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Abstract

We propose Joint-DetNAS, a unified NAS framework for

object detection, which integrates 3 key components: Neu-

ral Architecture Search, pruning, and Knowledge Distilla-

tion. Instead of naively pipelining these techniques, our

Joint-DetNAS optimizes them jointly. The algorithm con-

sists of two core processes: student morphism optimizes

the student’s architecture and removes the redundant pa-

rameters, while dynamic distillation aims to find the opti-

mal matching teacher. For student morphism, weight in-

heritance strategy is adopted, allowing the student to flex-

ibly update its architecture while fully utilize the predeces-

sor’s weights, which considerably accelerates the search;

To facilitate dynamic distillation, an elastic teacher pool is

trained via integrated progressive shrinking strategy, from

which teacher detectors can be sampled without additional

cost in subsequent searches. Given a base detector as the

input, our algorithm directly outputs the derived student

detector with high performance without additional train-

ing. Experiments demonstrate that our Joint-DetNAS out-

performs the naive pipelining approach by a great mar-

gin. Given a classic R101-FPN as the base detector, Joint-

DetNAS is able to boost its mAP from 41.4 to 43.9 on MS

COCO and reduce the latency by 47%, which is on par with

the SOTA EfficientDet while requiring less search cost. We

hope our proposed method can provide the community with

a new way of jointly optimizing NAS, KD and pruning.

1. Introduction
Finding the optimal tradeoff between model perfor-

mance and complexity has always been a core problem

for the community. The mainstream approaches aiming

at addressing this issue are: Neural Architecture Search

(NAS) [13, 8, 40, 15] is proposed to automatically search

for promising model architectures; pruning [16, 18, 26]

removes redundant parameters from a model while main-

taining its performance; and Knowledge Distillation (KD)

[14, 5, 17, 38, 9] aims to transfer the learnt knowledge from
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Figure 1: Limitation of NAS, pruning and KD. NAS is

parameter-agnostic: The model search and training pro-

cesses are decoupled, the searched architecture is retrained

from scratch; Pruning is structure-agnostic: the pre-trained

model has a fixed architecture; KD transfers knowledge

between a fixed student-teacher pair while neglecting the

structural dependence between the student and the teacher.

Our work aims to jointly optimize all three methods.

a cumbersome teacher model to a more compact student

model. These methods share the same ultimate goal: boost-

ing the model’s performance while making it more com-

pact. However, jointly optimizing them is a challenging

task, especially for detection, which is much more complex

than classification. In this paper, we propose Joint-DetNAS,

a unified framework for detection which jointly optimizes

NAS, pruning and KD.

The aforementioned methods each have some limita-

tions, as illustrated in Figure 1. NAS and pruning only fo-

cus on one aspect while neglecting the other: The current

de facto paradigm of NAS considers the architecture to be

the sole factor that impacts the model’s performance, while

pruning only takes parameters into account and is structure-

agnostic. A recent work [11] has observed an interesting

phenomenon: the pruned model’s final performance highly

depends on its retraining initialization. This observation in-

dicates that the architecture and parameters are closely cou-
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pled with each other, both of them play important roles in

the model’s final performance, which motivates us to opti-

mize them jointly.

On the other hand, the architecture of student-teacher

pair is arbitrary and fixed during training in conventional

KD. However, recent works [9, 23] have pointed out the ex-

istence of structural knowledge in KD, which implies that

the teacher’s architecture has to match with the student to

facilitate knowledge transfer. Therefore, we are inspired

to incorporate dynamic KD into our framework, where the

teacher is dynamically sampled to find the optimal match-

ing for the student.

We propose Joint-DetNAS, a unified framework consist-

ing of two integrated processes: student morphism and dy-

namic distillation. Student morphism aims to optimize

the student’s architecture while remove the redundant pa-

rameters. To this end, an action space along with a weight

inheritance training strategy are carefully designed, which

eliminates the prerequisite of backbone’s ImageNet pre-

training and allows the student to flexibly adjust its archi-

tecture while fully utilize the predecessor’s weights. Dy-

namic distillation targets at finding the optimal matching

teacher and transferring its knowledge to the student. To fa-

cilitate teacher search without repeated training, an elastic

teacher pool is built to provide sufficient powerful detec-

tors, which trains a super-network only once and obtains all

the sub-networks with competitive performances. During

the search, we adopt a neat hill climbing strategy to evolve

the student-teacher pair. Thanks to weight inheritance and

the elastic teacher pool, each student-teacher pair can be

evaluated at the cost of fewer epochs and the final obtained

student detector requires no additional training

Our framework enables further exploration on the rela-

tionship between the architectures of student-teacher pair.

