
NetAdaptV2: Efficient Neural Architecture Search with

Fast Super-Network Training and Architecture Optimization

Tien-Ju Yang, Yi-Lun Liao, Vivienne Sze

Massachusetts Institute of Technology

{tjy,ylliao,sze}@mit.edu

Abstract

Neural architecture search (NAS) typically consists of

three main steps: training a super-network, training and

evaluating sampled deep neural networks (DNNs), and train-

ing the discovered DNN. Most of the existing efforts speed

up some steps at the cost of a significant slowdown of other

steps or sacrificing the support of non-differentiable search

metrics. The unbalanced reduction in the time spent per

step limits the total search time reduction, and the inabil-

ity to support non-differentiable search metrics limits the

performance of discovered DNNs.

In this paper, we present NetAdaptV2 with three innova-

tions to better balance the time spent for each step while

supporting non-differentiable search metrics. First, we pro-

pose channel-level bypass connections that merge network

depth and layer width into a single search dimension to re-

duce the time for training and evaluating sampled DNNs.

Second, ordered dropout is proposed to train multiple DNNs

in a single forward-backward pass to decrease the time for

training a super-network. Third, we propose the multi-layer

coordinate descent optimizer that considers the interplay

of multiple layers in each iteration of optimization to im-

prove the performance of discovered DNNs while supporting

non-differentiable search metrics. With these innovations,

NetAdaptV2 reduces the total search time by up to 5.8× on

ImageNet and 2.4× on NYU Depth V2, respectively, and dis-

covers DNNs with better accuracy-latency/accuracy-MAC

trade-offs than state-of-the-art NAS works. Moreover, the

discovered DNN outperforms NAS-discovered MobileNetV3

by 1.8% higher top-1 accuracy with the same latency.1

1. Introduction

Neural architecture search (NAS) applies machine learn-

ing to automatically discover deep neural networks (DNNs)

with better performance (e.g., better accuracy-latency trade-

offs) by sampling the search space, which is the union of all

discoverable DNNs. The search time is one key metric for

1The project website: http://netadapt.mit.edu.
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Figure 1: The comparison between NetAdaptV2 and related

works. The number above a marker is the corresponding

total search time measured on NVIDIA V100 GPUs.

NAS algorithms, which accounts for three steps: 1) train-

ing a super-network, whose weights are shared by all the

DNNs in the search space and trained by minimizing the

loss across them, 2) training and evaluating sampled DNNs

(referred to as samples), and 3) training the discovered DNN.

Another important metric for NAS is whether it supports

non-differentiable search metrics such as hardware metrics

(e.g., latency and energy). Incorporating hardware metrics

into NAS is the key to improving the performance of the

discovered DNNs [1–5].

There is usually a trade-off between the time spent for

the three steps and the support of non-differentiable search

metrics. For example, early reinforcement-learning-based

NAS methods [2, 6, 7] suffer from the long time for train-

ing and evaluating samples. Using a super-network [8–16]

solves this problem, but super-network training is typically

time-consuming and becomes the new time bottleneck. The

gradient-based methods [3, 17–24] reduce the time for train-

ing a super-network and training and evaluating samples at

the cost of sacrificing the support of non-differentiable search

metrics. In summary, many existing works either have an

unbalanced reduction in the time spent per step (i.e., optimiz-

ing some steps at the cost of a significant increase in the time

for other steps), which still leads to a long total search time,
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or are unable to support non-differentiable search metrics,

which limits the performance of the discovered DNNs.

In this paper, we propose an efficient NAS algorithm,

NetAdaptV2, to significantly reduce the total search time by

introducing three innovations to better balance the reduction

in the time spent per step while supporting non-differentiable

search metrics:

Channel-level bypass connections (mainly reduce the

time for training and evaluating samples, Sec. 2.2): Early

NAS works only search for DNNs with different numbers

of filters (referred to as layer widths). To improve the per-

formance of the discovered DNN, more recent works search

for DNNs with different numbers of layers (referred to as

network depths) in addition to different layer widths at the

cost of training and evaluating more samples because net-

work depths and layer widths are usually considered inde-

pendently. In NetAdaptV2, we propose channel-level bypass

connections to merge network depth and layer width into a

single search dimension, which requires only searching for

layer width and hence reduces the number of samples.

