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Figure 1. Top: Sample input video frames and articulated shapes recovered by our method (LASR). Bottom: Comparison with existing

methods, where the input to each method (either video or image) is denoted at the top left, and the shape template being used is denoted

at the bottom right of each result. Many existing approaches on nonrigid shape reconstruction heavily rely on category-specific 3D shape

templates, such as SMPL for human [33, 35] and SMAL for quadrupeds [6, 58]. In contrast, LASR jointly recovers the object shape,

articulation, and camera parameters from a monocular video without using category-specific shape templates. By relying on generic shape

and motion priors, LASR applies to a wider range of nonrigid shapes and yields high-fidelity 3D reconstructions: It recovers both humps

of the camel, which are missing from other methods. It also recovers the silk ribbon of the dancer (as denoted by the blue box), which

confuses SMPLify-X and VIBE as the right arm. Please refer to video results on our project page.

Abstract

Remarkable progress has been made in 3D reconstruc-

tion of rigid structures from a video or a collection of im-

ages. However, it is still challenging to reconstruct nonrigid

structures from RGB inputs, due to its under-constrained

nature. While template-based approaches, such as para-

metric shape models, have achieved great success in mod-

eling the “closed world” of known object categories, they

cannot well handle the “open-world” of novel object cat-

egories or outlier shapes. In this work, we introduce a

template-free approach to learn 3D shapes from a sin-

gle video. It adopts an analysis-by-synthesis strategy that

forward-renders object silhouette, optical flow, and pixel

values to compare with video observations, which generates

gradients to adjust the camera, shape and motion parame-

ters. Without using a category-specific shape template, our

method faithfully reconstructs nonrigid 3D structures from

videos of human, animals, and objects of unknown classes.

Our code is available at lasr-google.github.io.

∗Work done in an internship at Google.

1. Introduction

Perceiving and modeling the geometry and dynamics of

3D entities is an open research problem in computer vision

and has numerous applications. One fundamental challenge

is the under-constrained nature of the problem: from lim-

ited 2D image measurements, there exist multiple interpre-

tations of the geometry and motion of the 3D world.

A recent and promising trend for addressing this chal-

lenge is exploiting data priors, which have proven quite suc-

cessful for high-level vision tasks, such as image classifica-

tion and object detection [13, 31]. However, in contrast to

high-level vision tasks, it is often costly to obtain 3D an-

notations for real-world entities. For example, SMPL [33]

is learned from thousands of registered 3D scans of human.

SMAL [58] is learned from scans of animal toys and a man-

ually rigged mesh model. It involves nontrivial efforts to

collect such data for an arbitrary object category. There-

fore, existing methods often fail to capture objects of novel

or unknown classes, and hallucinate an average 3D structure

based on the category shape prior, as shown in Fig. 1.

Interestingly, remarkable progress has been made in the

field of SLAM and structure-from-motion without relying
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on strong shape priors by taking advantage of multiview

data recordings. However, such results are limited to static

scenes. We explore an intermediate regime between these

two extremes: Can one reconstruct an articulated shape

from video data without relying on template priors?

Why videos? To reconstruct 3D object shape from im-

ages, prior work learns category-specific shape models ei-

ther from 3D data [17, 41] or from 2D supervision, such

as object silhouette and keypoints in a large image collec-

tion [10, 18, 23, 30]. However, 3D data are generally dif-

ficult to acquire at a large scale due to sensor design. Al-

though it is easier to collect images of the same category,

enforcing multiview constraints is often challenging, due to

ambiguities of associating 2D observations across instances

and under different viewpoints [11, 39]. Video serves as

an alternative to depth scans and image collections – videos

are easier to acquire, and provide well-defined multiview

constraints on the 3D shape of the same instance.

Why optical flow? To solve the inverse problem, prior

work discussed various forms of 2D constraints or super-

vision, such as object silhouette, texture, 2D keypoints,

and semantic parts [4, 18, 23, 30]. Why should motion

be treated as a first-class citizen? Besides that optical

flow naturally encodes correspondences, it provides more

fine-grained information than keypoints as well as semantic

parts. Different from long-range point tracks, which is the

classic input for NRSfM [42], optical flow can be obtained

more reliably [47, 52] over two consecutive frames.

