
Hierarchical and Partially Observable Goal-driven Policy Learning

with Goals Relational Graph

Xin Ye and Yezhou Yang

Active Perception Group, School of Computing, Informatics, and Decision Systems Engineering,

Arizona State University, Tempe, USA

{xinye1, yz.yang}@asu.edu

Abstract

We present a novel two-layer hierarchical reinforcement

learning approach equipped with a Goals Relational Graph

(GRG) for tackling the partially observable goal-driven task,

such as goal-driven visual navigation. Our GRG captures

the underlying relations of all goals in the goal space through

a Dirichlet-categorical process that facilitates: 1) the high-

level network raising a sub-goal towards achieving a desig-

nated final goal; 2) the low-level network towards an opti-

mal policy; and 3) the overall system generalizing unseen

environments and goals. We evaluate our approach with

two settings of partially observable goal-driven tasks — a

grid-world domain and a robotic object search task. Our ex-

perimental results show that our approach exhibits superior

generalization performance on both unseen environments

and new goals 1.

1. Introduction

Goal-driven visual navigation defines a task where an

intelligent agent (with an on-board camera) is expected to

take reasonable steps to navigate to a user-specified goal in

an unknown environment (see Figure 1 left). It is a funda-

mental yet essential capability for an agent and could serve

as an enabling step for other tasks, such as Embodied Ques-

tion Answering [8] and Vision-and-Language Navigation [3].

Goal-driven visual navigation could be formulated as a par-

tially observable goal-driven task. In this paper, we present

a novel Hierarchical Reinforcement Learning approach with

a Goals Relational Graph formulation (HRL-GRG) tackling

it. Formally, a partially observable goal-driven task yields a

10-tuple < S,A, T,G,R,Ω, O,Gd,Φ, γ >, in which S is a

set of states, A is a set of actions, T : S × A × S → [0, 1]
is a state transition probability function, G ⊆ S is a set of

goal states, R : S × A× S ×G → R is a reward function,

1Codes and models are available at https://github.com/Xin-

Ye-1/HRL-GRG.

Ω is a set of observations that are determined by conditional

observation probability O : S × Ω → [0, 1]. Similarly,

Gd is a set of goal descriptions that describe observations

with goal recognition probability Φ : Ω × Gd → [0, 1].
In particular, g is the goal state of the corresponding goal

description gd iff Φ(argmaxω O(g, ω), gd) is larger than

a pre-defined threshold. γ ∈ (0, 1] is a discount factor.

The objective of a partially observable goal-driven task is

to maximize the expected discounted cumulative rewards

E[
∑∞

t γtrt+1(st, at, st+1, g)|st, g] by learning an optimal

action policy to select an action at at the state st given the

observation ot and the goal description gd.

Classic RL methodology optimizes an agent’s decision-

making action policy in a given environment [30]. To make

RL towards real-world applicable, equipped with deep neural

networks, Deep Reinforcement Learning (DRL) [22] algo-

rithms are able to directly take the high dimensional sensory

inputs as states S and learn the optimal action policy that

generalizes across various states. However, the applicability

of most advanced RL algorithms is still limited to domains

with fully observed state space S and/or fixed goal states G,

which is not the case in reality [22, 21, 20, 29, 11].

For real-world applications like visual navigation, an

agent’s sensory inputs capture the local information of its sur-

rounding environments (a partially observable state space).

Additionally, the real-world applications could be subject to

goal changes, requiring a system to be goal-adaptive. There-

fore, a real-world application can be formulated as a par-

tially observable goal-driven task, that is different from a

fully observable goal-driven task [22, 21, 11, 25] or a par-

tially observable task [13, 18, 12]. It requires the agent to

be capable of inferring its state in the augmented state space

S ×G. Namely, the agent should take actions based on its

current relative states with respect to the goal states, which

can only be estimated from its sensory observations Ω and

the goal descriptions Gd. This is challenging due to 1) the

large augmented state space, 2) the different modalities that

the observations Ω and the goal descriptions Gd could have.

For example, while RGB images are usually taken as the

14101

observations, semantic labels are more efficient in describing

task goals [5].

To address the challenges, our HRL-GRG incorporates a

novel Goals Relational Graph (GRG), which is designed to

learn goal relations from the training data through a Dirichlet-

categorical process [31] dynamically. In such a way, our

model estimates the agent’s states in terms of the learned

relations between sub-goals that are visible in the agent’s cur-

rent observations and the designated final goal. Furthermore,

our HRL-GRG decomposes the partially observable goal-

driven task into two sub-tasks: 1) a high-level sub-goal se-

lection task, and 2) a low-level fully observable goal-driven

task. Specifically, the high-level layer selects a sub-goal

sg ∈ Gd that is observable in the current sensory input o,

i.e. Φ(o, sg) > 0, and could also contribute to achieving

the designated final goal g ∈ Gd. The objective of the low-

level layer is to achieve the observable sub-goal, yielding a

well-studied fully observable task [22, 21, 11].

