30.6 11.1

0.75 MobileNetV2 [31] 145M – 32.1 –

MobileNetV3 L. 0.75× [10] 155M 4.0M 26.7 –

RegNetX [28] 200M 2.7M 31.1 –

MobileNeXt-0.75 [41] 210M 2.5M 28.0 –

ShuffleNetV2+ S. 156M 5.1M 25.9 8.3

CondenseNetV2-B 146M 3.6M 28.1 9.7

SFR-ShuffleNetV2+ S. 161M 5.2M 25.5 8.2

ShuffleNetV2 1.5× [24] 299M – 27.4 9.4

1.0 MobileNetV2 [31] 300M 3.4M 28.0 9.0

MobileNetV3 L. 1.0× [10] 219M 5.4M 24.8 –

RegNetX [28] 400M 5.2M 27.3 –

MobileNeXt-1.00 [41] 300M 3.4M 26.0 –

MnasNet-A1 [32] 312M 3.9M 24.8 7.5

FE-Net 1.0× [2] 301M 3.7M 27.1 –

ESPNetV2 [25] 284M 3.5M 27.9 –

ProxylessNAS[1] 320M 4.1M 25.4 7.8

ShuffleNetV2+ M. 222M 5.6M 24.3 7.4

CondenseNetV2-C 309M 6.1M 24.1 7.3

SFR-ShuffleNetV2+ M. 229M 5.7M 23.9 7.3

Specifically, our model obtains about 0.5% lower top-1 error

than MobileNetV3 with slightly lower latency. It is notewor-

thy that the power of the tested processor is lower than most

smart mobile phones. We believe that such a speed test is

necessary: although mobile phones and processors with high

performance have been widely deployed and popularized

nowadays, the computational resources of most edge devices,

such as IoT products, are still highly limited. The proposed

CondenseNetV2 outperforms most light-weighted networks

in such a resource-limited scenario.

We further test the inference time on an iPhone XS Max,

which can be considered as a high performance edge device.

3575



Table 6. Comparision of error rate (%) with other state-of-the-art

efficient models on CIFAR-10 and CIFAR-100.

Model FLOPs Params C-10 C-100

ResNet-based

CP [9] 62M - 8.20 -

PFEC [18] 90M 0.73M 6.94 -

LECN [22] 124M 1.21M 5.27 23.91

NISP [38] 142M 0.96M 6.88 -

FPGM [8] 121M - 6.24 -

DenseNet-based

LECN [22] 190M 0.66M 5.19 25.28

CondenseNet [14] 65M 0.52M 5.00 23.64

CondenseNetV2-110 41M 0.48M 4.65 23.94

CondenseNetV2-146 62M 0.78M 4.35 22.52

Our implementation is based on the Pytorch Mobile5. The

results are presented in Figure 9 (c), from which we see

that the SFR-ShuffleNetV2 outperforms other competitors.

Here, only SFR-ShuffleNetV2 are tested because we found

that the Pytorch Mobile might have poor support for group

convolution operator: although CondenseNetV2-A only has

46M FLOPs, its latency on iPhone is still up to 34.6ms.

4.3. Experiments on CIFAR

Implementation details. We apply SGD to train all the

models with similar hyper-parameters setting as in [14].

We use the cosine learning rate annealing with an initial

learning rate of 0.1. The training process lasts for 300 epochs

with a mini-batch size of 64. Other training settings are the

same as the experiments on ImageNet. CondenseNetV2s on

CIFAR follow the configuration listed below. The network

consists of three dense blocks with the same number of

layers, and the resolutions of feature maps are 32×32, 16×16,

and 8×8, respectively. The growth rates are set to 8, 16,

32 for each block. The C, S, and G are all set to 4. We

modify the number of blocks d in each stage to change the

computational complexity of CondenseNetV2. Moreover,

we do not implement SE and HS in CondenseNetV2 for

CIFAR models, and the last Conv2d 1×1 is also removed.

Results on CIFAR. We show the comparison results of

CondenseNetV2s and other competitive baselines in Table

6. The baselines include several recently proposed net-

work pruning algorithms. It can be observed that the Con-

denseNetV2s outperform all other approaches with lower

error rates and less computational costs — indicating that

the effectiveness of the proposed feature reuse mechanisms.

4.4. Experiments on MS COCO

MS COCO [21] is used for evaluating the generaliza-

tion ability of our networks. Following [29], we use the

5https://pytorch.org/mobile/home/.

Table 7. Results on the MS COCO dataset.

Detection

Framework

Backbone Backbone

FLOPs

mAP

ShuffleNetV2 0.5× [24] 41M 22.1

CondenseNetV2-A 46M 23.5

Faster ShuffleNetV2 0.5× [24] 146M 27.4

R-CNN CondenseNetV2-B 146M 27.9

MobileNetV2 1.0× [31] 300M 30.6

ShuffleNetV2 1.5× [24] 299M 30.2

SFR-ShuffleNetV2 1.5× 306M 30.7

CondenseNetV2-C 309M 31.4

RetinaNet

MobileNetV2 [31] 300M 29.7

ShuffleNetV2 1.5× [24] 299M 29.1

CondenseNetV2-C 305M 31.7

trainval35k split as training data and report the results in

mean Average Precision (mAP) on minival split. Faster R-

CNN [29] with Feature Pyramid Networks (FPN) [19] and

RetinaNet [20] are implemented as detection frameworks.

Only backbone networks are replaced during experiments.

Models are pretrained on ImageNet and then finetuned on

the detection task. During finetuning, we train all models

using SGD for 12 epochs. The input images are resized to

a short side of 800 and a long side not exceed 1333. The

backbone FLOPs are calculated with 224×224 input size

following [24]. The detection results are shown in Table 7.