Why not nonrigid SfM? NRSfM deals with a problem

similar to ours: given a set of 2D point trajectories depict-

ing a deformable object in a collection of images, the goal

is to recover the 3D object shape and pose (i.e., relative

camera position) in each view. Usually, trajectories of 2D

points are factorized into low-rank shape and motion matri-

ces [8, 19, 26] without using 3D shape templates. Although

NRSfM is able to deal with generic shapes, it requires reli-

able long-term point tracks or keypoint annotations, which

are challenging to acquire densely in practice [42, 44, 46].

Proposed approach: Instead of inferring 3D shapes from

category-specific image collections or point trajectories, we

build an articulated shape model from a monocular video

of an object. Recent progress in differentiable rendering al-

lows one to recast the problem as an analysis-by-synthesis

task: we solve the inverse graphics problem of recover-

ing the 3D object shape (including spacetime deformations)

and camera trajectories (including intrinsics) to fit video

observations, such as object silhouette, raw pixels, and op-

tical flow. An overview of the pipeline is shown in Fig. 2.

Contributions: We propose a method for articulated shape

reconstruction from a monocular video that does not require

a prior template or category information. It takes advantage

of dense two-frame optical flow to overcome the inherent

ambiguity in the nonrigid structure and motion estimation

Table 1. Related work in nonrigid shape reconstruction. (1)Model-

based optimization and regression methods. (2)Category-specific

mesh reconstruction. (3)Template-free approaches. S: single view.

V: video or multi-view data. I: images. J2: 2D joints. J3: 3D

joints. M: 2D masks. V3: 3D scans. C: camera matrices. F: opti-

cal flow. MF: multi-frame optical flow. quad: quadruped animals.
†:Only representative categories are listed.

Method category template test-input train

(1)

SMPLify [7] human SMPL S:J2,M None

VIBE [25] human SMPL V:I J2,J3

SMALify [6] quadx5 SMAL V:J2,M None

SMALR [57] quadx12 SMAL S:J2,M None

SMALST [56] zebra SMAL S:I J2,V3

WLDO [5] dog SMAL S:I J2,M

(2)

CMR [23] bird† SfM-hull S:I J2,M,C

UCMR [18] bird† cate-mesh S:I M

UMR [30] bird† None S:I M

IMR [48] animals cate-mesh S:I M

A-CSM [27] animals cate-mesh S:I M

VMR [29] animals cate-mesh V:M None

(3)

PIFuHD [41] human None S:I V3

NRSfM [2, 12] any None V:J2 None

N-NRSfM [44] any None V:MF,M None

WSD [10] dolphin† cate-mesh V:J2,M None

A3DC [38] any None V:stroke None

LASR (Ours) any None V:F,M None

problem. It automatically recovers a nonrigid shape under

the constraints of rigid bones under linear-blend skinning.

It combines coarse-to-fine re-meshing with soft-symmetric

constraints to recover high-quality meshes. Our method

demonstrates state-of-the-art reconstruction performance in

the BADJA animal video dataset [6], strong performance

against model-based methods on humans, and higher ac-

curacy on two animated animals than A-CSM [27] and

SMALify [6] that use shape templates.

2. Related Work

Below and in Tab. 1, we discuss related work of nonrigid

shape recovery according to priors being used (shape tem-

plate, category prior, or generic shape and motion priors).

Model-based reconstruction: Model-based reconstruction

leverages a parametric shape model to solve the under-

constrained 3D shape and pose estimation problem. A large

body of work in 3D human and animal reconstruction uses

such parametric shape models [33, 35, 51, 57, 58], which

are learned from 3D scans of human or animal toys [33, 58],

and allow one to recover the 3D shape given very few anno-

tations at test time (2D keypoints and silhouettes). Recently,

model-based regression methods are developed to predict

model-specific shape and pose parameters from a single im-

age or video [3, 5, 25, 56], usually trained with ground-truth

3D data generated by such parametric shape models. Al-

though model-based methods achieve great success in re-

constructing “closed-world” objects of known category and
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Figure 2. Method overview. Given a monocular video of an object, we jointly recover the object’s rest shape S, skinning weights W,

articulation Dt, and camera parameters Kt by solving an inverse graphics problem through gradient-based optimization. The object

rest shape is represented by a mesh (initialized from a sphere) and articulated at each frame under linear blend skinning (Sec. 3.2). The

time-varying parameters, including focal length, object root transformation and articulation, are parameterized by a neural basis, i.e.,

convolutional network given image inputs (Sec. 3.4). At each iteration, we randomly sample pairs of consecutive frames and forward-

render object silhouette, texture, and two-frame optical flow using a differentiable renderer (Sec. 3.1). The renderings are compared against

raw pixels, segmentation and optical flow estimated by off-the-shelf networks to generate gradients signals and update the model (Sec. 3.3).

rich 3D data, it is challenging to apply to unknown object

categories, or categories with limited 3D data.