Ordered dropout (mainly reduces the time for train-

ing a super-network, Sec. 2.3): We adopt the idea of super-

network to reduce the time for training and evaluating sam-

ples. In previous works, each DNN in the search space

requires one forward-backward pass to train. As a result,

training multiple DNNs in the search space requires multi-

ple forward-backward passes, which results in a long train-

ing time. To address the problem, we propose ordered

dropout to jointly train multiple DNNs in a single forward-

backward pass, which decreases the required number of

forward-backward passes for a given number of DNNs and

hence the time for training a super-network.

Multi-layer coordinate descent optimizer (mainly re-

duces the time for training and evaluating samples and

supports non-differentiable search metrics, Sec. 2.4):

NetAdaptV1 [1] and MobileNetV3 [25], which utilizes Ne-

tAdaptV1, have demonstrated the effectiveness of the single-

layer coordinate descent (SCD) optimizer [26] in discovering

high-performance DNN architectures. The SCD optimizer

supports both differentiable and non-differentiable search

metrics and has only a few interpretable hyper-parameters

that need to be tuned, such as the per-iteration resource re-

duction. However, there are two shortcomings of the SCD

optimizer. First, it only considers one layer per optimiza-

tion iteration. Failing to consider the joint effect of multiple

layers may lead to a worse decision and hence sub-optimal

performance. Second, the per-iteration resource reduction

(e.g., latency reduction) is limited by the layer with the small-

est resource consumption (e.g., latency). It may take a large

number of iterations to search for a very deep network be-

cause the per-iteration resource reduction is relatively small

compared with the network resource consumption. To ad-

dress these shortcomings, we propose the multi-layer co-

ordinate descent (MCD) optimizer that considers multiple

layers per optimization iteration to improve performance

while reducing search time and preserving the support of

non-differentiable search metrics.

Fig. 1 (and Table 1) compares NetAdaptV2 with related

works. NetAdaptV2 can reduce the search time by up to

5.8× and 2.4× on ImageNet [27] and NYU Depth V2 [28]

respectively and discover DNNs with better performance

than state-of-the-art NAS works. Moreover, compared to

NAS-discovered MobileNetV3 [25], the discovered DNN

has 1.8% higher accuracy with the same latency.

2. Methodology: NetAdaptV2

2.1. Algorithm Overview

NetAdaptV2 searches for DNNs with different network

depths, layer widths, and kernel sizes. The proposed

channel-level bypass connections (CBCs, Sec. 2.2) en-

ables NetAdaptV2 to discover DNNs with different network

depths and layer widths by only searching layer widths be-

cause different network depths become the natural results of

setting the widths of some layers to zero. To search kernel

sizes, NetAdaptV2 uses the superkernel method [12, 21, 22].

Fig. 2 illustrates the algorithm flow of NetAdaptV2. It

takes an initial network and uses its sub-networks, which

can be obtained by shrinking some layers in the initial net-

work, to construct the search space. In other words, a

sample in NetAdaptV2 is a sub-network of the initial net-

work. Because the optimizer needs the accuracy of sam-

ples for comparing their performance, the samples need

to be trained. NetAdaptV2 adopts the concept of jointly

training all sub-networks with shared weights by training

a super-network, which has the same architecture as the

initial network and contains these shared weights. We use

CBCs, the proposed ordered dropout (Sec. 2.3), and su-

perkernel [12, 21, 22] to efficiently train the super-network

that contains sub-networks with different layer widths, net-

work depths, and kernel sizes. After training the super-

network, the proposed multi-layer coordinate descent op-

timizer (Sec. 2.4) is used to discover the architectures of

DNNs with optimal performance. The optimizer iteratively

samples the search space to generate a bunch of samples and

determines the next set of samples based on the performance

of the current ones. This process continues until the given

stop criteria are met (e.g., the latency is smaller than 30ms),

and the discovered DNN is then trained until convergence.

Because of the trained super-network, the accuracy of sam-

ples can be directly evaluated by using the shared weights

without any further training.