Many prior DRL methods tackling partially observ-

able tasks [13, 18, 12] are not designed for goal-driven

tasks. Therefore, their learned policies are not goal-adaptive.

Adapting to new goals is critical for real-world tasks, such

as goal-driven visual navigation [40], robotic object search

[38, 36, 5] and room navigation [38]. Current goal-driven vi-

sual navigation methods generally neglect the essential role

of estimating the agent’s state under the partially observable

goal-driven settings effectively, thus their performance still

leaves much to be desired especially in terms of general-

ization ability (in-depth discussion in Section 2). Here, we

argue and show our novel GRG modeling fills the gap.

Formally, we define GRG as a complete weighted di-

rected graph < V,E,W > in which V = Gd is a set of

nodes representing the goals Gd, and E is the directed edges

connecting two nodes with the weights W . We incorporate

GRG into HRL via two aspects: 1) weighing each candi-

date sub-goal in the high-level layer by C(τ∗), the cost of

the optimal plan τ∗ from the sub-goal to the goal over the

GRG; 2) terminating the low-level layer referring to the op-

timal plan τ∗ from the proposed sub-goal to the goal over

the GRG. To empirically validate the presented system, we

start with demonstrating the effectiveness of our method in

a grid-world domain where the environments are partially

observable and a set of goals following a pre-defined rela-

tion are specified as the task goals. The design follows the

intuition in real-world applications that certain relations hold

in the goal space. For example, in the robotic object search

task, users arrange the household objects in accordance with

their functionalities. Another example is the indoor naviga-

tion task where room layouts are not random. Furthermore,

in addition to the grid-world experiment, we also apply our

method to tackle the robotic object search task in both the

AI2-THOR [15] and the House3D [34] benchmark environ-

ments. We show HRL-GRG model exhibits superior perfor-

mance in both experiments over other baseline approaches,

with extensive ablation analysis.

2. Related Work

Research works on partially observable goal-driven tasks

are explored typically under the visual navigation scenarios:

an agent learns to navigate to user-specified goals with its

first-person view visual inputs. Previous works’ contribu-

tions lie in representation learning of the agent’s underlying

state and knowledge embedding for goal state inference.

In [40], the authors present a target-driven DRL model

to learn a desired action policy conditioned on both visual

inputs and target goals. With a target goal being specified as

an image taken at the goal position, their model captures the

spatial configuration between the agent’s current position

and the goal position as the agent’s underlying state. How-

ever, when the goal position is far away, the inputs of the

model lack the information to infer the spatial configurations,

and so the model instead memorizes such spatial configura-

tions. As a result, their model relies on a scene-specific layer

for every single environment. Similar issues also exist in

[33]. [28] represents the agent’s current state with respect to

the goal state through a semi-parametric topological memory

while it requires a pre-exploration stage to build a landmark

graph. The authors of [10] locate the goal position in their

predicted top-down egocentric free space map. However, the

method struggles when the goal is not visible. With more de-

tailed information about the goals, the Vision-and-Language

Navigation task has drawn research attention in which a

fine-grained language-based visuomotor instruction serves

as the goal description for the agent to follow and achieve

[2, 9, 32]. Yet, specifying a goal with an image or a visuo-

motor instruction is inefficient and impractical for real-world

applications. Instead, taking a concise semantic concept as a

goal description is more desirable [23, 36, 26, 27, 5, 6, 39].

Semantic goals as model inputs, typically come in the form

of one-hot encoded vectors or word embeddings. Therefore,

goal inputs provide limited information for estimating the

agent’s states relative to the goal states.

Since it is non-trivial to incorporate complete information

with a goal description as input, others embed task-specific

prior knowledge to infer the goal states. In [36, 26, 27], the

authors extract object relations from the Visual Genome [16]

corpus and incorporate this prior into their models through

Graph Convolutional Networks [14]. The extracted object re-

lations encode the co-occurrence of objects based on human

annotations from the Visual Genome dataset, which may

not be consistent with the target application environments

and the agent’s understanding of the world. More recently,

the authors of [35] come up with the Bayesian Relational

Memory (BRM) architecture to capture the room layouts of

the training environments from the agent’s own experience

for room navigation. The BRM further serves as a planner to

14102

Figure 1: Illustrations of the grid-world domain and the robotic object search task (left), and an overview of our method (right).

propose a sub-goal to the locomotion policy network. Since

the proposed sub-goal is still not observable, the authors

of BRM train individual locomotion polices for each sub-

goal to respectively tackle one partially observable task. In

such manner, the BRM model’s low-level network is not

goal-adaptive and still brings about inefficiency and scaling

concerns.