Category mesh reconstruction: A recent trend is to reduce

supervision from 3D or multi-view capturing to 2D annota-

tions, such as keypoints and object silhouettes [18, 23, 30].

Such methods often take advantage of category priors, in-

cluding a collection of images from the same category, and

category-specific shape templates [27, 48]. Recent progress

makes single-view reconstruction of birds and other com-

mon categories possible without 3D annotation. However,

the single view reconstruction is usually coarse and lacks

instance-specific details. Recent work adapts category-

specific models to a test-time video [29], but still does not

handle objects of unknown classes.

Template-free reconstruction: Among the template-free

methods, PIFu [40, 41] learns to predict an implicit shape

representation for clothed human reconstruction, but re-

quires ground-truth 3D shapes to train. A3DC [38] re-

constructs articulated animals from videos, but requires in-

volved user stroke interactions. Without requiring 3D data

or user interactions, NRSfM factorizes a set of 2D key-

points or point trajectories into the 3D object shape and

pose in each view assuming “low-rank” shape or deforma-

tion [2, 12, 19]. Recently, deep networks have been ap-

plied to learn such factorization of specific categories from

2D annotations [26, 34, 50]. Close to our approach, Neu-

ral Dense NRSfM (N-NRSfM) [44] learns a video-specific

shape and deformation model from dense 2D point tracks.

However, such methods are limited by the accuracy of 2D

trajectory inputs, which is challenging to estimate in real-

world sequences when large motion occurs [42, 44, 46].

3. Approach

Problem: Given a monocular video {It} with an object

of interest (indicated by a segmentation mask {St}), we

tackle the nonrigid 3D shape and motion estimation prob-

lem, which includes estimating (1) S: the rest shape of the

object, (2) Dt: the time-varying articulations as well as the

object root body transformations, and (3) Kt: the camera

intrinsics.

Overview: Figure 2 illustrates the overview of our method.

Motivated by recent progress in differentiable rendering

and self-supervised shape learning [23, 32], we cast the

nonrigid 3D shape and motion estimation problem as an

analysis-by-synthesis task. Despite the under-constrained

nature of this problem, we hypothesize that, by giving ap-

propriate video measurements, a “low-rank” shape and mo-

tion can be solved up to an unknown scale. Model pa-

rameters X = {S,Dt,Kt} are updated (via gradient de-

scent) to minimize the difference between the rendered out-

put Y = f(X) and ground-truth video measurements Y∗

at test time (Sec. 3.1). To deal with the fundamental am-

biguities in object shape, deformation and camera motion,

we seek (1) a ”low-rank” but expressive parameterization of

deformation (Sec. 3.2), (2) rich constraints provided by op-

tical flow and raw pixels, and (3) appropriate regularization

of object shape deformation and camera motion (Sec. 3.3).

3.1. Forward­synthesis model

We first introduce the forward synthesis model. Given a

frame index t and model parameters X, we synthesize the

measurements of the corresponding frame pair {t, t + 1},

including color images renderings {Ît, Ît+1}, object silhou-
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ettes renderings {Ŝt, Ŝt+1} and forward-backward optical

flow renderings {û+
t , û

−

t+1}.

Rendering pipeline: We represent object shape as a tri-

angular mesh S = {V̄, C̄,F} with vertices V̄ ∈ R
N×3,

vertex colors C̄ ∈ R
N×3 and a fixed topology F ∈ R

M×3.

To model time-varying articulations Dt, we have

Vt = G0,t(V̄ +∆Vt) (1)

where ∆Vt is a per-vertex motion field applied to the rest

vertices V̄ , and G0,t =
(

R0 T0

)

t is an object root body

transformation matrix (index 0 is used to differentiate from

bone transformations indexed from 1 in Sec. 3.2). Finally,

we apply a perspective projection Kt before rasterization,

where principal point (px, py) is assumed to be constant and

focal length ft varies over time to deal with zoom-in/out.

Shaders: We render object silhouette and color images with

a differentiable renderer [32]. Color images are rendered

given per-vertex appearance C̄ and constant ambient light.