2.2. Channel­Level Bypass Connections

Previous NAS algorithms generally treat network depth

and layer width as two different search dimensions. The

reason is evident in the following example. If we remove
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Figure 2: The algorithm flow of the proposed NetAdaptV2.

a filter from a layer, we reduce the number of output chan-

nels by one. As a result, if we remove all the filters, there

are no output channels for the next layer, which breaks the

DNN into two disconnected parts. Hence, reducing layer

widths typically cannot be used to reduce network depths.

To address this, we need an approach that keeps the network

connectivity while removing filters; this is achieved by our

proposed channel-level bypass connections (CBCs).

The high-level concept of CBCs is “when a filter is re-

moved, an input channel is bypassed to maintain the same

number of output channels”. In this way, we can preserve

the network connectivity when all filters are removed from a

layer. Assuming the target layer in the initial network has C

input channels, T filters, and Z output channels2, we gradu-

ally remove filters from the layer, where there are M filters

remaining. Fig. 3 illustrates how CBCs handle three cases in

this process based on the relationship between the number

of input channels (C) and the initial number of filters (T )

(only M changes, and C and T are fixed):

• Case 1, C = T (Fig. 3a): When the i-th filter is re-

moved, we bypass the i-th input channel, so the number

of output channels (Z) can be kept the same. When all

the filters are removed (M = 0), all the input channels

are bypassed, which is the same as removing the layer.

• Case 2, C < T (Fig. 3b): We do not bypass input

channels at the beginning of filter removal because we

have more filters than input channels (i.e., M > C) and

there are no corresponding input channels to bypass.

The bypass process starts when there are fewer filters

than input channels (M < C), which becomes case 1.

• Case 3, C > T (Fig. 3c): When the i-th filter is re-

moved, we bypass the i-th input channel. The extra

(C − T ) input channels are not used for the bypass.

These three cases can be summarized in a rule: when the

i-th filter is removed, the corresponding i-th input channel is

bypassed if that input channel exists. Therefore, the number

of output channels (Z) when using CBCs can be computed

by Z = max(min(C, T ),M). The proposed CBCs can be

2If we do not use CBCs, Z is equal to T .

efficiently trained when combined with the proposed ordered

dropout, as discussed in Sec. 2.3.

As a more advanced usage of T , we can treat T as a hyper-

parameter. Please note that we only change M , and C and T

are fixed. From the formulation Z = max(min(C, T ),M),
we can observe that the function of T is limiting the number

of bypassed input channels and hence the minimum number

of output channels (Z). If we set T ≥ C to allow all C input

channels to be bypassed, the formulation becomes Z =
max(C,M), and the minimum number of output channels

is C. If we set T < C to only allow T input channels to be

bypassed, the formulation becomes Z = max(T,M), and

the minimum number of output channels is T .

Setting T < C enables generating the bottleneck, where

we have fewer output channels than input channels (Z < C).

The bottleneck has been shown to be effective in improving

the accuracy-efficiency (e.g., accuracy-latency) trade-offs

in MobileNetV2 [29]/V3 [25]. We take the case 1 as an

example. In Fig. 3a, we can observe that the number of

output channels is always 4, which is the same as the number

of input channels (Z = C = 4) no matter how many filters

are removed. Therefore, the bottleneck cannot be generated.

In contrast, if we set T to 2 as the case 4 in Fig. 3d, no

input channels are bypassed until we remove the first two

filters because Z = max(min(4, 2), 2) = 2. After that, it

becomes the case 3 in Fig. 3c, which forms a bottleneck.

2.3. Ordered Dropout

Training the super-network involves joint training of mul-

tiple sub-networks with shared weights. After the super-

network is trained, comparing sub-networks of the super-

network (i.e., samples) only requires their relative accuracy

(e.g., sub-network A has higher accuracy than sub-network

B). Generally speaking, the more sub-networks are trained,

the better the relative accuracy of sub-networks will be. How-

ever, previous works usually require one forward-backward

pass for training one sub-network. As a result, training more

sub-networks requires more forward-backward passes and

hence increases the training time.