Apart from prior research efforts, we present a novel hi-

erarchical reinforcement learning approach equipped with a

GRG formulation for the general partially observable goal-

driven task. Our GRG captures the underlying relations

among all goals in the goal space and enables our hierarchi-

cal model to achieve superior generalization performance by

decomposing the task into a high-level sub-goal selection

task and low-level fully observable goal-driven task.

3. Hierarchical RL with GRG

3.1. Overview

Our focus is the partially observable goal-driven task

where the agent needs to make a decision of which action

to take to achieve a user-specified goal relying on its partial

observations. Without loss of generality, we represent the

observations Ω as images, such as the local egocentric top-

down maps in the grid-world domain and the first-person

view RGB images in the robotic object search task (see

Figure 1 left). We specify the goal descriptions Gd as cat-

egorical labels (goal indices in the grid-world domain and

object categories in the robotic object search task). To bet-

ter illustrate our method, we take the grid-world domain as

an example. The agent is asked to move to a goal position

indicated by the goal index between obstacles. The agent

can only observe a local map of obstacles and goals. The

objective is to learn an optimal policy for several goals and

instances of the grid-world domain which can generalize to

new/unseen ones.

Figure 1 (right) depicts an overview of our method that

is composed of a Goals Relational Graph (GRG), a high-

level network and a low-level network. At time step t, the

agent receives an observation ot ∈ Ω that is a local map of

its surrounding obstacles and a set of visible goals V G =
{vg | vg ∈ Gd and Φ(ot, vg) > 0}. We take these visible

goals as the candidate sub-goals at the time step t, and our

high-level network learns a policy to select one from them

to achieve the designated final goal g ∈ Gd. In order to be

goal-adaptive, the system weighs each candidate sub-goal in

V G by its relation to the designated final goal g, estimated

from GRG. As a result, our high-level network proposes a

sub-goal sgt ∈ V G conditioning on both the observation

ot and the designated final goal g. After the sub-goal sgt
is proposed, our low-level network decides an action at
conditioning on both the observation ot and the sub-goal

sgt for the agent to perform. Afterwards, the agent receives

a new observation ot+1, and our low-level network repeats

Nt times to achieve the sub-goal sgt until 1) the sub-goal

sgt is achieved; 2) the low-level network terminates itself

if a better sub-goal appears in its current observation; 3)

the low-level network runs out of a pre-defined maximum

number of steps N l
max . Either way, the low-level network

collects an Nt-step long trajectory and terminates at the

observation ot+Nt
. The trajectory updates the GRG. Then,

the high-level network takes the control back to propose the

next sub-goal. Overall, the process repeats until it either

achieves the designated final goal g or reaches a predefined

maximum number of actions Nmax.

3.2. Goals Relational Graph (GRG)

GRG representation. We formulate GRG as a complete

14103

weighted directed graph < V,E,W > on all goals in the

goal space Gd (i.e. V = Gd). For any goal gi and goal gj ,

we define the weight wij on the directed edge (gi, gj) as a

measure of how likely and quickly the goal gj would appear

according to Φ if our low-level network tries to achieve the

goal gi. We set the weight wii = 1 and adopt a Dirichlet-

categorical model to learn wij for any i 6= j.

To be specific, we first assign a random variable Xij to

denote what would happen to the goal gj if our low-level

network achieves the goal gi. Every time when the goal gi is

proposed by our high-level network, our low-level network

generates a trajectory that has at most N l
max steps to achieve

the goal gi. It introduces the following N l
max+1 events that

Xij may take:

• Event k (1 ≤ k ≤ N l
max): the goal gj appears when k

steps are taken by our low-level network. We quantify

the event k as xij,k = γk−1 where γ ∈ (0, 1] is the

discount factor to denote how close the goal gj to the

goal gi.

• Event N l
max + 1: the goal gj doesn’t appear. We quan-

tify this event as xij,N l
max+1 = 0.

It is fair to assume that Xij ∼ Cat(θij) in which

the parameter θij = (θij,1, θij,2, ..., θij,N l
max+1) ∼

Dir(αij) is a learnable Dirichlet prior. αij =
(αij,1, αij,2, ..., αij,N l

max+1) is a concentration hyperparam-

eter representing the pseudo-counts of all event occurrences.

