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Abstract

Rotation detection serves as a fundamental building

block in many visual applications involving aerial im-

age, scene text, and face etc. Differing from the domi-

nant regression-based approaches for orientation estima-

tion, this paper explores a relatively less-studied method-

ology based on classification. The hope is to inherently

dismiss the boundary discontinuity issue as encountered

by the regression-based detectors. We propose new tech-

niques to push its frontier in two aspects: i) new encoding

mechanism: the design of two Densely Coded Labels (DCL)

for angle classification, to replace the Sparsely Coded La-

bel (SCL) in existing classification-based detectors, leading

to three times training speed increase as empirically ob-

served across benchmarks, further with notable improve-

ment in detection accuracy; ii) loss re-weighting: we pro-

pose Angle Distance and Aspect Ratio Sensitive Weighting

(ADARSW), which improves the detection accuracy espe-

cially for square-like objects, by making DCL-based detec-

tors sensitive to angular distance and object’s aspect ratio.

Extensive experiments and visual analysis on large-scale

public datasets for aerial images i.e. DOTA, UCAS-AOD,

HRSC2016, as well as scene text dataset ICDAR2015 and

MLT, show the effectiveness of our approach. The source

code is available at DCL and is also integrated in our open

source rotation detection benchmark: RotationDetection.

1. Introduction

Rotation detection has recently attracted increasing at-

tention for their important utility across different scenarios,

including aerial images, scene text, and faces etc., which

is relatively less studied compared with the vast literature
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in horizental object detectors that do not estimate the exact

rotation while only output the horizontal bounding box.

Many rotation detectors (including those for aerial im-

age [46, 15, 47, 2, 6, 51, 45, 30, 48, 49, 50], scene text [56,

23, 14, 26, 19, 18] and face [34, 13, 33]) are derived based

on the vanilla detection algorithms [10, 32, 31, 5, 20, 21].

Among them, the rotation detection algorithm based on five

parameters ([x, y, h, w, θ]) dominates. Similar to the coor-

dinate regression method in horizontal detection, angle pa-

rameter is also predicted by regression. Although gratifying

results have been achieved, there are still some fundamental

flaws in the orientation estimation based on regression. An-

gle prediction based on regression often introduces bound-

ary discontinuity [51, 30, 48, 49], mainly including period-

icity of angle (PoA) and exchangeability of edges (EoE).

The main reason for the former is the bounded periodic na-

ture of the angle parameter, while the latter is related to the

definition of the bounding box. In general, the root cause is

that the ideal predictions are beyond the defined range. Due

to the sharp increase in the loss at the boundary, the regres-

sion form of the model at the boundary and non-boundary

can not be consistent. Therefore, the model has to pre-

dict the angle in a more complicated form at the boundary,

which increases the burden of the model and also increases

the difficulty of prediction at the boundary. This is fatal for

rotation detection with high precision, especially for objects

with large aspect ratios.

Most existing works aim to eliminate the sudden loss in-

crease by adding constraints on the loss function or chang-

ing the way of calculation, such as IoU Smooth L1 Loss

[51] and Modulated Loss [30], as shown in Table 1. The ad-

vantage is that they can borrow the well developed baselines

from horizontal object detectors and reuse the related tech-

niques to boost the detection performance. However, such

ad-hoc techniques applied on the regression-based detectors

cannot guarantee the full dismiss of boundary discontinu-

ity behavior. To give a more elegant and effective solu-

tion, the more recent work called Circular Smooth Label

(CSL) [48, 49] argues to apply angle classification instead

of regression to address PoA. Then, CSL-based method
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Method Box Def. Angle Pred. PoA EoE SLP Speed mAP50:95

RetinaNet Long-Side Def. Reg. X X X - 31.49

RetinaNet OpenCV Def. Reg. X X × ∼1x 34.50

IoU-Smooth L1 Loss [51] OpenCV Def. Reg. × × × ∼1x 36.23

Modulated Loss [30] OpenCV Def. Reg. × × × ∼1x 34.61

CSL [48] Long-Side Def. Cls.: SCL × × X ∼ 1

3
x 35.04

DCL (BCL) Long-Side Def. Cls.: DCL × × × ∼1x 36.71

Table 1: Comparison between different solutions for peri-

odicity of angle (PoA), exchangeability of edges (EoE) and

square-like problem (SLP) on DOTA val set. The X indi-

cates that the method suffers the corresponding problem.

combines with the long-side definition (five-parameter with

180◦ angular range) of bounding box to further tackle the

EoE problem. The use of ‘CSL+180◦’ 1 leads to a natu-

ral solution to get rid of the boundary discontinuity issue.

As angle classification based detectors are still in its early

stage, there are still many limitations e.g. very heavy pre-

diction layer and difficulty in handling square-like objects.

The former problem is initially explored by the study [49].

This paper is one of the classification-based endeavors in

pushing forward this frontier, with two specific technical

advancements as follows.