We observe two interesting phenomena: (1) a more power-

ful detector does not necessarily make a better teacher; (2)

the capacities of the student and teacher are highly corre-

lated. These facts indicate the existence of structural knowl-

edge and architecture matching in KD for detection.

We conduct extensive experiments to verify the effec-

tiveness of each component (i.e., KD, pruning and the pro-

posed elastic teacher pool) on detection task. Our Joint-

DetNAS presents clear performance enhancement over 1)

the input FPN baseline, 2) pipelining NAS->pruning->KD.

Given a classic R101-FPN as the base detector, our frame-

work is able to boost its AP from 41.4 to 43.9 on MS COCO

and reduce its latency by 47%, which is on par with the

SOTA EfficientDet [35] while requiring less search cost.

Our contributions are as follows: 1) We investigate KD

and pruning for detection and carefully analyze their effec-

tiveness. 2) We propose an elastic teacher pool containing

sufficient powerful detectors which can be directly sampled

without training. 3) We develop a unified framework which

jointly optimizes NAS, pruning and dynamic KD. 4) Exten-

sive experiments are conducted to investigate the matching

pattern between the student-teacher pair and verify the per-

formance of our proposed framework.

2. Related Work

Object Detection. State-of-the-art detection networks

can be classified as one-stage, two-stage and anchor-free

detectors. One-stage detectors such as [27, 22, 28] directly

makes prediction on the feature maps. Two-stage detectors

such as [29, 19] uses a region proposal network (RPN) to

identify the foreground boxes and passes the corresponding

features to an RCNN head for final prediction. Recently,

works such as [37, 10, 39] propose to eliminate anchor pri-

ors and makes prediction directly.

Neural Architecture Search. NAS aims at finding

an efficient network architecture for a task automatically.

There are numerous works proposing different NAS meth-

ods for classification tasks [1, 44, 2, 42, 32] and detection

tasks [7, 21, 8]. One recent paper [23] proposed to com-

bine NAS with knowledge distillation by searching for the

best student model given a fixed teacher model, which also

proves the existence of structural knowledge in KD.

Knowledge Distillation. KD was first introduced in

[14] and its effectiveness for classification task has been

validated by extensive works [41, 12, 36, 30]. However,

few works have proposed KD methods for object detection

[5, 38, 33], which introduce only limited performance gain.

Pruning. Pruning methods have been well studied for

classification tasks [26, 16, 25]. which focus on reducing

the model complexity without much performance degrada-

tion. However, few works have verified its effectiveness on

detection tasks.

3. Proposed Method

3.1. The Joint­DetNAS framework

3.1.1 Overview

As illustrated in Fig. 2, our Joint-DetNAS framework com-

prises two core processes: student morphism and dy-

namic distillation:

Student morphism aims to optimize the student’s ar-

chitecture while reduce the redundant parameters. How-

ever, integrating the two objectives is non-trivial: pruning

requires pre-trained weights, which is incompatible with

current NAS paradigm, since it is practically infeasible to

obtain pre-trained weights that satisfy pruning requirements

for all sampled architectures. To address this issue, we pro-

pose a carefully designed action space and a weight inheri-

tance strategy, which enable the student to flexibly adjust its

architecture while fully utilize the predecessor’s weights.