To address this problem, we propose ordered dropout

(OD) to enable training N sub-networks in a single forward-

backward pass with a batch of N images. OD is inserted

after each convolutional layer in the super-network and zeros
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Figure 3: An illustration of how CBCs handle different cases based on the relationship between the number of input channels

(C) and the initial number of filters (T ) (only the number of filters remaining (M ) changes, and C and T are fixed). For

each case, it shows how the architecture changes with more filters removed from top to bottom. The numbers above lines

correspond to the letters below lines. Please note that the number of output channels (Z) will never become zero.

out different output channels for different images in a batch.

As shown in Fig. 4, OD simulates different layer widths with

a constant number of output channels. Unlike the standard

dropout [30] that zeros out a random subset of channels

regardless of their positions, OD always zeros out the last

channels to simulate removing the last filters. As a result,

while sampling the search space, we can simply drop the last

filters from the super-network to evaluate samples without

other operations like sorting and avoid a mismatch between

training and evaluation.

When combined with the proposed CBCs, OD can train

sub-networks with different network depths by zeroing out

all output channels of some layers to simulate layer removal.

As shown in Fig. 5, to simulate CBCs, there is another OD

in the bypass path (upper) during training, which zeros out

the complement set of the channels zeroed by the OD in the

corresponding convolution path (lower).

Because NAS only requires the relative accuracy of sam-

ples, we can decrease the number of training iterations to

further reduce the super-network training time. Moreover,

for each layer, we sample each layer width almost the same

number of times in a forward-backward pass to avoid biasing

towards any specific layer widths.

2.4. Multi­Layer Coordinate Descent Optimizer

The single-layer coordinate descent (SCD) optimizer [26],

used in NetAdaptV1 [1], is a simple-yet-effective optimizer

with the advantages such as supporting both differentiable

and non-differentiable search metrics and having only a few

interpretable hyper-parameters that need to be tuned. The

SCD optimizer runs an iterative optimization. It starts from

the super-network and gradually reduces its latency (or other

search metrics such as multiply-accumulate operations and

energy). In each iteration, the SCD optimizer generates K

Conv

(2 Filters)

Conv

(4 Filters)

Conv

(4 Filters)

Ordered 
Dropout

Joint Training of 2 Sub-Networks

Sub-Network 1 Sub-Network 2

Figure 4: An illustration of how NetAdaptV2 uses the pro-

posed ordered dropout to train two different sub-networks

in a single forward-backward pass. The ordered dropout is

inserted after each convolutional layer to simulate different

layer widths by zeroing out some channels of activations.

Note that all the sub-networks share the same set of weights.

samples if the super-network has K layers. The k-th sample

is generated by shrinking (e.g., removing filters) the k-th

layer in the best sample from the previous iteration to reduce

its latency by a given amount. This amount is referred to

as per-iteration resource reduction and may change from

one iteration to another. Then, the sample with the best

performance (e.g., accuracy-latency trade-off) will be chosen
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layer widths and network depths.

and used for the next iteration. The optimization terminates

when the target latency is met, and the sample with the best

performance in the last iteration is the discovered DNN.

The shortcoming of the SCD optimizer is that it generates

samples by shrinking only one layer per iteration. This

property causes two problems. First, it does not consider

the interplay of multiple layers when generating samples in

an iteration, which may lead to sub-optimal performance of

discovered DNNs. Second, it may take many iterations to

search for very deep networks because the layer with the

lowest latency limits the maximum value of the per-iteration

resource reduction; the lowest latency of a layer becomes

small when the super-network is deep. To address these

problems, we propose the multi-layer coordinate descent

(MCD) optimizer. It generates J samples per iteration, where

each sample is obtained by randomly shrinking L layers from

the previous best sample. In NetAdaptV2, shrinking a layer

involves removing filters, reducing the kernel size, or both.

Compared with the SCD optimizer, the MCD optimizer

considers the interplay of L layers in each iteration so that

the performance of the discovered DNN can be improved.

Moreover, it enables using a larger per-iteration resource

reduction (i.e., up to the total latency of L layers) to reduce

the number of iterations and hence the search time.

