
Cross-Iteration Batch Normalization

Zhuliang Yao1, 2 * Yue Cao2 Shuxin Zheng2 Gao Huang1 Stephen Lin2

1 Tsinghua University 2 Microsoft Research Asia

{yzl17@mails.,gaohuang@}tsinghua.edu.cn {yuecao,Shuxin.Zheng,stevelin}@microsoft.com

Abstract

A well-known issue of Batch Normalization is its signifi-

cantly reduced effectiveness in the case of small mini-batch

sizes. When a mini-batch contains few examples, the statis-

tics upon which the normalization is defined cannot be re-

liably estimated from it during a training iteration. To ad-

dress this problem, we present Cross-Iteration Batch Nor-

malization (CBN), in which examples from multiple recent

iterations are jointly utilized to enhance estimation qual-

ity. A challenge of computing statistics over multiple itera-

tions is that the network activations from different iterations

are not comparable to each other due to changes in net-

work weights. We thus compensate for the network weight

changes via a proposed technique based on Taylor polyno-

mials, so that the statistics can be accurately estimated and

batch normalization can be effectively applied. On object

detection and image classification with small mini-batch

sizes, CBN is found to outperform the original batch nor-

malization and a direct calculation of statistics over pre-

vious iterations without the proposed compensation tech-

nique. Code is available at https://aka.ms/cbn.

1. Introduction

Batch Normalization (BN) [10] has played a significant

role in the success of deep neural networks. It was intro-

duced to address the issue of internal covariate shift, where

the distribution of network activations changes during train-

ing iterations due to the updates of network parameters.

This shift is commonly believed to be disruptive to network

training, and BN alleviates this problem through normaliza-

tion of the network activations by their mean and variance,

computed over the examples within the mini-batch at each

iteration. With this normalization, network training can be

performed at much higher learning rates and with less sen-

sitivity to weight initialization.

In BN, it is assumed that the distribution statistics for the

examples within each mini-batch reflect the statistics over

*This work is done when Zhuliang Yao is an intern at Microsoft Re-

search Asia. Correspondence to: Yue Cao (yuecao@microsoft.com).

the full training set. While this assumption is generally valid

for large batch sizes, it breaks down in the small batch size

regime [18, 31, 9], where noisy statistics computed from

small sets of examples can lead to a dramatic drop in per-

formance. This problem hinders the application of BN to

memory-consuming tasks such as object detection [20, 3],

semantic segmentation [15, 2] and action recognition [30],

where batch sizes are limited due to memory constraints.

Towards improving estimation of statistics in the small

batch size regime, alternative normalizers have been pro-

posed. Several of them, including Layer Normalization

(LN) [1], Instance Normalization (IN) [28], and Group Nor-

malization (GN) [31], compute the mean and variance over

the channel dimension, independent of batch size. Differ-

ent channel-wise normalization techniques, however, tend

to be suitable for different tasks, depending on the set of

channels involved. Although GN is designed for detec-

tion task, the slow inference speed limits its practical usage.

On the other hand, synchronized BN (SyncBN) [18] yields

consistent improvements by processing larger batch sizes

across multiple GPUs. These gains in performance come at

the cost of additional overhead needed for synchronization

across the devices.

A seldom explored direction for estimating better statis-

tics is to compute them over the examples from multiple re-

cent training iterations, instead of from only the current iter-

ation as done in previous techniques. This can substantially

enlarge the pool of data from which the mean and variance

are obtained. However, there exists an obvious drawback

to this approach, in that the activation values from differ-

ent iterations are not comparable to each other due to the

changes in network weights. As shown in Figure 1, directly

calculating the statistics over multiple iterations, which we

refer to as Naive CBN, results in lower accuracy.

In this paper, we present a method that compensates for

the network weight changes among iterations, so that ex-

amples from preceding iterations can be effectively used to

improve batch normalization. Our method, called Cross-

Iteration Batch Normalization (CBN), is motivated by the

observation that network weights change gradually, in-

stead of abruptly, between consecutive training iterations,

12331

32 16 8 4 2 1

batch size per iter

65

66

67

68

69

70
T

o
p

-1
 a

c
c
u

ra
c
y

BN

BRN

GN

Naive CBN

CBN (ours)

1 1 2 4 8 16

window size (k) of CBN

Figure 1. Top-1 classification accuracy vs. batch sizes per it-

eration. The base model is a ResNet-18 [6] trained on Ima-

geNet [21]. The accuracy of BN [10] drops rapidly when the batch

size is reduced. BRN [9] stabilizes BN a little but still has trou-

ble with smaller batch sizes. GN [31] exhibits stable performance

but underperforms BN on adequate batch sizes. CBN compen-

sates for the reduced batch size per GPU by exploiting approxi-

mated statistics from recent iterations (Temporal window size de-

notes how many recent iterationss are utilized for statistics com-

putation). CBN shows relatively stable performance over different

batch sizes. Naive CBN, which directly calculates statistics from

recent iterations without compensation, is shown not to work well.

thanks to the iterative nature of Stochastic Gradient De-

scent (SGD). As a result, the mean and variance of exam-

ples from recent iterations can be well approximated for the

current network weights via a low-order Taylor polynomial,

defined on gradients of the statistics with respect to the net-

work weights. The compensated means and variances from

multiple recent iterations are averaged with those of the cur-

rent iteration to produce better estimates of the statistics.