Dynamic distillation targets at finding the optimal

matching teacher to adapt to the student’s structural
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Figure 2: Illustration of our Joint-DetNAS. The algorithm consists of student morphism and dynamic KD, which interleave

with each other. While student morphism optimizes the student’s architecture, dynamic distillation aims to find the optimal

matching teacher. An elastic teacher pool is trained via integrated progressive shrinking strategy, from which teacher detectors

can be sampled without additional cost in subsequent searches; For student morphism, weight inheritance strategy is adopted,

allowing the student to flexibly update its architecture while fully utilize the predecessor’s weights.

changes, which calls for a way of obtaining sufficient pow-

erful teachers with low cost. The mainstream NAS ap-

proach [13, 40, 35] using a proxy task (e.g., training with

fewer epochs) to train the teacher does not guarantee the

quality of teacher’s supervision. On the other hand, training

every teacher detector from scratch is too costly. Therefore,

inspired by the recent work [3], we propose to construct

an elastic teacher pool (ETP) containing sub-networks with

high performances, which can be directly sampled as teach-

ers to supervise the student. Empowered by the proposed

ETP, teachers can be dynamically optimized according to

the current status of the students with high efficiency.

A neat hill climbing algorithm is adopted to integrate

the two processes, which enables adjusting the student’s ar-

chitecture and finding the matching teacher simultaneously.

Due to the use of weight inheritance strategy and ETP, the

search cost of our framework is significantly reduced.

3.1.2 Student Morphism

Our goal is to adjust an input detector’s backbone and en-

able better adaptation to the given task. This is accom-

plished by continuously applying beneficial actions to the

backbone while fully utilize the predecessor’s parameters.

Action Space. An action space A containing pruning

and network morphism is proposed to allow the student to

flexibly adjust its architecture while fully utilize the prede-

cessor’s weights. Pruning removes the redundant parame-

ters to make the model compact, which includes 2 actions:

(1) Layer Pruning directly removes a whole layer with

least importance, while (2) Channel Pruning removes the

channels of convolutions which are insignificant. Network

morphism flexibly adjusts the student’s architecture, two

Add layer

Rearrange

Prune layer

Prune channel

Input architecture

Stage 1

Stage 2

Stage 3

Modified 
layer

Stage 4

Figure 3: Illustration of the student action space A. All

actions are compatible with weight inheritance strategy.

actions are considered in this category: (3) Add-Layer in-

serts a new layer at a given position and introduces more ca-

pacity to enhance the model’s performance; (4) Rearrange

moves a layer from one stage to its neighbor stage, which

enables flexibly re-allocating the backbone’s computational

budget for detection task. The proposed action space sup-

ports various stage-based backbone families for detector,

e.g., ResNet, ResNeXt, and MobileNet series, etc.

Weight Inheritance. The trained weights of the pre-

decessor are inherited to (1) provide the initial pre-trained

weights for pruning, and (2) eliminate the expensive

ImageNet pre-training prerequisites for faster evaluation.

Specifically, we define the inheritance process as a func-

tion fevolve: fevolve(S
θ
old, a) −→Sθ

′

new, which accepts a de-

tector Sθ
old and an action a as its inputs and outputs a new

detector Sθ
′

new with adjusted architecture and inherited pa-

rameters. The aforementioned action space is highly com-
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patible with Weight Inheritance and the detail of fevolve for

each action is elaborated in the appendix.

Search with Dynamic Resolution. The resolution of

input images play an important role in the performance and

inference speed of detectors. Instead of directly incorporat-

ing input resolutions into the search process, which expands

the search space considerably, we propose to train the stu-

dent by dynamically sampling a resolution in each training

iteration. Thus, multiple resolutions can be evaluated after

training, which boosts the search efficiency.

3.1.3 Dynamic distillation with Elastic Teacher Pool

We are inspired by the recent work [3], in which a progres-

sive shrinking strategy is proposed to train a super-network

only once and obtain all the subnets with competitive per-

formances. This approach fits our requirement for build-

ing a pool of teachers containing sufficient powerful detec-

tors. However, the complexity of detection task initiates

new challenges for this already complicated pipeline.

Subnet space. For a backbone with multiple stages, each

subnet is determined by sampling the width and depth in a

given range at each stage, while the combination of all the

subnets form the subnet space. Other than the backbone,

the FPN (neck) also plays an important role in detection,

which fuses the features maps of different scales to obtain

richer spatial information. Thus, we incorporate its widths

variations in our implementation. To facilitate the search,

we design our subnet space to cover architectures ranging

from that of ResNet18 (1.0x width) to ResNet101 (1.5x

width), which contains roughly 765000 networks (includ-

ing different image resolutions) with competitive perfor-

mances. More implementation details of the subnet space

can be found in Section 4 and the Appendix.