3. Related Works

Reinforcement-learning-based methods [2, 4, 6, 7, 31]

demonstrate the ability of neural architecture search for de-

signing high-performance DNNs. However, its search time is

longer than the following works due to the long time for train-

ing samples individually. Gradient-based methods [3, 17–

19, 21–24] successfully discover high-performance DNNs

with a much shorter search time, but they can only support

differentiable search metrics. NetAdaptV1 [1] proposes a

single-layer coordinate descent optimizer that can support

both differentiable and non-differentiable search metrics and

was used to design state-of-the-art MobileNetV3 [25]. How-

ever, shrinking only one layer for generating each sample

and the long time for training samples individually become

its bottleneck of search time. The idea of super-network

training [10–12], which jointly trains all the sub-networks in

the search space, is proposed to reduce the time for training

and evaluating samples and training the discovered DNN at

the cost of a significant increase in the time for training a

super-network. Moreover, network depth and layer width are

usually considered separately in related works. The proposed

NetAdaptV2 addresses all these problems at the same time

by reducing the time for training a super-network, training

and evaluating samples, and training the discovered DNN in

balance while supporting non-differentiable search metrics.

The algorithm flow of NetAdaptV2 is most similar to

NetAdaptV1 [1], as shown in Fig. 2. Compared with Ne-

tAdaptV2, NetAdaptV1 does not train a super-network but

train each sample individually. Moreover, NetAdaptV1 con-

siders only one layer per optimization iteration and different

layer widths, but NetAdaptV2 considers multiple layers per

optimization iteration and different layer widths, network

depths, and kernel sizes. Therefore, NetAdaptV2 is both

faster and more effective than NetAdaptV1, as shown in

Sec. 4.1.4 and 4.2.

For the methodology, the proposed ordered dropout is

most similar to the partial channel connections [24]. How-

ever, they are different in the purpose and the ability to

expand the search space. Partial channel connections aim

to reduce memory consumption while training a DNN with

multiple parallel paths by removing some channels. The

number of channels removed is constant during training.

Moreover, this number is manually chosen. As a result,

partial channel connections do not expand the search space.

In contrast, the proposed ordered dropout is designed for

jointly training multiple sub-networks and expanding the

search space. The number of channels removed (i.e., ze-

roed out) varies from image to image and from one training

iteration to another during training to simulate different sub-

networks. Moreover, the final number of channels removed

(i.e., the discovered architecture) is searched. Therefore, the

proposed ordered dropout expands the search space in terms

of layer width as well as network depth when the proposed

channel-level bypass connections are used.

4. Experiment Results

We apply NetAdaptV2 on two applications (image clas-

sification and depth estimation) and two search metrics

(latency and multiply-accumulate operations (MACs)) to

demonstrate the effectiveness and versatility of NetAdaptV2

across different operating conditions. We also perform an

ablation study to show the impact of each of the proposed

techniques and the associated hyper-parameters.

4.1. Image Classification

4.1.1 Experiment Setup

We use latency or MACs to guide NetAdaptV2. The latency

is measured on a Google Pixel 1 CPU. The search time is

reported in GPU-hours and measured on V100 GPUs.
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The dataset is ImageNet [32]. We reserve 10K images

in the training set for comparing the accuracy of samples

and train the super-network with the rest of the training

images. The accuracy of the discovered DNN is reported

on the validation set, which was not seen during the search.

The initial network is based on MobileNetV3 [25]. The

maximum learning rate is 0.064 decayed by 0.963 every 3

epochs when the batch size is 1024. The learning rate scales

linearly with the batch size [33]. The optimizer is RMSProp

with an ℓ2 weight decay of 10−5. The dropout rate is 0.2.

The decay rate of the exponential moving average is 0.9998.

The batch size is 1024 for training the super-network, 2048

for training the latency-guided discovered DNN, and 1536

for training the MAC-guided discovered DNN.

The multi-layer coordinate descent (MCD) optimizer gen-

erates 200 samples per iteration (J = 200). For the latency-

guided experiment, each sample is obtained by randomly

shrinking 10 layers (L = 10) from the best sample in the

previous iteration. We reduce the latency by 3% in the

first iteration (i.e., initial resource reduction) and decay the

resource reduction by 0.98 every iteration. For the MAC-

guided experiment, each sample is obtained by randomly

shrinking 15 layers (L = 15) from the best sample in the

previous iteration. We reduce the MACs by 2.5% in the

first iteration and decay the resource reduction by 0.98 every

iteration. More details are included in the appendix.