In the small batch size regime, CBN leads to appreciable

performance improvements over the original BN, as exhib-

ited in Figure 1. The superiority of our proposed approach

is further demonstrated through more extensive experiments

on ImageNet classification and object detection on COCO.

These gains are obtained with negligible overhead, as the

statistics from previous iterations have already been com-

puted and Taylor polynomials are simple to evaluate. With

this work, it is shown that cues for batch normalization can

successfully be extracted along the time dimension, open-

ing a new direction for investigation.

2. Related Work

The importance of normalization in training neural net-

works has been recognized for decades [11]. In general,

normalization can be performed on three components: input

data, hidden activations, and network parameters. Among

them, input data normalization is used most commonly be-

cause of its simplicity and effectiveness [26, 11].

After the introduction of Batch Normalization [10], the

normalization of activations has become nearly as preva-

lent. By normalizing hidden activations by their statis-

tics within each mini-batch, BN effectively alleviates the

vanishing gradient problem and significantly speeds up the

training of deep networks. To mitigate the mini-batch size

dependency of BN, a number of variants have been pro-

posed, including Layer Normalization (LN) [1], Instance

Normalization (IN) [28], Group Normalization (GN) [31],

and Batch Instance Normalization (BIN) [17]. The motiva-

tion of LN is to explore more suitable statistics for sequen-

tial models, while IN performs normalization in a manner

similar to BN but with statistics only for each instance. GN

achieves a balance between IN and LN, by dividing features

into multiple groups along the channel dimension and com-

puting the mean and variance within each group for nor-

malization. BIN introduces a learnable method for auto-

matically switching between normalizing and maintaining

style information, enjoying the advantages of both BN and

IN on style transfer tasks. Cross-GPU Batch Normaliza-

tion (CGBN or SyncBN) [18] extends BN across multiple

GPUs for the purpose of increasing the effective batch size.

Though providing higher accuracy, it introduces synchro-

nization overhead to the training process. Kalman Normal-

ization (KN) [29] presents a Kalman filtering procedure for

estimating the statistics for a network layer from the layer’s

observed statistics and the computed statistics of previous

layers.

Batch Renormalization (BRN) [9] is the first attempt to

utilize the statistics of recent iterations for normalization. It

does not compensate for the statistics from recent iterations,

but rather it down-weights the importance of statistics from

distant iterations. This down-weighting heuristic, however,

does not make the resulting statistics “correct”, as the statis-

tics from recent iterations are not of the current network

weights. BRN can be deemed as a special version of our

Naive CBN baseline (without Taylor polynomial approxi-

mation), where distant iterations are down-weighted.

Recent work have also investigated the normalization of

network parameters. In Weight Normalization (WN) [22],

the optimization of network weights is improved through a

reparameterization of weight vectors into their length and

direction. Weight Standardization (WS) [19] instead repa-

rameterizes weights based on their first and second mo-

ments for the purpose of smoothing the loss landscape of the

optimization problem. To combine the advantages of mul-

tiple normalization techniques, Switchable Normalization

(SN) [16] and Sparse Switchable Normalization (SSN) [24]

make use of differentiable learning to switch among differ-

ent normalization methods.

The proposed CBN takes an activation normalization ap-

proach that aims to mitigate the mini-batch dependency of

BN. Different from existing techniques, it provides a way to

effectively aggregate statistics across multiple training iter-

12332

ations.

3. Method

3.1. Revisiting Batch Normalization

The original batch normalization (BN) [10] whitens the

activations of each layer by the statistics computed within a

mini-batch. Denote θt and xt,i(θt) as the network weights

and the feature response of a certain layer for the i-th exam-

ple in the t-th mini-batch. With these values, BN conducts

the following normalization:

x̂t,i(θt) =
xt,i(θt)− µt(θt)
√

σt(θt)2 + ǫ
, (1)

where x̂t,i(θt) is the whitened activation with zero mean

and unit variance, ǫ is a small constant added for numerical

stability, and µt(θt) and σt(θt) are the mean and variance

computed for all the examples from the current mini-batch,

i.e.,

µt(θt) =
1

m

m
∑

i=1

xt,i(θt), (2)

σt(θt) =

√

√

√

√

1

m

m
∑

i=1

(xt,i(θt)− µt(θt))2

=
√

νt(θt)− µt(θt)2,

(3)

where νt(θt) =
1
m

∑m
i=1 xt,i(θt)

2, and m denotes the num-

ber of examples in the current mini-batch. The whitened

activation x̂t,i(θt) further undergoes a linear transform with

learnable weights, to increase its expressive power:

yt,i(θt) = γx̂t,i(θt) + β, (4)

where γ and β are the learnable parameters (initialized to

γ = 1 and β = 0 in this work).

When the batch size m is small, the statistics µt(θt) and

σt(θt) become noisy estimates of the training set statistics,

thus degrading the effects of batch normalization. In the

ImageNet classification task for which the BN module was

originally designed, a batch size of 32 is typical. However,

for other tasks requiring larger models and/or higher im-

age resolution, such as object detection, semantic segmen-

tation and video recognition, the typical batch size may be

as small as 1 or 2 due to GPU memory limitations. The orig-

inal BN becomes considerably less effective in such cases.