Training with Integrated Progressive Shrinking

(IPS). The training is divided into several phases: In the first

phase, only the largest super-net is trained; In the following

phases, subnets with shrunk depths and widths are gradually

added into the subnet space, while the super-net acts as the

teacher to distill all subnets using our KD method proposed

in 3.2. In contrast to the progressive shrinking (PS) strategy

proposed in [3], where the shrinkage of width and depth

are performed sequentially, we propose an integrated pro-

gressive shrinking strategy (IPS) to jointly optimize smaller

depths and widths, thus significantly reduces the training

cost. More details can be found in the Appendix.

3.1.4 Search Algorithm

Different from mainstream NAS methods, our framework

aims to upgrade a base detector Sbase rather than explor-

ing the whole search space. Comparing with sample-based

search algorithms (e.g., RL [43, 34, 13], BO [31], etc. ),

the Hill Climbing (HL) approach efficiently evolves the

student-teacher pairs and is highly compatible with weight

inheritance strategy.

Algorithm 1 Hill Climbing Search of Joint-DetNAS

1: Input: base detector Sθ
base; student action space A;

resolution choices R = {ri}i=1,..,k; an elastic teacher

pool P with Psuper as the largest super-net.

2: top-k-list← Ø;
{

Sθ
old, Told

}

←
{

Sθ
base, Psuper

}

;

3: Start hill climbing

4: repeat

5:
{

Sθ
old, Told

}

← sample from top-k list

6: choice← select to evolve teacher or student

7: if choice is student then

8: a← sample from A

9: Sθ
′

new ← fevolve
(

Sθ
old, a

)

; Tnew ← Told

10: else

11: Tnew ← mutate Told

12: Extract Tnew from P ; Sθ
′

new ← Sθ
old

13: end if

14: Fast evaluate
{

Sθ
′

new, Tnew

}

with all ri

15: s←max
i

(

H
(

Sθ
′

new, ri

))

16: Update top-k list with
{

Sθ
′

new, Tnew, s
}

17: until Convergence

During the search, we optimize the student and the

teacher alternatively. Specifically, the algorithm starts with

an initial student-teacher pair. During each iteration, either

the student is updated by applying an action (as described

in Section 3.1.2) or the teacher is mutated by modifying the

depth or width in each backbone stage. Benefiting from the

weight inheritance strategy, each student-teacher pair can

be evaluated with only a few epochs of training. We use the

following scoring metric to evaluate a student-teacher pair:

H (S,R) = mAP (S)×

[

(

C (S)

Cbase

)

×

(

R

Rbase

)β
]−α

where S is the student detector; C is the complexity met-

ric, which we adopt FLOPS since we do not target any

particular device; R is the resolution of input image; Cbase

and Rbase are the base complexity and base resolution; α

is a coefficient that balances the performance and complex-

ity trade-off; β balances the complexity introduced by the

architecture and the input resolution.

The search procedure is illustrated in Algorithm 1. Our

framework can be parallelized on multiple machines to

boost the search efficiency.

3.2. Knowledge Distillation for Detection

Detection KD requires delicate design to distill spatial

and localization information. Our detection KD method in-

cludes two components: a) Feature-level distillation max-

imizes the agreement between teacher and student’s back-

bone features in interested areas; b) Prediction-level distil-

10178



lation uses predictions outputs from teacher’s heads as soft

labels to train the students.

3.2.1 Feature-level Distillation

Feature maps encode important semantic information.

However, imitating the whole feature maps is hindered

by severe imbalance between the foreground instances and

background regions. To this end, we only distill the features

of object proposals, the objective can be formulated as:

Lfeat =
1

Np

L
∑

l=1

W
∑

i=1

H
∑

j=1

C
∑

c=1

(

fadap
(

F l
S

)

ijc
−
(

F l
T

)

ijc

)2

where FS and FT are features after ROI align; fadap(·) is

an adaptation function mapping FS and FT to the same di-

mension; Np is the number of mask’s positive points; L is

number of FPN layers; W,H,C are feature dimensions.

3.2.2 Prediction-level Distillation

The prediction level KD loss can be expressed in terms of

classification and regression KD loss: Lpred = Lcls+Lloc.