First, we adopt two Densely Coded Labels (DCL) in con-

trast to the Sparsely Coded Label (SCL, including CSL,

One-Hot encoding), which has empirically led to notable

training time reduction with meanwhile improved detec-

tion accuracy. To make DCL as sensitive to angle dis-

tance as CSL, we calculate the decimal difference between

the predicted angle and the angle label as a angle distance

aware weight. However, this weight will reintroduce the

PoA problem, and we find that the long-side definition

method is not conducive to the training of square-like ob-

jects. Based on the findings of the above two issues, we de-

sign Angle Distance and Aspect Ratio Sensitive Weighting

(ADARSW), which eliminates the PoA and can be adap-

tively adjusted according to the object’s aspect ratio, which

can greatly reduce the burden of model training. Combing

‘DCL+180◦+ADARSW’ as a whole, extensive experiments

and visual analysis on different datasets and detectors prove

that DCL-based method can be a better baseline choice than

the angle regression-based and CSL-based methods. Our

work makes the following contributions:

1) To improve the robustness especially for objects with

small aspect ratio, we propose Angle Distance and Aspect

Ratio Sensitive Weighting (ADARSW), which further im-

proves accuracy by making our proposed DCL-based de-

tector sensitive to angular distance and object’s aspect ratio.

In contrast, the existing CSL-based detector suffers from its

long-side definition for detecting square-like objects.

2) We compare the impact of two classic Densely Coded

Labels (DCL) by introducing them to the angle classifica-

tion task for potential speedup, namely Binary Coded La-

1Unless otherwise specified, the CSL-based method mentioned in this

paper is based on the long-side definition method.

(a) RetinaNet-Reg (b) RetinaNet-CSL

(c) RetinaNet-BCL (d) RetinaNet-GCL

Figure 1: Comparison of four rotation detectors in the

boundary case. Red bounding boxes indicate some bad de-

tection cases (zoom in for better view).

bel (BCL) and Gray Coded Label (GCL), which are more

compact than existing CSL. Though GCL has been partly

studied in [49], while this paper presents a more thorough

investigation especially for BCL. We empirically show that

DCL, especially BCL can lead to notable training speed

boost (about three times) as well as detection accuracy.

3) Extensive experiments and visual analysis on different

datasets and detectors prove the efficacy of our techniques.

It outperforms state-of-the-art CSL-based detector [48] by:

77.37% vs. 76.17% on DOTA dataset.

2. Related Work

Horizontal Object Detection Object detection is a fun-

damental task in the field of computer vision, and it has

developed rapidly in recent years. Classic convolutional

neural networks (CNN) based detectors can mainly be

divided into two categories: two-stage object detectors

[10, 32, 5, 20] and single-stage object detectors [31, 22, 21].

Two-stage methods are based on region proposal and have

achieved promising results on some benchmarks, whereas

single-stage approaches simplify detection as a regression

problem to maintain a faster speed. Compared to anchor-

based methods, many anchor-free based methods have be-

come extremely popular in recent years. CornerNet [17],

FCOS [36], CenterNet [7] and ExtremeNet [57] attempt to

predict some keypoints of objects such as corners or ex-

treme points, which are then grouped into bounding boxes.

What is even more surprising is that DETR [3] has con-

structed a new object detection paradigm based on trans-

former [37], which achieves anchor free and non maxi-
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Figure 2: The relationship between the various angle en-

coding methods.

mum suppression (NMS) free at the same time. However,

horizental object detectors cannot provide accurate orienta-

tion and scale information, so they cannot be directly ap-

plied to some specific scenes, such as aerial images and

scene text.

Rotation Object Detection Rotation detectors are mainly

applied in the aerial images and scene text. Recent ad-

vances in multi-oriented object detection are mainly driven

by adaption of classical object detectors using rotated

bounding boxes or quadrangles to represent multi-oriented

objects. In the aerial imagery scene, ICN [2], ROI-

Transformer [6], CAD-Net[54], SCRDet [51], R3Det [45],

and CSL [48] achieve promising performance. Gliding Ver-

tex [44] and RSDet [30] achieve more accurate object de-

tection through quadrilateral regression prediction. RRPN

[26], TextBoxes++ [18] and RRD [19] and FOTS [23] are

some advanced methods for scene text detection. However,

most of the above regression-based arbitrary-oriented meth-

ods focus on the prediction of angle using regression yet

ignore the boundary discontinuity. Although SCRDet and

RSDet solve the boundary discontinuity from the perspec-

tive of the loss function, they are not truly boundary discon-

tinuity free methods. CSL-based detector is a new bound-

ary discontinuity free rotation detector, which transforms

angular prediction from a regression problem to a classi-

fication problem. However, CSL-based method needs to

face two obvious shortcomings: heavy prediction layer and

unfriendly to square-like objects. In this paper, we aim to

solve the above problems from the two perspectives of en-

coding form and loss function weight.

3. Mitigating Boundary Discontinuity by Clas-

sification

The boundary discontinuity [51, 48, 49] usually refers

to the sharp loss increase of the regression-based rotation

detector at the boundary situation, which makes the model

unable to perform regression prediction in the same ideal

and simple form at the boundary as at the non-boundary.