As we can see, with comparable computational cost, our

CondenseNetV2-C achieves higher mAP compared with

ShuffleNetV2 and MobileNetV2, both on RetinaNet and

Faster R-CNN frameworks.

5. Conclusion

In this paper, we proposed a novel sparse feature reac-

tivation module, which can strategically reactivate a set of

previous features to increase their utility for later layers. Im-

portantly, the features to be reactivated are not pre-defined,

but learned automatically during training. Due to the sparsi-

ty of the feature reactivation, this procedure can be highly

computational-efficient. Therefore, the resulting model, Con-

denseNetV2, based on the proposed SFR module can achieve

high efficiency during inference. Encouraging results have

been obtained on the image classification tasks (ImageNet

and CIFAR) and the COCO object detection task, without

resorting to neural architecture search.

Acknowledgement

This work is supported in part by the National Key R&D

Program of China (2020AAA0105200), the National Natural

Science Foundation of China (61906106, 62022048), the

Institute for Guo Qiang of Tsinghua University and Beijing

Academy of Artificial Intelligence.

3576



References

[1] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct

neural architecture search on target task and hardware. In

ICLR, 2019.

[2] Weijie Chen, Di Xie, Yuan Zhang, and Shiliang Pu. All you

need is a few shifts: Designing efficient convolutional neural

networks for image classification. In CVPR, 2019.

[3] François Chollet. Xception: Deep learning with depthwise

separable convolutions. arXiv preprint arXiv:1610.02357,

2016.

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li

Fei-Fei. Imagenet: A large-scale hierarchical image database.

In CVPR, 2009.

[5] Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing

Xu, and Chang Xu. Ghostnet: More features from cheap

operations. In CVPR, 2020.

[6] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui

Wang, and Yulin Wang. Dynamic neural networks: A survey.

arXiv preprint arXiv:2102.04906, 2021.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR, 2016.

[8] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.

Filter pruning via geometric median for deep convolutional

neural networks acceleration. In CVPR, 2019.

[9] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for

accelerating very deep neural networks. In ICCV, 2017.

[10] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh

Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,

Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig

Adam. Searching for mobilenetv3. In ICCV, 2019.

[11] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreet-

to, and Hartwig Adam. Mobilenets: Efficient convolutional

neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[12] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation

networks. In CVPR, 2018.

[13] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens

van der Maaten, and Kilian Q Weinberger. Multi-scale dense

networks for resource efficient image classification. In ICLR,

2018.

[14] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet using

learned group convolutions. In CVPR, 2018.

[15] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional networks.

In CVPR, 2017.

[16] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In ICML, 2015.

[17] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. In Tech Report, 2009.

[18] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

ICLR, 2017.

[19] T. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan, and S.

Belongie. Feature pyramid networks for object detection. In

CVPR, 2017.

[20] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In ICCV,

2017.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft COCO: Common objects in context. In

ECCV, 2014.

[22] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In ICCV,

2017.

[23] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient

descent with warm restarts. In ICLR, 2017.

[24] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.

Shufflenet v2: Practical guidelines for efficient cnn architec-

ture design. In ECCV, 2018.

[25] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and

Hannaneh Hajishirzi. Espnetv2: A light-weight, power effi-

cient, and general purpose convolutional neural network. In

CVPR, 2019.

[26] Fanxu Meng, Hao Cheng, Ke Li, Zhixin Xu, Rongrong Ji,

Xing Sun, and Guangming Lu. Filter grafting for deep neural

networks. In CVPR, June 2020.

[27] Vinod Nair and Geoffrey E Hinton. Rectified linear units

improve restricted boltzmann machines. In ICML, 2010.

[28] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaim-

ing He, and Piotr Dollár. Designing network design spaces.

In CVPR, 2020.

[29] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NeurIPS, 2015.

[30] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large s-

cale visual recognition challenge. International Journal of

Computer Vision, 115(3):211–252, 2015.

[31] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Inverted residuals and linear

bottlenecks: Mobile networks for classification, detection and

segmentation. In CVPR, 2018.

[32] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V. Le. Mnasnet:

Platform-aware neural architecture search for mobile. In

CVPR, 2019.

[33] Xijun Wang, Meina Kan, Shiguang Shan, and Xilin Chen.

Fully learnable group convolution for acceleration of deep

neural networks. In CVPR, 2019.

[34] Yulin Wang, Kangchen Lv, Rui Huang, Shiji Song, Le Yang,

and Gao Huang. Glance and focus: a dynamic approach

to reducing spatial redundancy in image classification. In

NeurIPS, 2020.

[35] Yulong Wang, Xiaolu Zhang, Lingxi Xie, Jun Zhou, Hang Su,

Bo Zhang, and Xiaolin Hu. Pruning from scratch. In AAAI,

2019.

3577



[36] Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and

Kaiming He. Aggregated residual transformations for deep

neural networks. arXiv preprint arXiv:1611.05431, 2016.

[37] Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and

Gao Huang. Resolution adaptive networks for efficient infer-

ence. In CVPR, 2020.

[38] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I

Morariu, Xintong Han, Mingfei Gao, Ching-Yung Lin, and

Larry S Davis. Nisp: Pruning networks using neuron impor-

tance score propagation. In CVPR, 2018.

[39] Sergey Zagoruyko and Nikos Komodakis. Wide residual

networks. In BMVC, 2016.

[40] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. In CVPR, 2018.

[41] Daquan Zhou, Qibin Hou, Yunpeng Chen, Jiashi Feng, and

Shuicheng Yan. Rethinking bottleneck structure for efficient

mobile network design. In ECCV, 2020.

3578