Uncertainty from Classification. Similar to classifi-

cation, the student is optimized by soft cross entropy loss

using teacher’s logits as targets, which can be written as:

Lcls = − 1

N

∑N
i P

i
t logP

i
s, where N is the number of

training data; Pt and Ps are predicted score vectors of the

teacher and the student, respectively.

Uncertainty from Localization. Simply imitating the

four coordinates from teacher’s outputs provides limited in-

formation about how teacher localize objects, which moti-

vates us to incorporate the class “uncertainty” knowledge

into this process, i.e., utilizing prediction for all classes

generated by the regression decoder. The class-aware lo-

calization outputs encode the teacher’s ability of localiz-

ing proposals (can be viewed as a parts of objects) given

different class hypotheses. Specifically, we calculate the

sum of regression values weighted by classification scores:

Lreg = 1

N

∑N
|
∑C

i=0
pit×

(

regit − regis
)

|, where C is the

number of classes; pi and regi are the classification score

and regression outputs of foreground class i; superscripts s

and t stand for student and teacher.

3.3. Model Pruning

Pruning is incorporated into the framework as a part of

student morphism to reduce student detector’s complexity.

We utilize both layer-wise and channel-wise pruning, which

reduce the student’s depth and width respectively. Layer-

wise Pruning removes backbone’s entire layer with the

least L1-Norm. Channel-wise Pruning reduces the width

of detector’s backbone, for which we apply network slim-

ming approach [25]. The method determines the channel

importance according to the magnitude of BN’s weights.

Then the channels with least importance are removed. To

encourage channel sparsity, we add a regularization loss to

Base model Method Input size AP

R18-FPN
standard 800× 600/1333× 800 34.3/36.0

our ETP 800× 600/1333× 800 35.1+0.8/36.1+0.1

R50-FPN
standard 800× 600/1333× 800 38.4/39.5

our ETP 800× 600/1333× 800 41.8+3.4/42.4+2.9

R101-FPN
standard 800× 600/1333× 800 39.7/41.4

our ETP 800× 600/1333× 800 43.1+3.4/44.1+2.7

Table 1: The subnets sampled from elastic teacher pool

(ETP) consistently outperform their equivalent baselines

trained under standard training strategy (2x+ms).

Model
Pruning Backbone

AP
percentage FLOPS(G)

R50-FPN
0% (baseline) 84.1 37.1

10%/20%/30% 74.4/70.0/65.8 37.3/37.0/36.4

R101-FPN
0% (baseline) 160.2 39.0

10%/20%/30% 140.9/125.7/112.5 39.2/38.8/38.3

Table 2: Pruning results for R50-FPN and R101-FPN

given different channel pruning percentages. The detec-

tor’s FLOPS can be effectively reduced without much per-

formance degradation.

KD Method Student Teacher AP

FGFI [38] R50-half R50 34.8

TAR [33] R50 R152+R101 40.1

our KD
R18 (36.0) R50 (39.5) 38.1+2.1

R50 (39.5) R101 (41.4) 41.6+2.1

Table 3: Comparison between our detection KD method

with baselines and previous KD works. The values in paren-

theses are the baseline AP and teacher’s AP, respectively.

Our KD method outperforms others by a large margin.

BN’s weight parameters γ: LBN =
∑

γ∈Γ
| γ |. A small

pruning percentage is set during each student morphism to

progressively shrink the student without causing much per-

formance deterioration.

Overall Loss for Training Students The total loss for

training student detectors can be represented as: L =
Ldet + Lfeat + Lpred + λLBN , where Ldet denotes the

normal detection training loss; λ is the coefficient of the

regularization loss for pruning, which is set to 0.00001. L

is enforced on the student throughout the search process.

4. Experiments

Datasets and evaluation metrics. We use MS COCO

[20] to conduct experiments. The mAP for IoU thresholds

from 0.5 to 0.95 is used as the performance metric.

Implementation details. We use ResNet-based detec-

tors to construct our elastic teacher pool, the subnet space

for the backbone contains depth ranging from [2,2,2,2] to

[3,4,23,3] for four stages, and the width for each backbone

stage and the neck can be sampled from [W , 1.25 × W ,
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Figure 4: The comparison between dynamic KD and con-

vention KD (with the super-net of ETP as the teacher). Dy-

namic KD can boost the student faster and help it reach a

higher final performance.