To synthesize the forward flow u+
t , we take surface posi-

tions Vt corresponding to each pixel in frame t, compute

their locations Vt+1 in the next frame, then take the differ-

ence of their projections:
(

u+x,t
u+y,t

)

=

(

P
(1)
t Vt/P

(3)
t Vt

P
(2)
t Vt/P

(3)
t Vt

)

−

(

P
(1)
t+1Vt+1/P

(3)
t+1Vt+1

P
(2)
t+1Vt+1/P

(3)
t+1Vt+1

)

,

(2)

where P(i) denotes the ith row of the projection matrix P.

3.2. Articulation Modeling

Unknowns vs constraints: Similar to NRSfM, we analyse

the number of unknowns and constraints to solve the inverse

problem. Given T frames of a video, we have

# Unknowns =3N + 3NT + 6T + (T + 2),

(V̄) (∆V) (R0,T0) (K)
(3)

which grows linearly with the number of vertices. Moti-

vated by NRSfM [12] that uses low-rank shape and motion

basis to deal with the exploding solution space, we seek an

expressive but low-rank representation of shape and motion.

Linear-blend skinning: Instead of modeling deformation

as per-vertex motion ∆Vt [18, 23, 30], we adopt a linear-

blend skinning model (LBS) [27, 28] to constrain ver-

tex motion by blending B rigid “bone” transformations

{G1, · · · ,GB}, which reduces the number of parameters

and makes optimization easier. Besides bone transforma-

tions, the LBS model defines a skinning weight matrix

W ∈ R
B×N that attaches the vertices of rest shape vertices

V̄ to the set of bones. Each vertex is transformed by lin-

early combining the weighted bone transformations in the

object coordinate frame and then transformed to the camera

coordinate frame,

Vi,t = G0,t(
∑

b
Wb,iGb,t)V̄i (4)

where i is the vertex index, b is the bone index. Unlike A-

CSM [27] that only learns articulation, we learn skinning

weights and time-varying bone transformations jointly.

S1: {M=1600, B=20} S3: {M=2880, B=30}S2: {M=2240, B=25}S0: {M=1280, B=0} Rest shape and bones  

Figure 3. Coarse-to-fine reconstruction from S0 to S3. The learned

centers of 3D Gaussians are shown as colored dots.

Parametric skinning model: Inspired by the work on sur-

face editing and local 3D shape learning [15, 45], we model

the skinning weights as a mixture of Gaussians with B com-

ponents. The probability of assigning vertex i to component

b is given as

Wb,i = Ce−
1

2
(vi−Jb)

TQb(vi−Jb), (5)

where Jb ∈ R
3 is the center of b-th Gaussian, Qb is the cor-

responding precision matrix that determines the orientation

and radius of a Gaussian, and C is a normalization factor

that ensures the probabilities of assigning a vertex to differ-

ent Gaussians sum up to one. W → {Q,J} is optimized.

Note that the mixture of Gaussian models not only reduces

the number of parameters for skinning weights from NB to

9B, but also guarantees smoothness, the benefits of which

are empirically validated in our experiments (Tab. 4). The

number of shape and motion parameters now becomes

# Unknowns =3N +6BT + 9B + 6T + (T + 2),

(V̄) (G1...B) (J,Q) (R0,T0) (K)
(6)

which grows linearly w.r.t. the number of frames and bones.

3.3. Self­supervised Learning from a Video

We exploit rich supervision signals from dense optical

flow and raw pixels, as well as shape and motion regulariz-

ers to further constrain the problem.

Reconstruction Losses: The supervision for our analysis-

by-synthesis pipeline includes silhouette loss, optical flow

loss, texture loss, and perceptual loss. Given a pair of

rendered outputs (Ŝt, Ît, ût) and measurements (St, It,ut),
the inverse graphics loss is computed as,

LIG =β1||Ŝ
i
t − St||

2
2 + β2σt||û

i
t − ut||2 +β3||Î

i
t − It||1

+β4pdist(Ît, It)
(7)

where {β1, · · · , β4} are weights empirically chosen, σt is

the normalized confidence map for flow measurement, and

pdist(·, ·) is the perceptual distance [54] measured by an

15983



AlexNet pretrained on ImageNet. Applying L2 norm loss

to optical flow is empirically better than squared L2 loss,

and we hypothesize the reason being that the former is more

tolerant to outliers in the observed flow fields.