3.2. Leveraging Statistics from Previous Iterations

To address the issue of BN with small mini-batches, a

naive approach is to compute the mean and variance over

the current and previous iterations. However, the statistics

µt−τ (θt−τ) and νt−τ (θt−τ) of the (t − τ)-th iteration are

computed under the network weights θt−τ , making them

obsolete for the current iteration. As a consequence, di-

rectly aggregating statistics from multiple iterations pro-

duces inaccurate estimates of the mean and variance, lead-

ing to significantly worse performance.

We observe that the network weights change smoothly

between consecutive iterations, due to the nature of

gradient-based training. This allows us to approxi-

mate µt−τ (θt) and νt−τ (θt) from the readily available

µt−τ (θt−τ) and νt−τ (θt−τ) via a Taylor polynomial, i.e.,

µt−τ (θt) =µt−τ (θt−τ) +
∂µt−τ (θt−τ)

∂θt−τ

(θt − θt−τ)

+O(||θt − θt−τ ||
2),

(5)

νt−τ (θt) =νt−τ (θt−τ) +
∂νt−τ (θt−τ)

∂θt−τ

(θt − θt−τ)

+O(||θt − θt−τ ||
2),

(6)

where ∂µt−τ (θt−τ)/∂θt−τ and ∂νt−τ (θt−τ)/∂θt−τ are

gradients of the statistics with respect to the network

weights, and O(||θt − θt−τ ||
2) denotes higher-order terms

of the Taylor polynomial, which can be omitted since the

first-order term dominates when (θt − θt−τ) is small.

In Eq. (5) and Eq. (6), the gradients ∂µt−τ (θt−τ)/∂θt−τ

and ∂νt−τ (θt−τ)/∂θt−τ cannot be precisely determined

at a negligible cost because the statistics µl
t−τ (θt−τ) and

νlt−τ (θt−τ) for a node at the l-th network layer depend

on all the network weights prior to the l-th layer, i.e.,

∂µl
t−τ (θt−τ)/∂θ

r
t−τ 6= 0 and ∂νlt−τ (θt−τ)/∂θ

r
t−τ 6= 0 for

r ≤ l, where θrt−τ denotes the network weights at the r-th

layer. Only when r = l can these gradients be derived in

closed form efficiently.

Empirically, we find that as the layer index r decreases

(r ≤ l), the partial gradients
∂µl

t
(θt)

θr

t

and
∂νl

t
(θt)
θr

t

rapidly di-

minish. These reduced effects of network weight changes

at earlier layers on the activation distributions in later layers

may perhaps be explained by the reduced internal covariate

shift of BN. Motivated by this phenomenon, which is stud-

ied in Appendix ??, we propose to truncate these partial

gradients at layer l.
Thus, we further approximate Eq. (5) and Eq. (6) by

µ
l

t−τ (θt) ≈ µ
l

t−τ (θt−τ) +
∂µl

t−τ (θt−τ)

∂θl
t−τ

(θlt − θ
l

t−τ), (7)

ν
l

t−τ (θt) ≈ ν
l

t−τ (θt−τ) +
∂νl

t−τ (θt−τ)

∂θl
t−τ

(θlt − θ
l

t−τ). (8)

A naive implementation of ∂µl
t−τ (θt−τ)/∂θ

l
t−τ and

∂νlt−τ (θt−τ)/∂θ
l
t−τ involves computational overhead of

O(Cout × Cout × Cin × K), where Cout and Cin denote

the output and input channel dimension of the l-th layer, re-

spectively, and K denotes the kernel size of θlt−τ . Here,

we find that the operation can be implemented efficiently in

O(Cout × Cin × K), thanks to the averaging over feature

responses of µ and ν. See Appendix ?? for the details.

12333

Iteration t-2

CBN

mean, variance
(,)μ

t−2

δ

t−2

Compensated
mean, variance

(,)μ̄

t−2

δ

¯

t−2

Normalize,
Affine transform

Normalize,
Affine transform

BN

Iteration t-1

mean, variance
(,)μ

t−1

δ

t−1

Compensated
mean, variance

(,)μ̄

t−1

δ

¯

t−1

Normalize,
Affine transform

Normalize,
Affine transform

Iteration t

mean, variance
(,)μ

t

δ

t

Compensated
mean, variance

(,)μ̄

t

δ

¯

t

Normalize,
Affine transform

Normalize,
Affine transform

Figure 2. Illustration of BN and the proposed Cross-Iteration Batch Normalization (CBN).

3.3. Cross­Iteration Batch Normalization

After compensating for network weight changes, we ag-

gregate the statistics of the k−1 most recent iterations with

those of the current iteration t to obtain the statistics used in

CBN:

µ̄l
t,k(θt) =

1

k

k−1
∑

τ=0

µl
t−τ (θt), (9)

ν̄lt,k(θt) =
1

k

k−1
∑

τ=0

max
[

νlt−τ (θt), µ
l
t−τ (θt)

2
]

, (10)

σ̄l
t,k(θt) =

√

ν̄lt,k(θt)− µ̄l
t,k(θt)

2, (11)

where µl
t−τ (θt) and νlt−τ (θt) are computed from Eq. (7)

and Eq. (8). In Eq. (10), ν̄lt,k(θt) is determined from the

maximum of νlt−τ (θt) and µl
t−τ (θt)

2 in each iteration be-

cause νlt−τ (θt) ≥ µl
t−τ (θt)

2 should hold for valid statistics

but may be violated by Taylor polynomial approximations

in Eq. (7) and Eq. (8). Finally, µ̄l
t,k(θt) and σ̄l

t,k(θt) are

applied to normalize the corresponding feature responses

{xl
t,i(θt)}

m
i=1 at the current iteration:

x̂l
t,i(θt) =

xl
t,i(θt)− µ̄l

t,k(θt)
√

σ̄l
t,k(θt)

2 + ǫ
. (12)

With CBN, the effective number of examples used to

compute the statistics for the current iteration is k times

as large as that for the original BN. In training, the loss

gradients are backpropagated to the network weights and

activations at the current iteration, i.e., θlt and xl
t,i(θt).