1.5W ], where W is the width of standard ResNet. During

search, each student-teacher pair is trained with 3 epochs

for fast evaluation. For each teacher subnet sampled from

the teacher pool, we reset its BN statistics by forwarding a

batch of images, which is essential for performance recov-

ery. More details are in the Appendix.

4.1. Ablation Study

4.1.1 Decoupling the Framework

Each component plays an important role in the overall Joint-

DetNAS framework. Thus, it is essential to decouple them

from the framework and separately analyze their effective-

ness in detail.

Quality of Elastic Teacher Pool. Our framework re-

quires the teacher detectors sampled from the ETP to have

competitive performances. To demonstrate the quality of

our ETP, we compare its sampled subnets with their equiva-

lent classic FPN detectors trained under standard 2x sched-

ule and multi-scale training (for easier notation, we denote

this as 2x+ms in later sections) strategy in Table 1. The

former consistently outperforms the latter.

Pruning. We conduct experiments to prune the back-

bone of R50-FPN and R101-FPN detectors given different

channel pruning percentages in Table 2. The detectors are

pre-trained for 12 epochs before pruning and fine-tuned for

extra 3 epochs afterwards. The detector’s parameter can be

effectively reduced without much performance degradation.

e.g., For both detectors, the performance after pruning 30%

channels is still comparable to the original.

Distillation. Our detection KD framework is simple yet

effective. We compare our detection KD method with base-

lines and previous KD works in Table 3. The R18-FPN

and R50-FPN detectors are adopted as the students, with

R50-FPN and R101-FPN as the teachers, respectively. To

demonstrate effectiveness of our KD method, stronger base-

lines (2x+ms) are used. The results show that our method

outperform the others by a large margin.

Base model Group Input size FLOPS (G) FPS AP

R18-FPN
baseline 1333× 800 160.5 28.2 36.0

ours 1080× 720 117.3−27% 33.0+17% 38.5+2.5

R50-FPN
baseline 1333× 800 215.8 20.5 39.5

ours 1080× 720 145.7−32% 25.4+24% 42.3+2.8

R101-FPN
baseline 1333× 800 295.7 15.9 41.4

ours 1080× 720 153.9−48% 23.3+47% 43.9+2.5

X101-FPN
baseline 1333× 800 286.9 13.2 42.9

ours 1333× 800 266.3−7% 14.0+6% 45.7+2.8

Table 4: Our Joint-DetNAS can upgrade detectors with var-

ious backbone designs. Joint-DetNAS consistently boosts

the input baseline detectors’ performances as well as sub-

stantially reduces their complexities.

4.1.2 Dynamic KD Benefits the Student

We aim to verify the superiority of dynamic KD: whether

dynamic teacher is better than a fixed powerful teacher for

transferring knowledge. Specifically, we fix the ResNet18-

FPN detector as the student and follow the 3-epoch iter-

ative training schedule, then conduct two experiments (1)

dynamic KD (DKD): the teacher is dynamically sampled in

every iteration and (2) Conventional KD (CKD): the largest

super-net in ETP is used as the teacher. The results in Figure

4 shows that DKD can boost the student faster and help it

reach a higher final performance. This also implies the un-

derlying structural knowledge in KD, for which we provide

further analysis in later Section 4.3.1.

4.2. Main Results

4.2.1 Comparison with Baselines

Joint-DetNAS can upgrade detectors with various backbone

designs. We conduct experiments on FPN detectors with

R18, R50, R101 and X101 as backbones to verify the ef-

fectiveness of our framework. We use 1333 × 800 reso-

lution with 2x+ms training for baseline and compare with

our result using searched resolution. As shown in Table 4,

our method consistently boosts the detectors’ performances

while substantially reduces their complexities. Notably, for

R101-FPN, the upgraded detector achieves +2.5 gain in

AP and 47% reduction in latency.