The reasons for the boundary discontinuity are related to the

(a) DCL: Binary Coded Label

(b) SCL: One-Hot Label (c) SCL: Circular Smooth Label

Figure 3: Examples of encoding and decoding process of

One-Hot, CSL-Gaussian and BCL for angle prediction.

definition of the object bounding box. The work [48] sum-

marizes several commonly used bounding box definitions

and the causes of boundary discontinuity corresponding to

these methods. Details are as follows:

1) Five-parameter method with 90◦ angular range

(OpenCV definition method): mainly including periodicity

of angular (PoA) and exchangeability of edges (EoE).

2) Five-parameter method with 180◦ angular range

(long-side definition method): mainly suffer from period-

icity of angular.

3) Eight-parameter method: sorting of the four corners.

The main cause of boundary discontinuity based on re-

gression methods is that the ideal predictions are beyond

the defined range. As a consequence, the detection result at

the boundary of the detector that has not solved the bound-

ary discontinuity often shows inaccurate angle prediction,

as shown in the red bounding boxes in Figure 1(a). Different

solutions are proposed, such as constraining the loss func-

tion [30, 51], changing the angle prediction form [48, 49],

etc. Although some progress has been made, these methods

have their own weaknesses. Many current methods have not

notice or eliminate boundary discontinuity from method de-

sign. A true boundary discontinuity free detector will pro-

vide a more robust high-performance baseline, so designing

such detector is a valuable research direction.

4. Proposed Method

In this section, we first give a retrospection to the re-

cent classification-based rotation detectors namely Circu-

lar Smooth Label (CSL) [48], pointing out its limitation in

achieving a cost-efficient detector. Then we propose our so-

called Densely Coded Label (DCL) technique to improve

the efficiency and also develop the Angle Distance and As-

pect Ratio Sensitive Weighting technique, to improve its

sensitivity to small aspect ratio objects. Figure 2 shows the

relationship between various angle encoding methods.
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(a) Ground Truth (b) Prediction after using ADARSW

Figure 4: Illustration for the limitation of the long-edge def-

inition method on the square-like objects. High IoU, but

large training loss due to angle difference.

4.1. Rethinking on Sparsely Coded Label Encoding

Instead of using the regression-based loss function, the

Circular Smooth Label (CSL) [48] detectors have been re-

cently proposed which transform rotation detection to a

classification task such that the boundary issue naturally

disappear. The CSL-based detectors adopt the so-called

Sparsely Coded Label (SCL) encoding technique [48] to

discretize the angle into a finite number of intervals, and

then predicts a discrete angle by classification2. Equation 1

describes the angle prediction process in CSL:

Encode: CSL(−Round((θgt − 90)/ω))

Decode: 90− ω(Argmax(Sigmoid(logits)) + 0.5)
(1)

where θgt presents the angle decimal label, ω = AR/Cθ

indicates the angle discretization granularity. AR and Cθ

represents angle range (the default value is 180) and the

number of angle categories, respectively.

Figure 3(b) and Figure 3(c) show examples of encoding

and decoding process of One-Hot and CSL-Gaussian for an-

gle prediction, both of which are embodiments of the SCL

encoding. Although the combined techniques ‘CSL+180◦’

can well eliminate the impact of boundary discontinuity, it

also brings two thorny problems that hurt the efficiency and

efficacy: i) a very heavy prediction layer and ii) unfriendli-

ness to objects with small aspect ratio.

Thick prediction layer. Equation 2 compares the pre-

diction layer thickness of three angle prediction methods:

Threg. =A

Thonehot =Thcsl = A×AR/ω
(2)

where A indicates the number of anchors.

Taking A = 9, AR = 180, w = 1 as an exam-

ple, the thickness of the prediction layer required by CSL

and One-Hot is 1, 620, while the thickness of regression-

based approach is only 9. From the perspective of GFlops

2CSL can only solve the PoA, and the EoE problem can be solved by

the 180
◦ angular definition method (recall the discussion in Section ??).

Base Model ω GFlops ∆GFlops Params (M) ∆Params Training Time

RetinaNet-Reg - 139.35 - 36.97 - -

RetinaNet-CSL 1 254.96 +82.96% 45.63 +23.42% ∼3x

RetinaNet-BCL 1 143.87 +3.24% 37.31 +0.92% ∼1x

RetinaNet-GCL 1 143.87 +3.24% 37.31 +0.92% ∼1x

Table 2: Comparison of GFlops and Param over rotation

detectors, under the same setting and hyperparameters.

and Param, detectors based on CSL have increased by

about 82.96% and 45.63% respectively. In addition, the

training time of RetinaNet-CSL is three times longer than

regression-based detector, as shown in Table 2.

Unfriendliness to small aspect ratio objects. Five-

parameter method with 180◦ angular range is a widely

used rectangular definition (long-side definition method,

[x, y, h, w, θ]) without EoE problem. The θ is determined

by the long side (h) of the rectangle and x-axis. How-

ever, this definition method is not suitable for square-like

box and will suffer a special problem, as shown in Figure 4.