Those of the previous iterations are fixed and do not receive

gradients. Hence, the computation cost of CBN in back-

propagation is the same as that of BN.

Replacing the BN modules in a network by CBN leads

to only minor increases in computational overhead and

memory footprint. For computation, the additional over-

head mainly comes from computing the partial derivatives

∂µt−τ (θt−τ)/∂θ
l
t−τ and ∂νt−τ (θt−τ)/∂θ

l
t−τ , which is

insignificant in relation to the overhead of the whole

network. For memory, the module requires access to the

statistics ({µl
t−τ (θt−τ)}

k−1
τ=1 and {νlt−τ (θt−τ)}

k−1
τ=1)

and the gradients ({∂µt−τ (θt−τ)/∂θ
l
t−τ}

k−1
τ=1 and

{∂νt−τ (θt−τ)/∂θ
l
t−τ}

k−1
τ=1) computed for the most re-

cent k − 1 iterations, which is also minor compared to

the rest of the memory consumed in processing the input

examples. The additional computation and memory of

CBN is reported for our experiments in Table 8.

A key hyper-parameter in the proposed CBN is the tem-

poral window size, k, of recent iterations used for statistics

estimation. A broader window enlarges the set of exam-

ples, but the example quality becomes increasingly lower

for more distant iterations, since the differences in network

parameters θt and θt−τ become more significant and are

compensated less well using a low-order Taylor polyno-

mial. Empirically, we found that CBN is effective with

a window size up to k = 8 in a variety of settings and

tasks. The only trick is that the window size should be

kept small at the beginning of training, when the network

weights change quickly. Thus, we introduce a burn-in pe-

riod of length Tburn-in for the window size, where k = 1 and

CBN degenerates to the original BN. In our experiments,

the burn-in period is set to 25 epochs on ImageNet image

classification and 3 epochs on COCO object detection by

default.

Table 1 compares CBN with other feature normalization

methods. The key difference among these approaches is the

axis along which the statistics are counted and the features

are normalized. The previous techniques are all designed to

12334

batch size per iter #examples for statistics Norm axis

IN #bs/GPU * #GPU 1 (spatial)

LN #bs/GPU * #GPU 1 (channel, spatial)

GN #bs/GPU * #GPU 1 (channel group, spatial)

BN #bs/GPU * #GPU #bs/GPU (batch, spatial)

syncBN #bs/GPU * #GPU #bs/GPU * #GPU (batch, spatial, GPU)

CBN #bs/GPU * #GPU #bs/GPU * temporal window (batch, spatial, iteration)

Table 1. Comparison of different feature normalization methods. #bs/GPU denotes batch size per GPU.

IN LN GN CBN BN

Top-1 acc 64.4±0.2 67.9±0.2 68.9±0.1 70.2±0.1 70.2±0.1

Table 2. Top-1 accuracy of feature normalization methods using

ResNet-18 on ImageNet.

exploit examples from the same iteration. By contrast, CBN

explores the aggregation of examples along the temporal di-

mension. As the data utilized by CBN lies in a direction

orthogonal to that of previous methods, the proposed CBN

could potentially be combined with other feature normal-

ization approaches to further enhance statistics estimation

in certain challenging applications.

4. Experiments

4.1. Image Classification on ImageNet

Experimental settings. ImageNet [21] is a benchmark

dataset for image classification, containing 1.28M training

images and 50K validation images from 1000 classes. We

follow the standard setting in [5] to train deep networks on

the training set and report the single-crop top-1 accuracy

on the validation set. Our preprocessing and augmentation

strategy strictly follows the GN baseline [31]. We use a

weight decay of 0.0001 for all weight layers, including γ
and β. We train standard ResNet-18 for 100 epochs on 4

GPUs, and decrease the learning rate by the cosine decay

strategy [7]. We perform the experiments for five trials,

and report their mean and standard deviation (error bar).

ResNet-18 with BN is our base model. To compare with

other normalization methods, we directly replace BN with

IN, LN, GN, BRN, and our proposed CBN.

Comparison of feature normalization methods. In Ta-

ble 2, we compare the performance of each normalization

method with a batch size, 32, sufficient for computing re-

liable statistics. Under this setting, BN clearly yields the

highest top-1 accuracy. Similar to results found in previous

works [31], the performance of IN and LN is significantly

worse than that of BN. GN works well on image classifica-

tion but falls short of BN by 1.2%. Among all the methods,

our CBN is the only one that is able to achieve accuracy

comparable to BN, as it converges to the procedure of BN

at larger batch sizes.