4.2.2 Joint Optimization Beats Naive Pipelining

Intuitively, NAS, pruning and KD is can be combined by

pipelining: first search a detector with NAS, then prune it

and train it with KD. We compare our joint optimization

approach with pipelining methods: (1) Start with regular

R101-FPN detector or a NAS-searched detector with lower

complexity; (2) pre-train them with the pruning regulariza-

tion loss; (3) prune the detector to comparable complexity

with the result of Joint-DetNAS (R101-based); (4) train the

pruned detector with the proposed KD under standard train-
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Method

Intermediate Final

(pre-training) (w/ prune+KD)

backbone
AP

backbone
AP

FLOPS (G) FLOPS (G)

R101-prune-KD 122.6 39.0 60.8−50% 42.1+3.1

NAS-prune-KD 105.2 39.9 59.1−44% 41.8+1.9

Joint-DetNAS (R101) - - 58.9 43.9

Table 5: Comparison between Joint-DetNAS and the naive

pipelining approach. The results show that the pipelining

methods leads to suboptimal, while Joint-DetNAS is capa-

ble of better integrating NAS, pruning and KD.

ing strategy (2x+ms) and the same resolution (1080× 720).

In Table 4, we compare the result of NAS-prune-KD and

R101-prune-KD and find that the performance gain brought

by NAS diminishes after pruning and KD are applied, in-

dicating that the naive pipelining strategy leads to subop-

timal. In contrast, our joint optimization methods outper-

forms both pipelining methods by a large margin.

4.2.3 Comparison with State-of-the-art

We compare our method with the SOTA manually designed

detectors (e.g., FCOS[37], RepPoints[39] and CB-Net[24],

etc.) and NAS-based (e.g., NAS-FPN[13], SP-NAS[15],

etc.) approaches. The results of the COCO’s test-dev

split are reported in Table 6. Our Joint-DetNAS outper-

forms SOTA manually designed detectors in terms of both

FPS and AP, e.g. our searched detector based on R101

reaches 23.3 FPS and 43.9 AP, outperforming RepPoint-

R101’s 13.7 FPS and 41.0 AP by a large margin. Further-

more, our method (R101-based) surpasses most mainstream

detection NAS methods (e.g., SM-NAS [40] and NAS-FPN

[13]) and reaches comparable performance with the SOTA

EfficientDet (D2) [35], while requiring much less search

cost and no extra post-search training epochs.

4.2.4 Search Efficiency

Search efficiency is a key issue in NAS. We compare Joint-

DetNAS with other SOTA detection NAS methods (e.g., [8,

40]) in Table 7. Our framework finds better performance-

complexity tradeoff for the detector with less search cost,

4.3. Looking into the Search Results: More analysis

4.3.1 Teacher-student Relationship

As observed in earlier Section 4.1.2, larger detectors may

not be better teachers, which naturally prompts us to fur-

ther explore the matching pattern of promising teachers for

different students. To this end, we apply dynamic KD to

1The FPS of EfficientDet’s Pytorch implementation https :

//github.com/zylo117/Yet- Another- EfficientDet-

Pytorch is reported for fair comparison.

Figure 5: The teacher-student capacity-matching pattern

during search. Left: the teacher’s backbone parameters

of the best student in the current iteration. Right: dis-

tribution of teacher’s backbone parameters throughout the

search. The matching teacher’s complexity is highly corre-

lated with that of the student.

Figure 6: Top: the overall score increment brought by each

action throughout the search; Bottom: percentage of ben-

eficial actions throughout generations. Channel pruning is

mostly adopted during early phases, and contributes most

score increment. Other actions brings more fine-grained ad-

justments and occur mainly in later phases.

search optimal matching teachers for students with vari-

ous complexities (i.e., FPN with R18, R50, R101 as the

backbones). As shown in Figure 5, starting with the same

teacher, each student can converge to different teachers.

The results present a clear pattern: smaller students tend

to match teachers with lower capacities, and vice versa.