Figure 4(a)-4(b) are ground truth and candidate prediction

bounding box with an aspect ratio close to 1, and their an-

gles are 70.6◦ and −19.7◦, respectively. By calculating the

Intersection-over-Union (IoU) and regression (e.g. smooth

l1) or classification (e.g. CSL) loss of these two boxes, we

find that the IoU between them is close to 1, but a relatively

large loss value is produced. This loss value mainly comes

from the angle parameter. Therefore, the prediction results

in Figure 4(b) are not allowed by the model, which is too

harsh and increases the model’s difficulty in predicting ob-

jects with small aspect ratio. In fact, this phenomenon be-

comes less noticeable as the aspect ratio increases. For the

definition of square-like objects, using the OpenCV defini-

tion method with a period of 90◦ can effectively avoid this

problem, but it will introduce EoE problems.

4.2. Densely Coded Label

The introduction of excessive amount of parameters and

the unfriendliness to square-like objects seriously hurts the

applicability of classification based rotation detectors. In

this section, we will solve the above problems from the two

perspectives of encoding form and loss function weight.

Binary Coded Label (BCL) [12] and Gray Coded Label

(GCL) [8, 49] are two Densely Coded Label (DCL) meth-

ods commonly used in the field of electronic communica-

tion. Their advantage is that they can represent a larger

range of values with less coding length. Thus, they can

effectively solve the problem of excessively long coding

length in CSL and One-Hot based methods. The predic-

tion layer thickness of BCL and GCL based methods are

calculated as follows:

Thbcl = Thgcl
︸ ︷︷ ︸

THdcl

=A× ⌈log
2
(AR/ω)⌉

(3)

Under the same setting of A = 9, AR = 180, w = 1,
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Algorithm 1 Binary Coded Label (BCL) [12]

Input: angle range AR, discretization granularity ω.

Output: A list L containing all binary coded labels;

L = [], n = ⌈log
2
(AR/ω)⌉ # coding length;

for i in AR do

bcl = Bin(i, n) # generate n-bit binary code;

L.append(bcl);
end for

Return L;

the coding length of DCL is only 72. According to Table

2, GFlops and Param only increase by 3.24% and 0.92%.

The training time is almost the same as the regression-based

method. The performance comparison between regression-

based, CSL-based and DCL-based methods can quickly re-

fer to Figure 1(b)-1(d) and Table 4.

Algorithm 1-2 describe the pseudo codes that generate

all n-bit gray and binary coded labels. BCL processes the

angle by binarization to obtain a string of codes represented

by multiple ‘0’ and ‘1’. Although the coding length is

greatly reduced, there may be huge changes in the coding

results between adjacent values, that is, there is no classi-

fication tolerance mentioned in the CSL. For example, the

three-bit binary coding results of the values ‘3’ and ‘4’ are

‘011’ and ‘100’, respectively. It can be seen that all three

positions have changed, resulting in a very large difference

in the loss value of the two angle predictions. GCL can

solve this problem [49]. In the encoding of a group of num-

bers, if any two adjacent codes differ only by one binary

number, then this kind of encoding is called Gray Code.

Due to only one digit is different between the maximum

number and the minimum number, it is also called Cyclic

Code. The coding results of ‘3’ and ‘4’ in the GCL method

are ‘010’ and ‘110’. Table 3 compares the coding results of

BCL and GCL. The shortcomings of GCL are also obvious.

Although the encoding forms between adjacent angles are

not much different, which makes GCL also have a certain

classification tolerance, the encoding differences of angles

with large differences are not very significant, such as ‘1

(001)’ and ‘6 (101)’. In summary, these two methods are

agnostic or partially agnostic to the angle distance.

In the DCL-based method, only the number of categories

is a power of 2 to ensure that each coding corresponds to a

valid angle. For example, if the 180 degree range is di-

vided into 28 = 256 categories, then the range of each

division interval is ω = 180/256 = 0.703125◦. Accord-

ing to the Max(error) = ω/2 and E(error) = ω/4 pro-

posed in work [48], the maximum and expected accuracy

error are only 0.3515625◦ and 0.17578125◦, whose influ-

ence on final detecton accuracy can be negligible. However,

the above condition is not necessary. We find that even with

some redundant invalid codes, there is no significant drop

in final performance. Equation 4 specifies the encoding and

Algorithm 2 Gray Coded Label (GCL) [8]

Input: coding length n = ⌈log
2
(AR/ω)⌉ (AR and ω mean

angle range and discretization granularity).

Output: A list L containing all gray coded labels.

if n = 1 then

Return [′0′,′ 1′];
else

L1 = GCL(n− 1) # recursive call;

L2, L3, L4 = L1.reverse(), [], [];
for s1 in L1 do

L3.append(′0′ + s1);
end for

for s2 in L2 do

L3.append(′1′ + s2);
end for

L = concat(L3, L4);
end if

Return L;

Decimal Number 0 1 2 3 4 5 6 7

Binary Coded Label 000 001 010 011 100 101 110 111

Gray Coded Label 000 001 011 010 110 111 101 100

Table 3: The three-digit binary code and gray code corre-

sponding to the decimal number.

decoding process of DCL (take BCL as an example):

Encode: Bin(−Round((θgt − 90)/ω))

Decode: 90− ωInt(Round(Sigmoid(logits)))
(4)

Figure 3(a) gives an example which also takes BCL as

an embodiment. In the decoding process, the threshold for

converting the predicted logits into binary coding is 0.5.