Shape and motion regularization: We exploit generic

shape and temporal regularizers to constrain the problem.

A Laplacian operator is applied to the rest mesh to enforce

smooth surfaces,

Lshape = ||V̄i −
1

|Ni|

∑

j∈Ni

V̄j ||
2. (8)

Motion regularization includes an ARAP (as-rigid-as-

possible) deformation term and a least deformation term.

The ARAP term encourages natural deformation [45, 48],

LARAP =
V
∑

i=1

∑

j∈Ni

| ||Vi,t −Vj,t||2 − ||Vi,t+1 −Vj,t+1||2 |. (9)

The least deformation term encourages the deformation

from the rest shape to be small [23],

Lleast-motion =
V
∑

i=1

||Vi,t − V̄i||2, (10)

which discourages arbitrarily large deformations and re-

duces ambiguities in joint object root body pose and articu-

lation recovery.

Soft-symmetry constraints: To exploit the reflectional

symmetry structure exhibited in common objects, we pose a

soft-symmetry constraint along the symmetry plane (n∗, 0)
at an arbitrary frame t∗. The symmetry plane is initialized

from visual inspection and jointly optimized. We encourage

the rest shape to be similar to its reflection,

Lsymm-shape = Lcham({V̄,F}, {HV̄,F}) (11)

where H = I−2n∗n
T
∗

is the Householder reflection matrix,

and the Chamfer distance (Lcham) is computed as bidirec-

tional pixel-to-face distances. For the centers of Gaussian

control points J, we also have

Lsymm-bone = Lcham(J̄,HJ̄). (12)

The total loss is a weighted sum of all losses with the

weights empirically chosen and fixed for all experiments.

3.4. Implementation Details

Neural basis for time-varying parameters: Instead of

optimizing explicit time-varying parameters {Dt,Kt}, we

parameterize those as predictions from a convolutional net-

work (ResNet-18 [21]) given an input image It,

ψw(It) = (K,G0,G1,G2, · · · ,GB)t, (13)

where one parameter is predicted for focal length, four pa-

rameters are predicted for each bone rotation parameterized

by quaternion, and three numbers are predicted for each

translation, adding to 1+7(B+1) numbers in total at each

frame. The weights are initialized with ImageNet [13] pre-

training and then optimized by LASR for each test video.

COLMAP

Ours

COLMAP

Ours

Representative 
input frames

COLMAP

Ours

Figure 4. Visual comparison on near-rigid DAVIS sequences:

scooter, soapbox, and car. COLMAP reconstructs only the visible

rigid part, while our method faithfully reconstruct both the rigid

object and near-rigid person.

Intuitively, the network learns a joint basis for cameras and

poses that is empirically much easier to optimize than the

raw parameters (Tab. 4).

Silhouette and flow measurements Our approach assumes

that a reliable segmentation of the foreground object is

given, which can be manually annotated [36], or estimated

using instance segmentation and tracking methods [24, 55].

Our method requires reasonable optical flow estimation,

which can be provided by state-of-the-art flow estima-

tors [47, 52] trained on a mixture of datasets [1]. Notably,

LASR recovers from some bad flow initialization and ob-

tains better long-term correspondences (Tab. 2).

Coarse-to-fine reconstruction We adopt a coarse-to-fine

strategy to reconstruct high-quality meshes inspired by

Point2Mesh [20]. S0: We first assume a rigid object and

optimize the rest shape and cameras {S,G0,t,Kt} for 20

epochs. The rest shape is initialized from a subdivided

icosahedron projected onto a sphere. S1-S3: We perform

iso-surface extraction and re-meshing [22] to fix mesh self-

intersections and long edges. After remeshing, the number

of vertices and the number of bones increase, as shown in

Fig. 3. The centers of Gaussian control points are initialized

by running K-means on the vertices coordinates. We then

jointly optimize all parameters {S,Dt,Kt} for 10 epochs.

The above procedure is repeated three times (S1-S3).

4. Experiments

Setup: Due to the difficulty of obtaining 3D ground truth

for nonrigid objects in the real world, we evaluate 2D key-
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A-CSM (camel template)

OursRef. overlaid with our flow

t=2 to t=70

SMALST-zebra UMR-horse

Figure 5. Keypoint transfer between frame 2 and frame 70 of the

camel video. The distance between tranferred keypoint and target

annotation is represented by the radius of circles. A correct trans-

fer is marked with green and a wrong transfer is marked with blue.