Thus, it can be empirically chosen. Lastly, the weight wij is

set as E[Xij].
GRG update. Each time when the low-level network is

invoked to achieve the goal gi, we get a trajectory as a sample

D to update the GRG. For any goal gj in our goal space, we

count the number of the occurrences of all events and denote

it as cij = (cij,1, cij,2, ..., cij,N l
max+1). Since the Dirichlet

distribution is the conjugate prior distribution of the cate-

gorical distribution, the posterior distribution of the param-

eter θij , namely θij |D ∼ Dir(αij + cij) = Dir(αij,1 +
cij,1, αij,2+cij,2, ..., αij,N l

max+1+cij,N l
max+1). As a result,

the posterior prediction distribution of a new observation

P (Xij = xij,k|D) can be estimated by Equation 1, and the

weight wij = E(Xij |D) =
∑

k xij,kP (Xij = xij,k|D).

P (Xij = xij,k|D) = E[θij,k|D] =
αij,k + cij,k∑
k
(αij,k + cij,k)

. (1)

GRG planning. With the GRG being learned and up-

dated, we quantify the relation of a goal gi to a goal

gj by the cost C(τ∗i,j) of the optimal plan τ∗i,j searched

from gi to gj over the GRG. In particular, suppose τi,j =
{τ1, τ2, ..., τM} is a plan searched from gi to gj over the

GRG in which gτm (1≤m≤M) is a goal from our goal space

G, τ1 = i and τM = j, we define the optimal plan

τ∗i,j = argmaxτi,j
∏M−1

m=1 wτmτm+1
. We adopt the cost of

the optimal plan τ∗i,j , C(τ∗i,j) = maxτi,j
∏M−1

m=1 wτmτm+1
as

the measure of the relation from the goal gi to the goal gj .

3.3. Goal­driven High­level Network

Model formulation. The high-level network selects a

sub-goal sg aiming to achieve the designated final goal

g. We first introduce an extrinsic reward re. Here, we

adopt a binary reward as the extrinsic reward to encour-

age the agent to achieve the final goal. Specifically, the

agent receives a reward of 1 if it achieves the final goal

g, i.e. ret (st−1, at−1, st, g) = 1 iff the state st is the

goal g’s state, and 0 otherwise. Thus, the high-level task

is formulated as maximizing the Q-value Qe
h(s, g, sg) =

E[
∑∞

t γtret+1|st = s, g = g, sgt = sg], which is the dis-

counted cumulative extrinsic rewards expected over all trajec-

tories starting at the state st and the sub-goal sgt. To approxi-

mate Qe
h(s, g, sg), we adopt the Q-learning technique [22] to

update the parameters of the high-level network θh by Equa-

tion 2, where Re
1 = re(s, a, s′, g) + γmaxsg′ Qe

h(s
′, g, sg′)

is the 1-step extrinsic return. The sub-goal sg is given by

argmaxsg Q
e
h(s, g, sg) towards achieving the final goal g.

θh ← θh −∇θh(R
e
1 −Qθh(s, g, sg))

2
. (2)

Network architecture. To approximate Qe
h(s, g, sg), we

condition the high-level network on the state s, goal g and

the sub-goal sg. A widely adopted way is by taking the state

s and the goal g as the inputs, and output Q-values that each

of them corresponds to a candidate sub-goal sg. Here, since

the state s is unknown, we instead take the observation o as

the input to our high-level network attempting to estimate

the state s simultaneously. To ensure the sub-goal that can be

achieved by the low-level network, the sub-goal space at the

time t is set as the observable goals within the observation

ot.
2 As a consequence, the sub-goal space varies at each

time stamp and is typically much smaller than the goal space.

Thus, it is not efficient for the high-level network to calculate

as many Q-values as the size of the goal space. Instead,

as the sub-goal space is self-contained in the observation

ot, we hereby extract the information of each candidate

sub-goal sg from the observation ot and feed it into the

high-level network to output one single Q-value Qe
h(s, g, sg)

specifically for the sub-goal sg.

Last but not the least, although most prior methods di-

rectly take the goal description gd as an additional input

to their networks, we notice that the goal description gd,

typically in the form of a one-hot vector or word embed-

ding, does not directly provide any information for either

inferring the goal state or determining a quality sub-goal.

Therefore, we opt to correlate the goal g with each candi-

date sub-goal sg by their relations. Here, our system plans

over the GRG and gets the cost C(τ∗sg,g) of the optimal plan

τ∗sg,g from the sub-goal sg to the goal g as described in

2In practice, we supplement a back-up “random” sub-goal driving the

low-level network to randomly pick an action to perform in case no observ-

able goals available.