This phenomenon implies the underlying interdependence

of complexity between the student-teacher pairs, which can

provide useful insights for designing detection KD system.
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Method Backbone Input size

Post-search

FPS AP AP@.5 AP@.7 APS APM APLtraining

epochs

Manually Designed

Cascade RCNN [4] R101 1333× 800 - 13.5 (V100)† 43.6 62.1 47.4 26.1 47.0 53.6

FCOS [37] R101 1333× 800 - 17.3 (V100)† 41.5 60.7 45.0 24.4 44.8 51.6

RepPoints [39] R101 1333× 800 - 13.7 (V100)† 41.0 62.9 44.3 23.6 44.1 51.7

CB-Net w/ Cascade [24] R101-TB 1333× 800 - 5.5 (V100)‡ 44.9 63.9 48.9 - - -

NAS-Based

Det-NAS [8] DetNASNet 1333× 800 24 20.4 (V100)‡ 40.2 61.5 43.6 23.3 42.5 53.8

SM-NAS (E5) [40] SMNet (searched) 1333× 800 24 9.3 (V100)‡ 45.9 64.6 49.6 27.1 49.0 58.0

SP-NAS [15] SPNet-XB 1333× 800 24 5.6 (V100)‡ 47.4 65.7 51.9 29.6 51.0 60.4

NAS-FPN (7@384) [13] AmoebaNet 1280× 1280 150 3.6 (P100)‡ 48.0 - - - - -

EfficientDet (D2)∗ [35] EfficientNet (B2) 768× 768 300 26.8 (V100)†1 43.9 62.7 47.6 - - -

Joint-DetNAS (R50) R50-searched 1080× 720 - 25.4 (V100)† 42.3 62.6 46.2 26.2 45.1 50.6

Joint-DetNAS (R101) R101-searched 1080× 720 - 23.3 (V100)† 43.9 63.8 47.9 27.0 46.8 52.8

Joint-DetNAS (X101-Cascade) X101-searched-DCN 1333× 800 16 10.1 (V100)† 50.7 69.6 55.4 31.3 53.8 64.0

Table 6: Comparison with SOTA manually designed and NAS-based methods. We obtain the X101-Cascade model by

upgrading the searched X101-based detector with DCN and Cascade head, and further fine-tune it for 16 epochs with HTC

[6] teacher. FPS is reported with batch size 1; † and ‡ represent the results obtained on our own V100 device and from the

original paper, respectively. ∗ means soft-NMS is adopted.

Search Method FLOPS AP
#Searched Search cost

architectures (GPU days)

random - - 50 ˜1200

Det-NAS [8] 289.4 40.0 1000 70

NAS-FPN (R50-7@256) [13] 281.3 39.9 10000 >>500

SP-NAS [15] 349.3 41.7 200 200

Joint-DetNAS (R101-based) 145.7 43.9 100 200

Table 7: Comparison with other search methods. The

search cost consists of 3 parts: (1) pre-training cost (in-

cluding ImageNet pre-training or ETP training), NAS cost

and post-training cost. We only estimate the cost for ran-

dom search as it is prohibitively expensive (ImageNet pre-

training for each sampled detector).

Figure 7: The computation allocation of detector’s back-

bone before and after the search. For detectors with clas-

sic ResNet-based backbones, the computation reduction is

mostly allocated at stage 3, followed by stage 2 and stage 1.

4.3.2 How Students Evolve: Action Analysis

We study how the student evolves along the search pro-

cess by analyzing the actions improving the score function

H taken throughout the generations (generation increases

when student’s performances is boosted) for our R50- and

R101-based search. Figure 6 shows the shift of focus in

balancing the performance-complexity tradeoff. We can see

that channel pruning contributes the most score increment.

In early phases, channel pruning occurs more often to adjust

the network as a whole; while in later phases, Add-layer,

Prune-layer and Rearrange follow to adjust the computation

allocation at each stage in a fine-grained manner.

4.3.3 Computation Allocation for Detector Backbone

In Figure 7, we show the backbone’s computation alloca-

tion of our R50- and R101-based detectors before and after

the search. The computation at stage 3 is reduced most dra-

matically, followed by stage 2 and stage 1. This implies the

redundancy distribution in manually designed ResNet mod-

els, which provides the community with some prior knowl-

edge for detector’s backbone design.

5. Conclusion

This paper present a new way of jointly optimizing NAS,

pruning and KD to boost the performance and reduce the

complexity of object detectors. Extensive experiments are

conducted to show the superior performance of our pro-

posed Joint-DetNAS framework. We believe our method

has the potential to be extended to tasks other than object

detection.
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