Sensitivity to batch size. We compare the behavior of

CBN, original BN [10], GN [31], and BRN [9] at the same

number of images per GPU on ImageNet classification. For

batch size per GPU 32 16 8 4 2 1

BN 70.2 70.2 68.4 65.1 55.9 -

GN 68.9 69.0 68.9 69.0 69.1 68.9

BRN 70.1 69.5 68.2 67.9 60.3 -

CBN 70.2 70.2 70.1 70.0 69.6 69.3

Table 3. Top-1 accuracy of normalization methods with different

batch sizes using ResNet-18 as the base model on ImageNet.

BN

bs=32

BN

bs=4
GN BRN CBN

ResNet-50 76.1 72.2 75.5 73.8 76.0

VGG-16 73.3 68.2 72.7 70.3 73.1

Inception-v3 77.5 72.9 76.8 75.1 77.2

DenseNet-121 74.7 72.6 74.2 74.0 74.6

MobileNet-v2 71.6 67.3 71.0 70.7 71.6

Table 4. Top-1 accuracy of normalization methods with different

network architectures on ImageNet.

CBN, the recent iterations are utilized so as to ensure that

the number of effective examples is no fewer than 16. For

BRN, the settings strictly follow the original paper. We

adopt a learning rate of 0.1 for the batch size of 32, and

linearly scale the learning rate by N/32 for a batch size of

N .

The results are shown in Table 3. For the original BN, its

accuracy drops noticeably as the number of images per GPU

is reduced from 32 to 2. BRN suffers a significant perfor-

mance drop as well. GN maintains its accuracy by utilizing

the channel dimension but not batch dimension. For CBN,

its accuracy holds by exploiting the examples of recent it-

erations. Also, CBN outperforms GN by 0.9% on average

top-1 accuracy with different batch sizes. This is reason-

able, because the statistics computation of CBN introduces

uncertainty caused by the stochastic batch sampling like in

BN, but this uncertainty is missing in GN which results in

some loss of regularization ability. For the extreme case that

the number of images per GPU is 1, BN and BRN fails to

produce results, while CBN outperforms GN by 0.4% on

top-1 accuracy in this case.

Different network architectures. To verify the gener-

alization ability of CBN, we also compared CBN to BN

and GN using different network architectures. The results

are shown in Table 4.1. We choose five typres of archi-

tectures, i.e., ResNet-50 [6], VGG-16 [25], Inception-v3

[27], DenseNet-121 [8], and MobileNet-v2 [23]. This set

12335

backbone box head APbbox APbbox
50 APbbox

75 APbbox
S APbbox

M APbbox
L

fixed BN - 36.9 58.2 39.9 21.2 40.8 46.9

fixed BN BN 36.3 57.3 39.2 20.8 39.7 47.3

fixed BN syncBN 37.7 58.5 41.1 22.0 40.9 49.0

fixed BN GN 37.8 59.0 40.8 22.3 41.2 48.4

fixed BN BRN 37.4 58.1 40.3 22.0 40.7 48.3

fixed BN CBN 37.7 59.0 40.7 22.1 40.9 48.8

BN BN 35.5 56.4 38.7 19.7 38.8 47.3

syncBN syncBN 37.9 58.5 41.1 21.7 41.5 49.7

GN GN 37.8 59.1 40.9 22.4 41.2 49.0

CBN CBN 37.7 58.9 40.6 22.0 41.4 48.9

Table 5. Results of feature normalization methods on Faster R-CNN with FPN and ResNet50 on COCO. As the values of standard

deviation of all methods are less than 0.1 on COCO, we ignore them here.

Backbone method norm APbbox APbbox
50 APbbox

75 APbbox
S APbbox

M APbbox
L

R50+FPN Faster R-CNN

GN 37.8 59.0 40.8 22.3 41.2 48.4

syncBN 37.7 58.5 41.1 22.0 40.9 49.0

CBN 37.7 59.0 40.7 22.1 40.9 48.8

R101+FPN Faster R-CNN

GN 39.3 60.6 42.7 22.5 42.5 51.3

syncBN 39.2 59.8 43.0 22.2 42.9 51.6

CBN 39.2 60.0 42.6 22.3 42.6 51.1

APbbox APbbox
50 APbbox

75 APmask APmask
50 APmask

75

R50+FPN Mask R-CNN

GN 38.6 59.8 41.9 35.0 56.7 37.3

syncBN 38.5 58.9 42.3 34.7 56.3 36.8

CBN 38.5 59.2 42.1 34.6 56.4 36.6

R101+FPN Mask R-CNN

GN 40.3 61.2 44.2 36.6 58.5 39.2

syncBN 40.3 60.8 44.2 36.0 57.7 38.6

CBN 40.1 60.5 44.1 35.8 57.3 38.5

Table 6. Results with stronger backbones on COCO object detection and instance segmentation.

of architectures represents the majority of modern network

choices for computer vision tasks. BN (bs=32) is the ideal

upper bound of this experiment. All the other three nor-

malization methods are trained with a batch size of 4. BN

(bs=4) clearly suffers from the limitations of small batch-

size regime. Also, GN leads to a about a 0.5% performance

drop. Our CBN is the only one that obtains results compa-

rable to BN with large batch size. These results demonstrate

that our proposed CBN can be used in most modern convo-

lutional neural networks.

4.2. Object Detection and Instance Segmentation
on COCO

Experimental settings. COCO [14] is chosen as the

benchmark for object detection and instance segmentation.