4.3. ADARSW

To make the model sensitive to the distance of the angle,

we calculate the decimal difference between the predicted

angle and the angle label as an angle distance aware weight.

The specific formula is designated as follows:

W (∆θ) = log(|∆θ|+ 1) = log(|θgt − θpred|+ 1)

θpred =Decodedcl(logits)
(5)

where ∆θ denotes the decimal difference between the pre-

dicted angle (θpred) and the angle label (θgt). logits repre-

sents the prediction vector of the angle.

However, the above-mentioned angle distance aware

weight reintroduces the PoA problem. Take θgt =
−90, θpred = 89 as an example, although the angle of the

two bounding boxes are very close, a very large weight

is calculated. Therefore, we consider adding a periodic

trigonometric function to solve this problem. As discussed

in Section 4.1, the square-like object is not suitable to be

defined by the long-side definition method. We propose an
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Angle Distance and Aspect Ratio Sensitive Weighting as

ADARSW, as shown in Equation 6:

W ∗(∆θ) =| sin(α(∆θ))| = | sin(α(θgt − θpred))|

α =

{
1, (hgt/wgt) > r
2, otherwise

(6)

where hgt and wgt are the long and short sides of ground

truth. r is the aspect ratio threshold, the default value is 1.5.

When the object has a certain aspect ratio, the period of

| sin(α(θgt − θpred))| is set to 180◦ (α = 1), and when

the object is square-like, the period becomes 90◦ (α = 2).

Thus, the model can solve the PoA and can flexibly adjust

the training strategy for different aspect ratio objects. The

DCL-based angle classification loss is as follows:

Ldcl(θgt, logits) = FL(Encodedcl(θgt), logits)×W ∗(∆θ)
(7)

where FL indicates focal loss [21].

4.4. Loss Function

For RetinaNet-based rotation detection, we use five pa-

rameters (x, y, h, w, θ) to represent arbitrary-oriented rect-

angle. Ranging in [−π/2, π/2), the θ is determined by the

long side (h) of the rectangle and x-axis. For DCL based

method, it calls for an additional angle classification pre-

diction layer. The other four parameters are predicted by

regression, the regression formula is as follows:

tx = (x− xa)/wa, ty = (y − ya)/ha

tw = log(w/wa), th = log(h/ha)

t
′

x = (x
′

− xa)/wa, t
′

y = (y
′

− ya)/ha

t
′

w = log(w
′

/wa), t
′

h = log(h
′

/ha)

(8)

where x, y, h, w denote the box’s center coordinates, height

and width respectively. Variables x, xa, x
′

are for the

ground-truth box, anchor box, and predicted box, respec-

tively (likewise for y, w, h).

The multi-task loss is used which is defined as follows:

L =
λ1

N

N∑

n=1

objn
∑

j∈{x,y,h,w}

Lreg(v
′

nj , vnj)

+
λ2

N

N∑

n=1

objnLdcl(θgt, logits) +
λ3

N

N∑

n=1

Lcls(pn, tn)

(9)

where N indicates the number of anchors, objn is a binary

value (objn = 1 for foreground and objn = 0 for back-

ground, no regression for background). v
′

∗j denotes the

predicted offset vectors, v∗j is the targets vector of ground

truth. tn represents the label of object, pn is the probability

distribution of various classes calculated by sigmoid func-

tion. The hyper-parameter λ1, λ2, λ3 control the trade-off

and are set to {1, 0.5, 0.1} by default. The classification loss

Lcls is focal loss [21]. The regression loss Lreg is smooth

L1 loss as used in [10].

Method BR SV LV SH HA 5-mAP50 mAP50

RetinaNet-Reg 38.31 60.48 49.77 68.29 51.28 53.63 64.17

RetinaNet-CSL 40.55 66.77 51.50 73.60 53.76 57.24 (+3.61) 65.69 (+1.52)

RetinaNet-BCL 41.58 67.98 57.34 74.66 54.28 59.17 (+5.54) 66.53 (+2.36)

RetinaNet-GCL 42.55 68.38 56.40 73.53 54.36 59.04 (+5.41) 66.27 (2.10)

Table 4: Ablation study of four orientation detectors on

DOTA test dataset. 5-mAP50 means the performance of the

five categories listed. The number in parentheses indicates

the performance gain compared to the RetinaNet-Reg.

5. Experiments

We use Tensorflow [1] to implement the proposed meth-

ods on a server with GeForce RTX 2080 Ti and 11G mem-

ory. The experiments in this article are initialized by

ResNet50 [11] by default unless otherwise specified. We

perform experiments on both aerial benchmarks and scene

text benchmarks to verify the generality of our techniques.

Weight decay and momentum are set 0.0001 and 0.9, re-

spectively. We employ MomentumOptimizer over 4 GPUs

with a total of 4 images per minibatch (1 images per GPU).

5.1. Datasets and Protocls

DOTA [42] is comprised of 2,806 large aerial images

from different sensors and platforms. Objects in DOTA

exhibit a wide variety of scales, orientations, and shapes.