14104

Section 3.2. We multiply the cost C(τ∗sg,g) to the sub-goal

input sg elementwise before feeding it into the high-level

network to predict its Q-value Qe
h(s, g, sg). In such a way,

Qe
h(s, g, sg) = Qe

h(s, sg ⊙ C(τ∗sg,g)) where the goal g is

embedded with beneficial information for the Q-value pre-

diction and the sub-goal selection. As the inputs and the

outputs are specified, the remaining architecture of our high-

level network is flexible per application.

3.4. Termination­aware Low­level Network

Model formulation. The objective of the low-level

network is to learn an optimal action policy to achieve

the proposed sub-goal sg. Similar to the high-level net-

work, we adopt a binary intrinsic reward ri accordingly

that rit(st−1, at−1, st, sg) = 1 iff our low-level network

achieves the sub-goal sg, and is otherwise 0. The op-

timal action policy can then be learned by maximiz-

ing the expected discounted cumulative intrinsic rewards

E[
∑∞

t γtrit+1|st, sgt, at]. Since the proposed sub-goal sgt
is guaranteed to be observable in the observation ot, we have

a fully observable goal-driven task that can be efficiently

solved by the state-of-the-art reinforcement learning algo-

rithms [22, 21, 11].

Adopting a hierarchical model to decompose a complex

task into a set of sub-goal-driven simple tasks has been

proven to be efficient and effective [19, 24]. Still, it is under

the assumption that the goal/sub-goal space is identical to the

state space so that any optimal trajectory can be expressed by

a sequence of optimal sub-goal-oriented trajectories. In our

work, we consider a practical setting in which the goal/sub-

goal space is much smaller than the state space, as lots of

intermediate states are not of interest in terms of solving the

task. Consequently, an optimal trajectory may not be ex-

pressed by the limited presented sub-goals on the trajectory

as Figure 2 (a) shows. Instead, following the set of available

sub-goals proposed could yield a less optimal trajectory as

Figure 2 (b) depicts.

To overcome this issue, we further allow the low-level

network to terminate at a valuable state before it achieves

the proposed sub-goal. The intuition is that along its way to

the sub-goal, the agent may reach a state that is better poised

for achieving the final goal. Namely, a state where a better

sub-goal appears (see Figure 2 (c)). Some prior methods

explore modeling a termination function in their formula-

tions [4] or adding a special “stop” action in the action space

for an optimal stop policy [36]. However, they unavoidably

increase the exploration difficulty and hurt the sample effi-

ciency. Instead, we terminate our low-level network under

the supervision of GRG. Whenever a sub-goal sg is received,

an optimal plan τ∗sg,g starting from the sub-goal sg to the

goal g over the GRG is generated following Section 3.2. In

fact, any goal on the τ∗sg,g other than sg is a better sub-goal

for achieving the final goal g, and once it appears, our low-

level network terminates and returns the control back to the

high-level network.

Network architecture. We implement the termination

mechanism in the low-level policy using the GRG which is

decoupled from low-level policy learning. Therefore, the

low-level network still addresses the standard fully observ-

able goal-driven task, i.e. predicting the optimal action pol-

icy from the current observation ot that includes the infor-

mation of the sub-goal sgt. This can be solved by methods

like DQN [22] and A3C [21], without special requirements

on the network architecture.

4. Experiments

Our experiments aim to seek the answers to the following

research questions, 1) Is GRG able to capture the underlying

relations of all goals? 2) Is GRG able to help solve the

new, unseen partially observable goal-driven tasks, and if

yes, how? 3) How well does the proposed method work

for the goal-driven visual navigation task? To answer the

first two questions, we conduct evaluation in an unbiased

synthetic grid-world domain. To answer the third question,

we apply our system on both AI2-THOR [15] and House3D

[34] environments for the robotic object search task . 3

4.1. Grid­world Domain

Grid-world generation. We generate a total of 120 grid-

world maps of size 16× 16 with randomly placed obstacles

taking up around 35% of the space. We arrange 16 goals in

the free spaces of each map following a pre-defined pattern

to test if our proposed GRG can capture it. Specifically,

we randomly place goal g0 and goal g8 first. Then, for

0 < i < 16 and i 6= 8, we place goal gi at a random place

in the window of size 7× 7 centered at goal gi−1. Figure 1

shows an instance of a grid-world map. We take 100 grid-

world maps and 12 goals for training, with the remaining 20
grid-world maps and the corresponding 16 goals are kept for

testing.

Baseline methods. We assume the agent can only ob-

serve the window of size 7×7 centered at its position, which

is represented by an image including the map of obstacles

and any goal positions. The agent can take one action as

moving up/down/left/right, and would stay at the current

position if the action leads to collision. Success is defined

as the agent reaches the position of the designated goal. For

this task, we adopt the DQN [22] algorithm for our low-level

network to learn the optimal action policy to achieve the sub-

goal proposed by our high-level network, and we compare

our method with the following baseline methods.