Our method transfers keypoint more accurately than baselines.

point transfer accuracy as a proxy of 3D reconstruction

quality on real videos. We additionally evaluate 3D recon-

struction accuracy on objects with ground-truth meshes.

4.1. 2D Keypoint Transfer on Animal Videos

Dataset: We test our method on an animal video dataset,

BADJA [6], which provides nine real animal videos with

2D keypoint and mask annotations, derived from the DAVIS

video segmentation dataset [36] and online stock footage. It

includes three videos of dogs, two videos of horsejump, and

one video of camel, cow, bear as well as impala. We report

quantitative results on one video per-category and show the

reconstruction of the rest in the sup. mat.

Metric: To approximate the accuracy of 3D shape and artic-

ulation recovery, we adopt percentage of correct keypoint

transfer (PCK-T) [23, 27, 53] metric. Given a reference

and target image pair with 2D keypoint annotations, the ref-

erence keypoint is transferred to the target image, and la-

beled as “correct” if the transferred keypoint is within some

threshold distance dth = 0.2
√

|S| from the target keypoint,

where |S| is the area of the ground-truth silhouette [6]. In

practice, we transfer points by re-projection from the ref-

erence frame to the target frame given the articulated shape

and camera pose estimations. If the back-projected keypoint

lies outside the reconstructed mesh, we re-project its nearest

neighbor that intersects the mesh. The accuracy is averaged

over all T(T-1) pairs of frames.

Baselines: We compare with state-of-the-art methods for

animal reconstruction and refer to Tab. 1 for a taxonomy.

SMALST [56] is a model-based regressor trained for ze-

bras. It takes an image as input and predicts shape, pose and

texture for the SMAL [58] model. UMR [30] is a category-

specific shape estimator trained for several categories, in-

cluding birds, horses and other categories that have a large

collection of annotated images. We report the performance

of the horse model since the models of other animal cat-

egories are not available. A-CSM [27] learns a category-

specific canonical surface mapping and articulations from

an image collection. At test time, it takes an image as input

Table 2. 2D Keypoint transfer accuracy on BADJA. (1)Model-

based regression. (2)Category-specific reconstruction. (3)Free-form

reconstruction. Methods with† do not reconstruct 3D shape. Re-

sults with∗ indicates the method is not designed for such category.

Best results are underlined, and bolded if reconstruct a 3D shape.

Method camel dog cows horse bear

(1)SMALST [56] 49.7∗ 12.8∗ 59.7∗ 10.4∗ 67.2∗

(2)A-CSM [27] 60.2∗ 24.5∗ 65.7∗ 21.5 39.7∗

(2)UMR [30] 35.1∗ 38.5∗ 68.1∗ 32.4 56.9∗

(3)N-NRSfM [44] 67.8 17.9 70.0 8.7 60.2
(3)LASR (Ours) 81.9 65.8 83.7 49.3 85.1
(3) +Auto-mask 78.9 59.5 82.7 42.2 82.6

†Static 51.9 13.0 55.5 8.8 58.6
†Detector [6] 73.3 66.9 89.2 26.5 83.1

†OJA [6] 87.1 66.9 94.7 24.4 88.9
†Flow-VCN [52] 47.9 25.7 60.7 14.4 63.8

and predicts the articulation parameters of a rigged template

mesh. It provides 3D templates for 27 animal categories and

an articulation model for horses, which is used throughout

the experiments. SMALify [6] is a model-based optimiza-

tion approach that fits one of five categories (including cat,

dog, horse, cow and hippo) of SMAL models to a video

or a single image. We provide all the video frames with

ground-truth keypoint and mask annotations. Close to our

setup, N-NRSfM [44] trains a video-specific model for ob-

ject shape, deformation and camera parameters from multi-

frame optical flow estimations [14]. Finally, we include a

detection-based method, OJA [6], which trains an hourglass

network to detect animal keypoints (indicated by Detector),

and post-process the joint cost maps with a proposed op-

timal assignment algorithm. The results of PCK are taken

from the paper [6] without recomputing PCK-T.

Results: Qualitative results of 3D shape reconstruction are

shown in Fig. 1 and Fig. 6, where we compare with UMR,

A-CSM and SMALify on the camel, bear and dog video.

Quantitative results of keypoint transfer are shown in Tab. 2.