These images are then annotated by experts using 15 object

categories. The fully annotated DOTA benchmark contains

188,282 instances, each of which is labeled by an arbitrary

quadrilateral. Half of the original images are randomly se-

lected as the training set, 1/6 as the validation set, and 1/3 as

the testing set. We divide the images into 600× 600 subim-

ages with an overlap of 150 pixels and scale it to 800×800.

With all these processes, we obtain about 20,000 training

and 7,000 validation patches.

UCAS-AOD [58] contains 1,510 aerial images of ap-

proximately 659 × 1, 280 pixels, with two categories of

14,596 instances in total. In line with [2, 42], we randomly

select 1,110 for training and 400 for testing.

HRSC2016 [25] contains images from two scenarios in-

cluding ships on sea and ships close inshore. The training,

validation and test set include 436, 181 and 444 images.

ICDAR2015 [16] is commonly used for oriented scene

text detection and spotting. This dataset includes 1,000

training images and 500 testing images.

ICDAR 2017 MLT [27] is a multi-lingual text dataset,

which includes 7,200 training images, 1,800 validation im-

ages and 9,000 testing images. The dataset is composed of

complete scene images in 9 languages, and text regions in

this dataset can be in arbitrary orientations, being more di-

verse and challenging.

All the used datasets are trained by 20 epochs in total,

and learning rate is reduced tenfold at 12 epochs and 16

epochs, respectively. The initial learning rates for Reti-
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(a) ω = 180/4 (b) ω = 180/32

(c) ω = 180/128 (d) ω = 180/256

Figure 5: Visualization of detection results under differ-

ent angle discretization granularity ω. The red and green

bounding box indicate ground truth and prediction.

naNet is 5e-4. The number of image iterations per epoch for

DOTA, UCAS-AOD, HRSC2016, ICDAR2015, and MLT

are 54k, 5k, 10k, 10k, 10k and 10k respectively, and dou-

bled if data augmentation and multi-scale training are used.

5.2. Ablation Study

Comparison of four object orientation detectors. Ta-

ble 4 compares the performance of a regression based detec-

tor: RetinaNet-Reg and three classification based detectors:

RetinaNet-CSL, RetinaNet-BCL and RetinaNet-GCL. We

mainly focus on comparing five categories with large aspect

ratios and more boundary conditions. It can be clearly seen

that classification based detector outperforms those based

on regression, with about 1.5%-2.3% and 3.6%-5.5% gain

in overall performance (mAP50) and five categories perfor-

mance (5-mAP50). More importantly, the performance of

the DCL-based detector is nearly three times faster than the

CSL-based detector, and the performance can still be further

improved by about 2% and 0.8% in 5-mAP50 and mAP50.

Figure 1 shows the visual qualitative comparison of the four

methods under boundary conditions. We can fully draw the

conclusion that the orientation estimation based on classifi-

cation is a boundary discontinuity free method.

Angle discretization granularity. In general, the

smaller ω, the higher theoretical upper bound of the model’s

performance. However, the decrease of ω will lead to an

increase in the number of angle categories, which poses

a challenge to the angle classification performance of the

model. Therefore, we need to explore the impact of ω on

the detection performance under different IoU thresholds,

and find a suitable range of ω. In order to get the perfor-

mance indicators under different IoU threshold, we conduct

experiments on the DOTA validation set, and the number

of image iterations per epoch is 20k. According to Table

5, when the number of angle categories is between 32 and

128, the performance of the model reaches its peak. If the

number of categories is too small, the theoretical accuracy

loss is too large, resulting in a sharp drop in performance;

if the number of categories is too large, the angle classifica-

Method ω BR SV LV SH HA 5-mAP50 mAP50 mAP75 mAP50:95

Reg - 34.52 51.42 50.32 73.37 55.93 53.12 62.21 26.07 31.49

CSL 180/180 35.94 53.42 61.06 81.81 62.14 58.87 64.40 32.58 35.04

BCL

180/4 30.74 40.54 50.98 72.07 59.54 50.77 62.38 24.88 31.01

180/8 36.65 52.58 60.46 82.24 61.60 58.71 66.17 33.14 35.77

180/32 39.83 54.41 60.62 80.81 60.32 59.20 65.93 35.66 36.71

180/64 38.22 54.70 60.16 80.75 60.11 58.79 65.00 34.31 36.00

180/128 36.76 53.73 61.35 82.52 58.42 58.56 65.14 34.28 35.69

180/180 37.42 53.72 58.70 80.73 63.31 58.78 65.83 33.94 36.35

180/256 37.66 53.83 60.66 80.43 60.74 58.66 64.97 33.52 35.21

180/512 37.93 53.85 58.52 80.04 60.87 58.24 64.88 33.09 34.99

GCL

180/4 30.90 41.20 48.30 72.93 60.16 50.70 62.98 23.83 30.81

180/8 36.88 51.10 59.81 82.40 61.57 58.35 65.23 33.92 35.29

180/32 38.04 54.77 60.88 82.75 61.24 59.54 65.11 34.67 36.15

180/64 38.05 54.36 60.59 81.84 60.39 59.05 64.78 33.23 35.67

180/128 37.74 54.36 59.43 81.15 60.51 58.64 66.13 33.65 36.34

180/256 35.81 53.78 58.35 81.45 59.84 57.85 64.87 33.77 35.97

180/512 37.99 54.23 61.61 80.84 62.13 59.36 64.34 34.08 35.92

Table 5: Comparison of detection results under different an-

gle discretization granularities denoted by ω.