4.1.2 Latency-Guided Search Result

The results of NetAdaptV2 guided by latency and related

works are summarized in Table 1. Compared with the state-

of-the-art (SOTA) NAS algorithms [11, 12], NetAdaptV2

reduces the search time by up to 5.8× and discovers DNNs

with better accuracy-latency/accuracy-MAC trade-offs. The

reduced search time is the result of the much more balanced

time spent per step. Compared with the NAS algorithms

in the class of hundreds of GPU-hours, ProxylessNAS [3]

and Single-Path NAS [22], NetAdaptV2 outperforms them

without sacrificing the support of non-differentiable search

metrics. NetAdaptV2 achieves either 2.4% higher accu-

racy with 1.5× lower latency or 1.4% higher accuracy with

1.6× lower latency. Compared with SOTA NAS-discovered

MobileNetV3 [25], NetAdaptV2 achieves 1.8% higher ac-

curacy with the same latency in around 50 hours on eight

GPUs. We estimate the CO2 emission of NetAdaptV2 based

on [34]. NetAdaptV2 discovers DNNs with better accuracy-

latency/accuracy-MAC trade-offs with low CO2 emission.

4.1.3 MAC-Guided Search Result

We present the result of NetAdaptV2 guided by MACs and

compare it with related works in Table 2. For a fair com-

parison, AutoAugment [36] and stochastic depth [37] with

a survival probability of 0.8 are used for training the dis-

covered network, which results in a longer time for train-

ing the discovered DNN. NetAdaptV2 achieves comparable

accuracy-MAC trade-offs to NSGANetV2-m [38] while the

search time is 2.6× lower. Moreover, the discovered DNN

also outperforms EfficientNet-B0 [31] and MixNet-M [39]

by up to 1.5% higher top-1 accuracy with fewer MACs.

4.1.4 Ablation Study

The ablation study employs the experiment setup outlined in

Sec. 4.1.1 unless otherwise stated. To speed up training the

discovered networks, the distillation model is smaller.

• Impact of Ordered Dropout

To study the impact of the proposed ordered dropout

(OD), we do not use channel-level bypass connections

(CBCs) and multi-layer coordinate descent (MCD) optimizer

in this experiment. When we further remove the usage of OD,

NetAdaptV2 becomes the same as NetAdaptV1 [1], where

each sample needs to be trained for four epochs by following

the setting of NetAdaptV1. To speed up the execution of Ne-

tAdaptV1, we use a shallower network, MobileNetV1 [40],

in this experiment instead. Table 3 shows that using OD

reduces the search time by 3.3× while achieving the same

accuracy-latency trade-off. If we only consider the time for

training a super-network and training and evaluating samples,

which are affected by OD, the time reduction is 10.4×.

• Impact of Channel-Level Bypass Connections

The proposed channel-level bypass connections (CBCs)

enable NetAdaptV2 to search for different network depths.

Table 4 shows that CBCs can improve the accuracy by 0.3%.

The difference is more significant when we target at lower

latency, as shown in the ablation study on MobileNetV1 in

the appendix, because the ability to remove layers becomes

more critical for maintaining accuracy.

• Impact of Multi-Layer Coordinate Descent Optimizer

The proposed multi-layer coordinate descent (MCD) opti-

mizer improves the performance of the discovered DNN by

considering the joint effect of multiple layers per optimiza-

tion iteration. Table 4 shows that using the MCD optimizer

further improves the accuracy by 0.4%.

• Impact of Resource Reduction and Number of Samples

The two main hyper-parameters of the MCD optimizer

are the per-iteration resource reduction, which is defined by

an initial resource reduction and a decay rate, and the num-

ber of samples per iteration (J). They influence the accuracy

of the discovered networks and the search time. Table 5 sum-

marizes the accuracy of the 51ms discovered networks when

using different initial latency reductions (with a fixed decay

of 0.98 per iteration) and different numbers of samples.

The first experiment is fixing the number of samples per

iteration and increasing the initial latency reduction from

1.5% to 6.0%, which gradually reduces the time for evalu-

ating samples. The result shows that as long as the latency
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Method
Top-1

Accuracy (%)

Latency

(ms)

MAC

(M)

Search Time

(GPU-Hours)

Non-Diff.