• ORACLE and RANDOM. The agent always takes the

optimal action or a random action respectively. The two

3For technical implementation details, please refer to the supplementary

material.

14105

(a) optimal trajectory (b) trajectory w.o. termination (c) trajectory with termination

Figure 2: An illustration of how termination helps. The green triangle denotes the starting position. The stars and the arrows

with different colors represent different sub-goals and the corresponding sub-goal-oriented trajectories. Termination helps to

express an optimal trajectory with the limited sub-goal space.

Table 1: The performance of all methods on the unseen gird-world maps.

Seen Goals Unseen Goals Overall

Method SR↑ AS / MS↓ SPL↑ SR↑ AS / MS↓ SPL↑ SR↑ AS / MS↓ SPL↑

ORACLE 1.00 11.81 / 11.81 1.00 1.00 11.28 / 11.28 1.00 1.00 10.38 / 10.38 1.00

RANDOM 0.16 42.15 / 5.47 0.03 0.15 42.38 / 4.81 0.04 0.18 36.62 / 4.69 0.05

DQN 0.20 20.28 / 5.47 0.13 0.20 11.90 / 4.10 0.15 0.32 16.23 / 5.71 0.23

H-DQN 0.43 20.25 / 7.95 0.28 0.19 26.09 / 6.38 0.08 0.45 20.84 / 7.16 0.26

Ours 0.57 28.71 / 9.03 0.33 0.70 24.19 / 8.73 0.45 0.74 24.02 / 8.65 0.46

Figure 3: A visualization of a GRG learned on the grid-world

domain (g16 is the back-up “random” goal).

methods are taken as performance upper/lower bounds.

• DQN. The vanilla DQN implementation that directly

maps the observation to the optimal action. To make

it goal-adaptive, the input observation image contains

a channel of the obstacle map and a channel of the

designated goal position if it presents. It is empirically

shown to be better than embedding the goal with a

one-hot vector (see supplementary material).

• H-DQN. It is a widely adopted hierarchical method

[17] modified for our partially observable goal-driven

task where both the high-level network and the low-

level network adopt a vanilla DQN implementation.

The high-level network takes the whole observation as

the input to propose a sub-goal that is visible. To be

goal-adaptive, the goal is embedded into the high-level

network in the form of a one-hot encoded vector. The

low-level network is the same as the method DQN (also

with ours).

Baseline comparisons. We specify the maximum num-

ber of actions that all methods can take as 100, and for

hierarchical methods, i.e. H-DQN and our method, the max-

imum number of actions that the low-level network can take

at each time is 10. We evaluate all methods in terms of the

Success Rate (SR), the Average Steps over all successful

cases compared to the Minimal Steps over these cases (AS

14106

Table 2: The ablation studies of our method on the unseen gird-world maps.

Seen Goals Unseen Goals Overall

Method SR↑ AS / MS↓ SPL↑ SR↑ AS / MS↓ SPL↑ SR↑ AS / MS↓ SPL↑

Ours 0.57 28.71 / 9.03 0.33 0.70 24.19 / 8.73 0.45 0.74 24.02 / 8.65 0.46

-relation 0.26 33.20 / 6.16 0.10 0.35 31.93 / 6.84 0.14 0.40 29.39 / 6.14 0.18

-termination 0.55 31.36 / 8.81 0.27 0.58 27.91 / 8.11 0.32 0.64 25.56 / 7.88 0.37

-high-level 0.56 29.97 / 9.03 0.31 0.65 23.63 / 8.65 0.42 0.66 22.86 / 7.86 0.41

/ MS), and the Success weighted by inverse Path Length

(SPL) following [1] and calculated as 1
N

∑N

i=1 Si
li

max(li,pi)
.

Here Si is a binary indicator of success in experiment i, li
and pi are the minimal steps and the steps actually taken by

the agent. We randomly sample seen goals, unseen goals

and all goals over the unseen grid-world maps, each having

100 samples that yield 100 tasks respectively. We run each

method using 5 random seeds. Table 1 reports the results.

As is shown in Table 1, we can observe that our method

outperforms all baseline methods in terms of generalization

ability on the unseen grid-world maps as expected. On one

hand, the performance of DQN leaves much to be desired

for both seen goals and unseen goals. Whereas H-DQN

achieves comparable performance to our method for seen

goals, but it struggles to generalize towards unseen goals.

On the other hand, our proposed method generalizes well to

both seen goals and unseen goals, since our GRG captures

the underlying relations of all goals, even if some of the

goals are not set as the designated goals in the training stage.