Models are trained on the COCO 2017 train split with 118k

images, and evaluated on the COCO 2017 validation split

with 5k images. Following the standard protocol in [14], the

object detection and instance segmentation accuracies are

measured by the mean average precision (mAP) scores at

different intersection-over-union (IoU) overlaps at the box

and the mask levels, respectively.

Following [31], Faster R-CNN [20] and Mask R-

CNN [4] with FPN [13] are chosen as the baselines for ob-

ject detection and instance segmentation, respectively. For

both, the 2fc box head is replaced by a 4conv1fc head for

better use of the normalization mechanism [31]. The back-

bone networks are ImageNet pretrained ResNet-50 (default)

or ResNet-101, with specific normalization. Finetuning is

performed on the COCO train set for 12 epochs on 4 GPUs

by SGD, where each GPU processes 4 images (default).

Note that the mean and variance statistics in CBN are com-

puted within each GPU. The learning rate is initialized to

be 0.02 ∗ N/16 for a batch size per GPU of N , and is de-

cayed by a factor of 10 at the 9-th and the 11-th epochs. The

weight decay and momentum parameters are set to 0.0001

and 0.9, respectively. We use the average over 5 trials for all

results. As the values of standard deviation of all methods

are less than 0.1 on COCO, they are ignored here.

As done in [31], we experiment with two settings where

the normalizers are activated only at the task-specific heads

with frozen BN at the backbone (default), or the normalizers

are activated at all the layers except for the early conv1 and

conv2 stages in ResNet.

Normalizers at backbone and task-specific heads. We

further study the effect of different normalizers on the back-

bone network and task-specific heads for object detection

on COCO. CBN, original BN, syncBN, and GN are in-

cluded in the comparison. For BRN, it is unclear [16] how

to apply it in tasks like object detection. Directly replacing

BN with BRN leads to 0.3% performance drop on APbbox

score.

12336

Table 5 presents the results. When BN is frozen in the

backbone and no normalizer is applied at the head, the

APbbox score is 36.9%. When the original BN is applied

at the head only and at both the backbone and the head, the

accuracy drops to 36.3% and 35.5%, respectively. For CBN,

the accuracy is 37.7% and 37.7% at these two settings,

respectively. Without any synchronization across GPUs,

CBN can achieve performance on par with syncBN and GN,

showing the superiority of the proposed approach.

Instance segmentation and stronger backbones. Re-

sults of object detection (Faster R-CNN [20]) and in-

stance segmentation (Mask R-CNN [4]) with ResNet-50

and ResNet-101 are presented in Table 6. We can observe

that our CBN achieves performance comparable to syncBN

and GN with R50 and R101 as the backbone on both Faster

R-CNN and Mask R-CNN, which demonstrates that CBN

is robust and versatile to various deep models and tasks.

4.3. Ablation Study

Effect of temporal window size k. We conduct this ab-

lation on ImageNet image classification and COCO object

detection, with each GPU processing 4 images. Figure 3

presents the results. When k = 1, only the batch from the

current iteration is utilized; therefore, CBN degenerates to

the original BN. The accuracy suffers due to the noisy statis-

tics on small batch sizes. As the window size k increases,

more examples from recent iterations are utilized for statis-

tics estimation, leading to greater accuracy. Accuracy satu-

rates at k = 8 and even drops slightly. For more distant it-

erations, the network weights differ more substantially and

Taylor polynomial approximation becomes less accurate.

On the other hand, it is empirically observed that the

original BN saturates at a batch size of 16 or 32 for nu-

merous applications [18, 31], indicating that the computed

statistics become accurate. Thus, a temporal window size

of k = min(⌈ 16
bs per GPU

⌉, 8) is suggested.

Effect of compensation. To study this, we compare

CBN to 1) Naive CBN, where statistics from recent itera-

tions are directly aggregated without compensation via Tay-

lor polynomial; and 2) the original BN applied with the

same effective example number as CBN (i.e., its batch size

per GPU is set to the product of batch size per GPU and

temporal window size of CBN), which does not require any

compensation and serves as an upper performance bound.

The experimental results are also presented in Figure 3.

CBN clearly surpasses Naive CBN when the previous itera-

tions are included. Actually, Naive CBN fails when the tem-

poral window size grows to k = 8 as shown in Figure 3(a),

demonstrating the necessity of compensating for changing

network weights over iterations. Compared with the origi-

nal BN upper bound, CBN achieves similar accuracy at the

same effective example number. This result indicates that

the compensation using a low-order Taylor polynomial by

4 8 16 32

#examples for statistics

65

66

67

68

69

70

A
P

b
b
o
x

syncBN

BRN

GN

Naive CBN

CBN

1 2 4 8

temporal window size (k) of CBN

4 8 16 32

#examples for statistics

36.5

37

37.5

38

A
P

b
b

o
x

syncBN

GN

Naive CBN

CBN

1 2 4 8

temporal window size (k) of CBN

Figure 3. The effect of temporal window size (k) on ImageNet

(ResNet-18) and COCO (Faster R-CNN with ResNet-50 and FPN)

with #bs/GPU = 4 for CBN and Naive CBN. Naive CBN directly

utilizes statistics from recent iterations, while BN uses the equiva-

lent #examples as CBN for statistics computation.

Figure 4. Training and test curves for CBN, Naive CBN, and BN

on ImageNet, with batch size per GPU of 4 and temporal window

size k = 4 for CBN, Naive CBN, and BN-bs4, and batch size per

GPU of 16 for BN-bs16. The plot of BN-bs16 is the ideal bound.