Metrics

CO2

Emission (lbs)

MnasNet [2] 75.2 78 312 - X -

ProxylessNAS [3] 74.6 78 320 500 142

Single-Path NAS [22] 75.6 82 -
243*

(24 (TPU V3), 0, 219)
69

AutoSlim [10] 74.6 71 315 - X -

FBNet [19] 74.9 - 375 - -

MobileNetV3 [25] 75.2 51 219 - X -

FairNAS [35] 76.7 77 325 - X -

Once-for-All [11] 76.9 58 230
1315

(1200, 40, 75)
X 374

BigNAS [12] 76.5 - 242
2304 (TPU V3)

(2304, -, 0)
X 655

NetAdaptV2

(Guided by Latency)
77.0 51 225

397

(167, 24, 206)
X 113

* 1) We merge the time for training the super-network and that for training and evaluating samples into one. 2) We train the

discovered network for 350 epochs as mentioned in [22].

Table 1: The comparison between NetAdaptV2 guided by latency and related works on ImageNet. The number of MACs is

reported for completeness although NetAdaptV2 is not guided by MACs and achieves sub-optimal accuracy-MAC trade-offs.

The numbers between parentheses show the breakdown of the search time in terms of training a super-network, training

and evaluating samples, and training the discovered DNN from left to right. Non-Diff. Metrics denotes whether the method

supports non-differentiable metrics. The last column CO2 Emission shows the estimated CO2 emission based on [34].

Method
Top-1

Accuracy (%)

MAC

(M)

Search Time

(GPU-Hours)

NSGANetV2-m [38] 78.3 312
1674

(1200, 24, 450)

EfficientNet-B0 [31] 77.3 390 -

MixNet-M [39] 77.0 360 -

NetAdaptV2

(Guided by MAC)
78.5 314

656

(204, 35, 417)

Table 2: The comparison between NetAdaptV2 guided by

MACs and related works. The numbers between parentheses

show the breakdown of the search time in terms of training a

super-network, training and evaluating samples, and training

the discovered DNN from left to right.

OD
Top-1

Accuracy (%)

Latency

(ms)

Search Time

(GPU-Hours)

71.0 (+0) 43.9 (100%)
721 (100%)

(0, 543, 178)

X 71.1 (+0.1) 44.4 (101%)
221 (31%)

(50, 2, 169)

Table 3: The ablation study of the proposed ordered dropout

(OD) on MobileNetV1 [40] and ImageNet. The numbers

between parentheses show the breakdown of the search time

in terms of training a super-network, training and evaluating

samples, and training the discovered DNN from left to right.

Methods Top-1

Accuracy (%)CBC MCD

75.9 (+0)

X 76.2 (+0.3)

X X 76.6 (+0.7)

Table 4: The ablation study of the channel-level bypass con-

nections (CBCs) and the multi-layer coordinate descent opti-

mizer (MCD) on ImageNet. The latency of the discovered

networks is around 51ms, and ordered dropout is used.

reduction is small enough, specifically below 3% in this ex-

periment, the accuracy of the discovered networks does not

change with the latency reduction.

The second experiment is fixing the time for evaluating

samples by scaling both the initial latency reduction and the

number of samples per iteration at the same rate. As shown

in Table 5, as long as the latency reduction is small enough,

more samples will result in better discovered networks. How-

ever, if the initial latency reduction is too large, increasing

the number of samples per iteration cannot prevent the accu-

racy from degrading.

• Accuracy Variation across Multiple Executions

To know the accuracy variation of each step in Ne-

tAdaptV2 [41], we execute different steps three times and

summarize the resultant accuracy of the discovered networks

in Table 6. The initial latency reduction is 1.5%, and the

number of samples per iteration is 100 (J = 100). The la-
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Initial Latency

Reduction

Number of

Samples (J)

Top-1

Accuracy (%)

Fixed Number of

Samples per Iteration

1.5% 100 76.4

3.0% 100 76.4

6.0% 100 75.9

Fixed Time for

Evaluating Samples

1.5% 100 76.4

3.0% 200 76.6

6.0% 400 75.7

Table 5: The experiments for evaluating the influence of the

two main hyper-parameters of the MCD optimizer, which

are the initial latency reduction (with a fixed decay of 0.98

per iteration) and the number of samples (J). All discovered

networks have almost the same latency (51ms).