Figure 3 shows a visualization of the learned GRG, which

captures the goal relations well.

Ablation studies. To investigate how GRG helps to solve

the partially observable goal-driven task, we conduct abla-

tion studies for each component. The GRG has two roles:

In the high-level network, it weighs each candidate sub-goal

by its relation to the final goal before calculating its Q-value.

In the low-level network, it is used for early termination.

We disable each role and denote them as “-relation” and

“-termination” respectively. The results reported in Table 2

clearly show that both of them contribute to the performance

of our proposed method, whereas weighing the candidate

sub-goals by relations contributes more. Moreover, to show

the necessity of the high-level network, we present “-high-

level” that removes the high-level network, leaving only the

GRG and the low-level network in place. In such a way,

a sub-goal is proposed purely based on the graph planning

over GRG without taking the current observation into consid-

eration. The results in Table 2 show that it is slightly worse

than our proposed method; from which we can infer that

1) the high-level network captures as much information as

the GRG; 2) observations still matter since the graph only

captures the expected relations; and 3) the performance gap

could be wider in complex real-world environments.

4.2. Robotic Object Search

Robotic object search is a challenging goal-driven visual

navigation task [36, 38, 23, 26, 37, 27, 5]. It requires an

agent to search for and navigate to an instance of a user-

specified object category in indoor environments with only

its first-person view RGB image.

A previous method SCENE PRIORS [36] also incorporates

object relations as scene priors to improve the robotic object

search performance in the AI2-THOR [15] environments.

Unlike ours, it extracts the object relations from the Visual

Genome [16] corpus and incorporates the relations through

Graph Convolutional Networks [14]. Therefore, we compare

our method with it in the AI2-THOR environments. AI2-

THOR consists of 120 single functional rooms, including

kitchens, living rooms, bedrooms and bathrooms, in which

we take the first-person view semantic segmentation and

depth map as the agent’s pre-processed observation. As such,

the goal position can be represented by the corresponding

channel of the semantic segmentation (a.k.a. Φ). In addition,

we adopt the A3C [21] algorithm for our low-level network

and define the maximum steps it can take at each time as

10. We follow the experimental setting in [36] to implement

both SCENE PRIORS [36] and our HRL-GRG. We report

the results in Table 4 where we compare the two methods in

terms of their performance improvement over the RANDOM

method. Table 4 indicates an overfitting issue of the SCENE

PRIORS method as reported in [36] as well. At the same

time, we observe a superior generalization ability of our

method especially to the unseen goals.

To further demonstrate the efficacy of our method in more

complex environments, we conduct robotic object search on

the House3D [34] platform. Different from AI2-THOR, each

house environment in the House3D has multiple functional

rooms that are more likely to occlude the user-specified

target object, thus stressing upon the ability of inferring the

target object’s location on the fly to perform the task well.

We consider a total of 78 object categories in the House3D

environment to form our goal space. The agent moves for-

14107

Table 3: The performance of all methods in the House3D [34] environment for the robotic object search task.

Single Environment Multiple Environments

Seen Goals Unseen Goals Seen Env. Unseen Env.

Method SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑ SR↑ SPL↑

RANDOM 0.20 0.05 0.23 0.04 0.39 0.03 0.60 0.05

DQN 0.58 0.27 0.18 0.05 0.42 0.06 0.39 0.04

A3C 0.53 0.18 0.27 0.09 0.48 0.03 0.47 0.03

HRL 0.77 0.15 0.05 0.00 0.43 0.05 0.28 0.02

Ours 0.88 0.33 0.79 0.21 0.76 0.20 0.62 0.10

Table 4: The performance improvement of SCENE PRIORS

[36] (top) and our HRL-GRG (bottom) over the RANDOM

method in the AI2-THOR [15] environment for the robotic

object search task (without stop action).

Seen Goals Unseen Goals

SR↑ SPL↑ SR↑ SPL↑

Seen Env.
[36] +0.25 +0.16 +0.08 +0.07

Ours +0.37 +0.24 +0.33 +0.23

Unseen Env.
[36] +0.18 +0.11 +0.12 +0.06

Ours +0.33 +0.21 +0.38 +0.23

ward / backward / left / right 0.2 meters, or rotates 90 degrees

for each action step. We adopt the encoder-decoder model

from [7] to predict both the semantic segmentation and the

depth map from the first-person view RGB image and we

take both predictions as the agent’s partial observation. Fur-

thermore, we adopt the A3C [21] algorithm for the low-level

network. We compare our method with the baseline meth-

ods introduced in Section 4.1 while we also adopt the A3C

algorithm for the low-level network in H-DQN and hereby

denoted as HRL. In addition, we include the vanilla A3C

approach.