Method ADARSW PL BD GTF TC BC ST SBF RA SP HC 10-mAP50 mAP50

BCL
88.63 71.62 65.18 90.70 76.32 78.47 52.26 60.25 66.61 49.15 69.92 66.53

X 88.92 72.11 66.32 90.79 79.86 79.03 54.11 63.18 67.86 60.04 72.22 67.39

GCL
88.52 73.58 64.38 90.80 77.66 76.38 50.84 59.46 65.83 48.42 69.59 66.27

X 88.96 75.20 65.24 90.78 79.13 77.95 55.60 61.90 66.18 56.27 71.72 67.02

Table 6: ADARSW on small aspect ratio objects in DOTA.

Method ICDAR2015
UCAS-AOD

MLT
car(07/12) plane(07/12) mAP50 (07/12)

Reg. 82.38 87.28/90.79 90.42/97.52 88.85/94.16 64.01

CSL 83.81 88.09/92.93 90.38/97.22 89.23 /95.07 65.08

BCL 83.17 88.15/92.35 90.57/97.86 89.36/95.10 65.26

Table 7: More results of classification and regression-based

methods. 2007 or 2012 in bracket means using the 2007

or 2012 evaluation metric. ResNet101, data augmentation,

multi-scale training and testing are used.

tion network of the model cannot be effectively processed

and the performance will decrease slightly. Figure 5 shows

the comparison of angle estimates under different ω.

Redundant invalid coding. To make each code have

a corresponding different angle value, the number of cat-

egories must be a power of 2 in the DCL-based method.

However, this is not required. When we only set 180 cate-

gories, about 76 codings are invalid, but BCL-based method

can still achieve good performance, at 36.35% as shown in

Table 5. We also artificially increase the length based on the

theoretical shortest code length to increase the proportion of

invalid codes, and the performance is only slightly reduced.

Angle Distance and Aspect Ratio Sensitive Weighting.

We mainly focus on comparing ten categories with small as-

pect ratio in Table 6 to verify the effectiveness of ADARSW.

Under the same environment and hyperparameters, we add

ADARSW to the BCL and GCL based methods, which in-

crease by 2.3% and 2.13% in ten categories performance

(10-mAP50). The overall performance has also increased to

67.39% and 67.02%. After ADARSW is used, the model

can predict the bounding box as shown in Figure 4(b).

Comparison on more datasets and detectors. Table 7

further verifies the performance advantage of DCL based

methods than CSL and regression based method on more

datasets, including the text dataset ICDAR2015, MLT, and

another remote sensing dataset UCAS-AOD. It is worth not-

ing that the comparison results are based on large back-
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Method Backbone MS PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP50

T
w

o
-s

ta
g

e
m

et
h

o
d

s

ICN [2] ResNet101 X 81.40 74.30 47.70 70.30 64.90 67.80 70.00 90.80 79.10 78.20 53.60 62.90 67.00 64.20 50.20 68.20

RoI-Transformer [6] ResNet101 X 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

CAD-Net [54] ResNet101 87.8 82.4 49.4 73.5 71.1 63.5 76.7 90.9 79.2 73.3 48.4 60.9 62.0 67.0 62.2 69.9

SCRDet [51] ResNet101 X 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61

Gliding Vertex [44] ResNet101 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02

Mask OBB [38] ResNeXt101 [43] X 89.56 85.95 54.21 72.90 76.52 74.16 85.63 89.85 83.81 86.48 54.89 69.64 73.94 69.06 63.32 75.33

FFA [9] ResNet101 X 90.1 82.7 54.2 75.2 71.0 79.9 83.5 90.7 83.9 84.6 61.2 68.0 70.7 76.0 63.7 75.7

APE [59] ResNeXt101 89.96 83.62 53.42 76.03 74.01 77.16 79.45 90.83 87.15 84.51 67.72 60.33 74.61 71.84 65.55 75.75

CenterMap OBB [39] ResNet101 X 89.83 84.41 54.60 70.25 77.66 78.32 87.19 90.66 84.89 85.27 56.46 69.23 74.13 71.56 66.06 76.03

FPN-CSL [48] ResNet152 X 90.25 85.53 54.64 75.31 70.44 73.51 77.62 90.84 86.15 86.69 69.60 68.04 73.83 71.10 68.93 76.17

S
in

g
le

-s
ta

g
e

m
et

h
o

d
s

PIoU [4] DLA-34 [53] 80.9 69.7 24.1 60.2 38.3 64.4 64.8 90.9 77.2 70.4 46.5 37.1 57.1 61.9 64.0 60.5

O2-DNet [40] Hourglass104 [28] X 89.31 82.14 47.33 61.21 71.32 74.03 78.62 90.76 82.23 81.36 60.93 60.17 58.21 66.98 61.03 71.04