Given that all 3D reconstruction baselines are category-

specific and might not provide the exact model for some

categories (such as camel), we pick up the best model or

template for each animal video. Compared with 3D recon-

struction baselines, LASR is better for all categories, even

on the categories the baselines are trained for (e.g., LASR:

49.3 vs UMR: 32.4 on horsejump-high). Replacing the GT

masks with an object segmentor, PointRend [24], the per-

formance of LASR (‘+Auto-mask’ in Tab. 2) drops, but is

still better than all the reconstruction baselines. Compared

to detection-based methods, our accuracy is higher on the

horsejump video, and close to the baseline on other videos.

LASR also shows a large improvement compared to the ini-

tial optical flow (81.9% vs 47.9% for camel), especially be-

tween long-range frames as shown in Fig. 5.
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Figure 6. Comparison on BADJA bear and dog videos. The reconstruction of the first frame of the video is shown from two viewpoints.

Compared to UMR that also does not use a shape template, LASR reconstructs more fine-grained geometry. Compared to A-CSM and

SMALify that use a shape template, LASR recovers instance-specific details, such as the fluffy tail of the dog, and a more natural pose.

Table 3. Mesh reconstruction error in terms of Chamfer distance

on our animated object dataset. To ensure comparable results over

objects, ground-truth shapes are rescaled such that the maximum

distance between vertices is 10. Best results are bolded. “-” means

a method does not apply to a particular sequence.

Method dancer ↓ dog ↓ horse ↓ golem ↓

SMPLify-X [35] 0.26 - - -

VIBE [25] 0.22 - - -

A-CSM [27] - 0.38 0.26 -

SMALify [6] - 0.51 0.41 -

PIFuHD [41] 0.28 - - -

UMR [30] - 0.44 0.42 -

LASR (Ours) 0.35 0.28 0.23 0.16

4.2. Mesh Reconstruction on Articulated Objects

Dataset: To evaluate mesh reconstruction accuracy, we col-

lect a video dataset of five articulated objects with ground-

truth mesh and articulation, including one dancer video

from AMA (Articulated Mesh Animation dataset) [49], one

German shepherd video, one horse video, one eagle video

and one stone golem video from TurboSquid. We also in-

clude a rigid object, Keenan’s spot to evaluate performance

on rigid object reconstruction and ablation for the S0 stage.

Metric: Most prior work on mesh reconstruction assumes

given camera parameters. However, both the camera and

the geometry are unknown in our case, which leads to am-

biguities in evaluation, including scale ambiguity (exists for

all monocular reconstruction) as well as the depth ambigu-

ity (exists for weak perspective cameras as used in UMR,

A-CSM, VIBE, etc.). To factorize out the unknown camera

matrices, we align two meshes with a 3D similarity transfor-

mation solved by ICP. Then, the bidirectional Chamfer dis-

tance is adopted as the evaluation metric. We follow prior

work [16, 37] to randomly sample 10k points uniformly

from the surface of predicted and ground-truth meshes, and

compute the average distance between the nearest neighbor

for each point in the corresponding point cloud.

Baselines: Besides A-CSM, SMALify, and UMR for an-

imal reconstruction, we compare with SMPLify-X, VIBE,

and PiFUHD for human reconstruction. SMPLify-X [35]

Table 4. Ablation study with mesh reconstruction error.

S0 ref. (1)w/o flow (2)w/o Lcan
(3)w/o CNN

spot 0.05 0.55 0.61 0.63

S0-S3 ref. (4)w/o LBS (5)w/o C2F (6)w/o GMM

dog 0.28 0.68 0.59 0.34

is a model-based optimization method for expressive hu-

man body capture. We use the female SMPL model for the

dancer sequence, and provide the keypoint inputs estimated

from OpenPose [9]. VIBE [25] is a state-of-the-art model-

based video regressor for human pose and shape inference.

PIFuHD is a state-of-the-art free-form 3D shape estimator

for clothed humans. It takes a single image as input and pre-

dicts an implicit shape representation, which is converted

to a mesh by the marching cube algorithm. To compare

with SMALify on dog and horse, we manually annotate 18

keypoints per-frame, and initialize with the corresponding

shape template.