Training

Super-Network

Evaluating

Samples

Training

Discovered DNN

Top-1 Accuracy of

Executions (%)

1 2 3

X 76.1 76.1 76.2

X X 76.1 76.2 76.4

X X X 76.1 76.2 76.4

Table 6: The accuracy variation of NetAdaptV2. The X

denotes the step is executed three times, and the others are

executed once. For example, the last row corresponds to

executing the entire algorithm flow of NetAdaptV2 three

times. For the MCD optimizer, the initial latency reduction

is 1.5%, and the number of samples per iteration is 100

(J = 100). The latency of all discovered networks is around

51ms, and the accuracy values are sorted in ascending order.

tency of discovered networks is around 51ms. According to

the last row of Table 6, which corresponds to executing the

entire algorithm flow of NetAdaptV2 three times, the accu-

racy variation is 0.3%. The variation is fairly small because

simply training the same discovered network three times

results in an accuracy variation of 0.1% as shown in the first

row. Moreover, when we fix the super-network and execute

the MCD optimizer three times as shown in the second row,

the accuracy variation is the same as that of executing the

entire NetAdaptV2 three times. The result suggests that the

randomness in training a super-network does not increase

the overall accuracy variation, which is preferable since we

only need to perform this relatively costly step one time.

4.2. Depth Estimation

4.2.1 Experiment Setup

NYU Depth V2 [28] is used for depth estimation. We reserve

2K training images for evaluating the performance of sam-

ples and train the super-network with the rest of the training

images. The initial network is FastDepth [42]. Following

FastDepth, we pre-train the encoder of the super-network

on ImageNet. The batch size is 256, and the learning rate

is 0.9 decayed by 0.963 every epoch. After pre-training the

Method
RMSE

(m)

Delta-1

Accuracy

(%)

Latency

(ms)

Search Time

(GPU-Hours)

ImageNet
NYU

Depth

NetAdaptV1 [1] 0.583 77.4 87.6 96 65

NetAdaptV2 0.576 77.9 86.7 96 27

Table 7: The comparison between NetAdaptV2 and Ne-

tAdaptV1 on depth estimation and NYU Depth V2 [28].

encoder, we train the super-network on NYU Depth V2 for

50 epochs with a batch size of 16 and an initial learning rate

of 0.025 decayed by 0.9 every epoch. For the MCD opti-

mizer, we generate 150 (J = 150) samples per iteration. We

search with latency measured on a Google Pixel 1 CPU. The

latency reduction is 1.5% in the first iteration and is decayed

by 0.98 every iteration. For training the discovered network,

we use the same setup as training the super-network, except

that the initial learning rate is 0.05.

4.2.2 Search Result

The comparison between the proposed NetAdaptV2 and

NetAdaptV1 [1], which is used in FastDepth [42], is sum-

marized in Table 7. NetAdaptV2 reduces the search time

by 2.4× on NYU Depth V2, and the discovered DNN out-

performs that of NetAdaptV1 by 0.5% in delta-1 accuracy

with comparable latency. Because NYU Depth V2 is much

smaller than ImageNet, the reduction in the total search time

is less than that of applying NetAdaptV2 on ImageNet. The

search time spent on ImageNet is for pre-training the en-

coder, which is a common practice and indispensable when

training DNNs for depth estimation on NYU Depth V2.

5. Conclusion

In this paper, we propose NetAdaptV2, an efficient neural

architecture search algorithm, which significantly reduces

the total search time and discovers DNNs with state-of-the-

art accuracy-latency/accuracy-MAC trade-offs. NetAdaptV2

better balances the time spent per step and supports non-

differentiable search metrics. This is realized by the pro-

posed methods: channel-level bypass connections, ordered

dropout, and multi-layer coordinate descent optimizer. The

experiments demonstrate that NetAdaptV2 can reduce the

total search time by up to 5.8× on image classification and

2.4× on depth estimation and discover DNNs with better

performance than state-of-the-art works.
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