BBAVectors [52] ResNet101 X 88.35 79.96 50.69 62.18 78.43 78.98 87.94 90.85 83.58 84.35 54.13 60.24 65.22 64.28 55.70 72.32

DRN [29] Hourglass104 X 89.71 82.34 47.22 64.10 76.22 74.43 85.84 90.57 86.18 84.89 57.65 61.93 69.30 69.63 58.48 73.23

R3Det [45] ResNet152 89.49 81.17 50.53 66.10 70.92 78.66 78.21 90.81 85.26 84.23 61.81 63.77 68.16 69.83 67.17 73.74

RSDet [30] ResNet152 90.1 82.0 53.8 68.5 70.2 78.7 73.6 91.2 87.1 84.7 64.3 68.2 66.1 69.3 63.7 74.1

RetinaNet-DCL (Ours) ResNet152 X 89.10 84.13 50.15 73.57 71.48 58.13 78.00 90.89 86.64 86.78 67.97 67.25 65.63 74.06 67.05 74.06

R3Det-DCL (Ours) ResNet152 89.78 83.95 52.63 69.70 76.84 81.26 87.30 90.81 84.67 85.27 63.50 64.16 68.96 68.79 65.45 75.54

R3Det-DCL (Ours) ResNet101 X 89.14 83.93 53.05 72.55 78.13 81.97 86.94 90.36 85.98 86.94 66.19 65.66 73.72 71.53 68.69 76.97

R3Det-DCL (Ours) ResNet152 X 89.26 83.60 53.54 72.76 79.04 82.56 87.31 90.67 86.59 86.98 67.49 66.88 73.29 70.56 69.99 77.37

Table 8: Detection accuracy on different objects (AP50) and overall performance (mAP50) evaluation on DOTA. MS indicates

that multi-scale training or testing is used. The coding mode of DCL in Table 8-9 is BCL.

(a) ω = 180/4 (b) ω = 180/8

Figure 6: Angular feature visualization of the RetinaNet-

DCL. The red dotted lines divide the different categories.

bone, data augmentation, and multi-scale training and test-

ing. We can still draw the conclusions: classification is bet-

ter than regression for orientation estimation; DCL outper-

forms CSL in most cases. To verify the portability of DCL,

we also conduct experiments on R3Det. As shown in Table

8, DCL can still make R3Det get 1.8% improvement under

the use of large backbone and data augmentation.

Visual analysis of angular features. To further analyze

the angle classification ability of the model, we use the prin-

cipal component analysis (PCA) [41] to visualize each pos-

itive angle feature vector. We show the visualization results

when the number of angle categories are 4 and 8, as shown

in Figure 6. This proves that it is feasible to use classifi-

cation for orientation estimation, even if only the simplest

cross-entropy loss function is used.

5.3. Comparison with State­of­the­Art Methods

We choose DOTA as the main comparison dataset due

to the complexity of the aerial image and the large number

of small, cluttered and rotated objects. As shown in Ta-

ble 8, through data augmentation, multi-scale training and

testing commonly used by other published advanced meth-

ods, R3Det-DCL-ResNet152 can achieve competitive per-

formance, about 77.37%. The HRSC2016 contains lots of

Method Backbone mAP50 (07) mAP50 (12)

R2CNN [14] ResNet101 73.07 79.73

RC1 & RC2 [25] VGG16 75.7 –

RRPN [26] ResNet101 79.08 85.64

R2PN [55] VGG16 [35] 79.6 –

RetinaNet-H [45] ResNet101 82.89 89.27

RRD [19] VGG16 84.3 –

RoI-Transformer [6] ResNet101 86.20 –

Gliding Vertex [44] ResNet101 88.20 –

BBAVectors [52] ResNet101 88.6 –

DRN [29] Hourglass104 – 92.70

CenterMap OBB [39] ResNet50 – 92.8

SBD [24] ResNet50 – 93.70

RetinaNet-R [45] ResNet101 89.18 95.21

R3Det [45] ResNet101 89.26 96.01

R3Det-DCL (Ours) ResNet101 89.46 96.41

Table 9: Detection accuracy on HRSC2016.

large aspect ratio ship instances with arbitrary orientation,

which poses a huge challenge to the positioning accuracy of

the detector. Table 9 shows that our model achieves state-

of-the-art performances: 89.46% (96.41%).

6. Conclusion

This paper develops the line of research in classifi-

cation based methodology for rotation detection in two

folds: i) for the prediction layer, two Densely Coded La-

bels (DCL) techniques are devised by shortening the code

length to achieve a more light-weighted prediction layer.

They both accelerate the training speed of the recently pro-

posed Sparsely Coded Label model in orientation classifi-

cation based detectors notably. ii) We further propose the

technique called Angle Distance and Aspect Ratio Sensitive

Weighting (ADARSW), which further improves the perfor-

mance by making DCL-based detector sensitive to angular

distance and object’s aspect ratio. Extensive experiments

on different detectors and datasets show competitive perfor-

mance regarding with both accuracy and efficiency.
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