Results The visual comparison on human and animals are

shown in Fig. 1 and Fig. 7 respectively. We report the quan-

titative results in Tab. 3. On the dog video, our method is

better than all the baselines (0.28 vs A-CSM: 0.38), possibly

because A-CSM and UMR are not trained specifically for

dogs (although A-CSM uses a wolf template), and SMAL-

ify cannot reconstruct a natural 3D shape from limited key-

point and silhouette annotations. For the horse video, our

method is slightly better than A-CSM, which uses a horse

shape template, and outperforms other baselines. For the

dancer sequence, our method is not as accurate as baseline

methods (0.35 vs VIBE: 0.22), which is expected given that

all baselines either use a well-designed human model, or

have been trained with 3D human mesh data, while LASR

does not have access to 3D human data. For the stone golem

video, our method is the only one that reconstructs a mean-

ingful shape. Although the stone golem has a similar shape

to a human’s, OpenPose does not detect joints correctly,

leading to the failure of SMALify-X, VIBE and PiFUHD.

Qualitative results on DAVIS videos: To examine the

performance on arbitrary real-world objects, we use five
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t=0

t=5

GT LASR (Ours) A-CSM (wolf template) GT LASR (Ours) UMR A-CSM-horse SMALify-horse

Figure 7. Shape and articulation reconstruction results on synthetic dog and horse sequences. We also visualize Chamfer distances measured

from the ground truth to the reconstructed mesh on top of each result, and yellow indicates high error. Compared to UMR, LASR

successfully reconstructs the four legs of the horse. Compared to template-based methods (A-CSM and SMALify), LASR successfully

reconstructs the instance-specific details (ears and tails of the dog) and recovers a more natural articulation. The reference is shown at the

left corner and the template mesh used is shown in the bottom right boxes.

GT Reference (1)w/o flow (3)w/o CNN(2)w/o L_can

t=5

t=0

GT Reference (3)w/o GMM(2)w/o C2F(1)w/o LBS

t=8
α=0°

t=8
α=60°

Figure 8. Left: Ablation study on camera and rigid shape optimization (S0). Removing the optical flow loss introduces large errors in

camera pose estimation and therefore the overall geometry is not recovered. Removing the canonicalization loss leads to worse camera

pose estimation, and therefore the symmetric shape constraint is not correctly enforced. Finally, if we directly optimize the camera poses

without using a convolutional network, it converges much slower and does not yield an ideal shape within the same iterations. Right:

Ablation study on articulated shape optimization (S1-S3). We show the reconstructed articulated shape at the middle frame (t=8) from two

viewpoints. Without LBS model, although the reconstruction looks plausible from the visible view, it does not recover the full geometry due

to the redundant deformation parameters and lack of constraints. Without coarse-to-fine re-meshing, fine-grained details are not recovered.

Replacing GMM skinning weights (9xB parameters) with an NxB matrix leads to extra limbs and tails on the reconstruction.

DAVIS videos, including dance-twirl, scooter-board, soap-

box, car-turn, mallard-fly, and a cat video captured by

us and segmented by PointRend. The comparison with

COLMAP [43], a template-free SfM-MVS pipeline, is

shown in Fig. 4. More results are available in the sup. mat.

Ablation study: We investigate the effect of different de-

sign choices on the rigid “spot” and animated dog se-

quences. The videos are rendered into T=15 frames given

ambient light and a camera rotating around the object by

90 degrees at zero elevation. Besides color images, we ren-

der silhouette and optical flow as the supervision. Results

are shown in Fig. 8 and quantitative results are reported

in Tab. 4. In terms of camera parameter optimization and

rigid shape reconstruction (S0), we find it beneficial to use
(1)optical flow as supervision signals, (2)canonicalization

of symmetry plane, and (3)CNN as an implicit represen-

tation for camera parameters. For articulated shape recon-

struction (S1-S3), it is critical to use (4)linear blend skin-

ning, (5)coarse-to-fine re-meshing, and (6)parametric skin-

ning model.

Limitations: Empirically, LASR struggles to estimate sur-

faces that are not visible in any input view and fails at heavy

occlusions that are missed by mask annotations. Its effi-

ciency also needs improvement, as it takes less than one

hour for rigid objects and a few hours for nonrigid shapes

on a single GPU.

5. Conclusion

We present LASR, a template-free approach for articu-

lated shape reconstruction from a monocular video. LASR

faithfully reconstructs individual objects from diverse cate-

gories (such as human, camel, dog, bear, etc.) without re-

lying on category-specific shape templates, making it appli-

cable to a wide range of scenarios. We hope that LASR will

enable more progress in articulated shape reconstruction.
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