10 20 30 40 50 60 70 80 90

Burn-in period (epoch)

63

64

65

66

67

68

69

70

T
o
p
-1

 a
c
c
u
ra

c
y

CBN

BN

(a) ImageNet

1 3 5 7 9 11

Burn-in period (epoch)

36

36.5

37

37.5

A
P

b
b

o
x

CBN

BN

(b) COCO

Figure 5. Results of different burn-in periods (in epochs) on

CBN, with batch size per iteration of 4, on ImageNet and COCO.

CBN is effective.

Figure 4 presents the train and test curves of CBN, Naive

CBN, BN-bs4, and BN-bs16 on ImageNet, with 4 images

per GPU and a temporal window size of 4 for CBN, Naive

CBN, and BN-bs4, and 16 images per GPU for BN-bs16.

The train curve of CBN is close to BN-bs4 at the beginning,

and approaches BN-bs16 at the end. The reason is that we

adopt a burn-in period to avoid the disadvantage of rapid

statistics change at the beginning of training. The gap be-

tween the train curve of Naive CBN and CBN shows that

Naive CBN cannot even converge well on the training set.

The test curve of CBN is close to BN-bs16 at the end, while

Naive CBN exhibits considerable jitter. All these phenom-

ena indicate the effectiveness of our proposed Taylor poly-

nomial compensation.

Effect of burn-in period length T . We study the effect

of varying the burn-in period length Tburn-in, at 4 images per

12337

Epoch-8 Epoch-9 Epoch-10 Epoch-11

APbbox 37.7 37.7 37.6 37.3

Table 7. Results on switching from BN to syncBN at different

epochs on COCO.

GPU on both ImageNet image classification (ResNet-18)

and COCO object detection (Faster R-CNN with FPN and

ResNet-50). Figure 5(a) and 5(b) present the results. When

the burn-in period is too short, the accuracy suffers. This

is because at the beginning of training, the network weights

change rapidly, causing the compensation across iterations

to be less effective. When the burn-in period is too long,

i.e., CBN is involved too late and the overall performance

drops to the BN baseline.

An interesting observation is that the accuracy is stable

for a wide range of burn-in periods Tburn-in. This leads to

a question of whether BN in the small batch-size regime

only suffers in terms of generalization performance in later

stages of training. For further exploration, we design an

experiment to remove other influences: we first train the

model on COCO with standard BN and a small batch size,

then switch BN to syncBN. We present the experimental

results in Table 7. Results show that syncBN works simi-

larly to CBN, which further verifies the high performance

of CBN. It also supports our assumption that BN in the

small batch-size regime only suffers in terms of general-

ization performance in later stages of training, which may

shed some light on the small batch-size regime.

4.4. Analysis

Computational cost, memory footprint, and train-

ing/inference speed. We examine the computational cost,

memory footprint, and the training and inference speed of

BN, GN and CBN in a practical COCO object detection task

using R50-Mask R-CNN, shown in Table 8. The batch size

per GPU and window size of CBN are set to 4.

Compared to BN and GN, CBN consumes about 7%

extra memory and 11% more computational cost. The

extra memory mainly contains the statistics (µ and ν),

their respective gradients, and the network parameters

(θt−1 · · · θt−(k−1)) of previous iterations, while the com-

putational cost comes from calculations of the statistics’

respective gradients, Taylor compensations, and averaging

operations.

The overall training speed of CBN is close to both BN

and GN. It is worth noting that the inference speed of CBN

is equal to BN, which is much faster than GN. The inference

stage of CBN is the same as that of BN, where pre-recorded

statistics can be used instead of online statistics calculation.

From these results, the additional overhead of CBN is seen

to be minor. Also, merging BN/CBN into convolution in

inference [12] could be utilized for further speedup.

Using second order statistics for compensation. Re-

sults of CBN with different orders of Taylor expansion

Memory

(GB)

FLOPs

(M)

Training

Speed (iter/s)

Inference

Speed (iter/s)

BN 14.1 5155.1 1.3 6.2

GN 14.1 5274.2 1.2 3.7

CBN 15.1 5809.7 1.0 6.2

Table 8. Comparison of theoretical memory, FLOPs and practi-

cal training and inference speed between original BN, GN, and

CBN in both training and inference on COCO.

BN Naive CBN CBN(1) CBN(2)

Top-1 acc 65.1 66.8 70.0 70.0

Table 9. Top-1 accuracy of CBN that compensating with different

orders and batch size per iter = 4 on ImageNet.

(batch size = 4, #iterations for approximation = 3) are shown

in Table 9. By directly using the statistics of recent itera-

tions without compensation, Naive CBN outperforms BN

with batch size 4 by 1.7% in accuracy. Via compensat-

ing the statistics of recent iterations with a first-order Tay-

lor expansion, CBN(1) can further improve the accuracy by

3.2% compared to Naive CBN. However, CBN(2) using a

second-order approximation does not achieve better perfor-

mance than CBN(1). This may be because CBN(1) already

achieves performance comparable to BN with large batch

size, which serves as the upper bound of our approach, indi-

cating that a first-order approximation is enough for image

classification on ImageNet. Therefore, first-order compen-

sation for CBN is adopted by default.

Using more than one layer for compensation. We also

study the influence of applying compensation over more

than one layer. CBN using two layers for compensation

achieves 70.1 on ImageNet (batch size per GPU=4, k=4),

which is comparable to CBN using only one layer. How-

ever, the efficient implementation can no longer be used

when more than one layer of compensation is employed. As

using more layers does not further improve performance but

consumes more FLOPs, we adopt one-layer compensation

for CBN in practice.

5. Conclusion

In the small batch size regime, batch normalization is

widely known to drop dramatically in performance. To

address this issue, we propose to enhance the quality of

statistics via utilizing examples from multiple recent iter-

ations. As the network activations from different iterations

are not comparable to each other due to changes in network

weights, we compensate for the network weight changes

based on Taylor polynomials, so that the statistics can be

accurately estimated. In the experiments, the proposed ap-

proach is found to outperform original batch normalization

and a direct calculation of statistics over previous iterations

without compensation. Moreover, it achieves performance

on par with SyncBN, which can be regarded as the upper

bound, on both ImageNet and COCO object detection.

12338

References

[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hin-

ton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016. 1, 2

[2] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos,

Kevin Murphy, and Alan L Yuille. Deeplab: Semantic image

segmentation with deep convolutional nets, atrous convolu-

tion, and fully connected crfs. IEEE transactions on pattern

analysis and machine intelligence, 40(4):834–848, 2017. 1

[3] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In Proceedings of the IEEE international confer-

ence on computer vision, pages 764–773, 2017. 1

[4] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 6,

7

[5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. arXiv preprint

arXiv:1512.03385, 2015. 5

[6] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 2, 5

[7] Tong He, Zhi Zhang, Hang Zhang, Zhongyue Zhang, Jun-

yuan Xie, and Mu Li. Bag of tricks for image classification

with convolutional neural networks. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2019. 5

[8] Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van

Der Maaten, and Kilian Weinberger. Convolutional networks

with dense connectivity. IEEE transactions on pattern anal-

ysis and machine intelligence, 2019. 5

[9] Sergey Ioffe. Batch renormalization: Towards reducing

minibatch dependence in batch-normalized models. In Ad-

vances in Neural Information Processing Systems, pages

1945–1953, 2017. 1, 2, 5

[10] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In International Conference on Machine Learn-

ing, pages 448–456, 2015. 1, 2, 3, 5

[11] Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-

Robert Müller. Efficient backprop. In Neural Networks:

Tricks of the Trade, this book is an outgrowth of a 1996 NIPS

workshop, pages 9–50. Springer-Verlag, 1998. 2

[12] Dawei Li, Xiaolong Wang, and Deguang Kong. Deeprebirth:

Accelerating deep neural network execution on mobile de-

vices. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 32, 2018. 8

[13] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), July

2017. 6

[14] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014. 6

[15] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and pat-

tern recognition, pages 3431–3440, 2015. 1

[16] Ping Luo, Jiamin Ren, and Zhanglin Peng. Differentiable

learning-to-normalize via switchable normalization. arXiv

preprint arXiv:1806.10779, 2018. 2, 6

[17] Hyeonseob Nam and Hyo-Eun Kim. Batch-instance nor-

malization for adaptively style-invariant neural networks. In

Advances in Neural Information Processing Systems, pages

2563–2572, 2018. 2

[18] Chao Peng, Tete Xiao, Zeming Li, Yuning Jiang, Xiangyu

Zhang, Kai Jia, Gang Yu, and Jian Sun. Megdet: A large

mini-batch object detector. In Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition, pages

6181–6189, 2018. 1, 2, 7

[19] Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and

Alan Yuille. Weight standardization. arXiv preprint

arXiv:1903.10520, 2019. 2

[20] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 1, 6, 7

[21] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of

computer vision, 115(3):211–252, 2015. 2, 5

[22] Tim Salimans and Diederik P Kingma. Weight normaliza-

tion: A simple reparameterization to accelerate training of

deep neural networks. In Advances in Neural Information

Processing Systems, pages 901–909, 2016. 2

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 5

[24] Wenqi Shao, Tianjian Meng, Jingyu Li, Ruimao Zhang,

Yudian Li, Xiaogang Wang, and Ping Luo. Ssn: Learn-

ing sparse switchable normalization via sparsestmax. arXiv

preprint arXiv:1903.03793, 2019. 2

[25] K. Simonyan and A. Zisserman. Very deep convolu-

tional networks for large-scale image recognition. CoRR,

abs/1409.1556, 2014. 5

[26] J Sola and Joaquin Sevilla. Importance of input data nor-

malization for the application of neural networks to complex

industrial problems. IEEE Transactions on nuclear science,

44(3):1464–1468, 1997. 2

[27] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and

Alexander A Alemi. Inception-v4, inception-resnet and the

impact of residual connections on learning. In Thirty-first

AAAI conference on artificial intelligence, 2017. 5

[28] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. In-

stance normalization: The missing ingredient for fast styliza-

tion. arXiv preprint arXiv:1607.08022, 2016. 1, 2

12339

[29] Guangrun Wang, Ping Luo, Xinjiang Wang, Liang Lin, et al.

Kalman normalization: Normalizing internal representations

across network layers. In Advances in Neural Information

Processing Systems, pages 21–31, 2018. 2

[30] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-

ing He. Non-local neural networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion, pages 7794–7803, 2018. 1

[31] Yuxin Wu and Kaiming He. Group normalization. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), pages 3–19, 2018. 1, 2, 5, 6, 7

12340