Figure 4: The object relations captured by our GRG in the

House3D [34] environment for the robotic object search task.

Only a small number of objects as nodes and the edges with

the weight ≥ 0.5 are shown.

We set the maximum steps for all the aforementioned

methods to solve the object search task in the House3D envi-

ronment as 1000, and the maximum steps that the low-level

networks of the hierarchical methods (HRL and ours) can

take as 50. To better investigate each method’s properties,

we first train and evaluate in a single environment, and show

the results in Table 3 (left part). Similar to the grid-world

domain, the baseline methods lack generalization ability to-

wards achieving the unseen goals, even though they perform

fairly well for the seen ones. The placement of many ob-

jects is subject to the users’ preference that may require the

environment-specific training process. Still, it is desirable

for a method to generalize towards the objects in the un-

seen environments where the placement of the objects is

consistent with that in the seen ones (e.g., the objects that

are always placed in accordance with their functionalities).

We train all the methods in four different environments and

test the methods in four other unseen environments. The

results presented in Table 3 (right part) show that all the

baselines struggle with the object search task under multiple

environments even during the training stage. In comparison,

our method achieves far superior performance with the help

of the object relations captured by our GRG (samples shown

in Figure 4).

5. Conclusion

In this paper, we present a novel hierarchical reinforce-

ment learning approach equipped with a GRG formulation

for the partially observable goal-driven task. Our GRG cap-

tures the underlying relations among all goals in the goal

space through a Dirichlet-categorical model and thus enables

graph-based planning. The planning outputs are further in-

corporated into our two-layer hierarchical RL for proposing

sub-goals and early low-level layer termination. We vali-

date our approach on both the grid-world domain and the

challenging robotic object search task. The results show

our approach is effective and is exceptional in generalizing

to unseen environments and new goals. We argue that the

joint learning of GRG and HRL boosts the overall perfor-

mance on the tasks we perform in our experiments, and it

may push forward future research ventures in combining

symbolic reasoning with DRL.

Acknowledgements. This work is partially supported by

the NSF grant #1750082, and Samsung Research.

14108

References

[1] Peter Anderson, Angel Chang, Devendra Singh Chaplot,

Alexey Dosovitskiy, Saurabh Gupta, Vladlen Koltun, Jana

Kosecka, Jitendra Malik, Roozbeh Mottaghi, Manolis Savva,

et al. On evaluation of embodied navigation agents. arXiv

preprint arXiv:1807.06757, 2018. 7

[2] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, pages 3674–3683,

2018. 2

[3] Peter Anderson, Qi Wu, Damien Teney, Jake Bruce, Mark

Johnson, Niko Sünderhauf, Ian Reid, Stephen Gould, and

Anton van den Hengel. Vision-and-language navigation: In-

terpreting visually-grounded navigation instructions in real

environments. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), June 2018.

1

[4] Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-

critic architecture. In Thirty-First AAAI Conference on Artifi-

cial Intelligence, 2017. 5

[5] Dhruv Batra, Aaron Gokaslan, Aniruddha Kembhavi, Olek-

sandr Maksymets, Roozbeh Mottaghi, Manolis Savva,

Alexander Toshev, and Erik Wijmans. Objectnav revisited:

On evaluation of embodied agents navigating to objects. arXiv

preprint arXiv:2006.13171, 2020. 2, 7

[6] Devendra Singh Chaplot, Dhiraj Prakashchand Gandhi, Abhi-

nav Gupta, and Russ R Salakhutdinov. Object goal navigation

using goal-oriented semantic exploration. Advances in Neural

Information Processing Systems, 33, 2020. 2

[7] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Proceedings of the European conference on computer vision

(ECCV), pages 801–818, 2018. 8

[8] Abhishek Das, Georgia Gkioxari, Stefan Lee, Devi Parikh,

and Dhruv Batra. Neural modular control for embodied ques-

tion answering. In Conference on Robot Learning, pages

53–62, 2018. 1

[9] Daniel Fried, Ronghang Hu, Volkan Cirik, Anna Rohrbach,

Jacob Andreas, Louis-Philippe Morency, Taylor Berg-

Kirkpatrick, Kate Saenko, Dan Klein, and Trevor Darrell.

Speaker-follower models for vision-and-language navigation.

In Advances in Neural Information Processing Systems, pages

3314–3325, 2018. 2

[10] Saurabh Gupta, James Davidson, Sergey Levine, Rahul Suk-

thankar, and Jitendra Malik. Cognitive mapping and planning

for visual navigation. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition, pages

2616–2625, 2017. 2

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey

Levine. Soft actor-critic: Off-policy maximum entropy deep

reinforcement learning with a stochastic actor. arXiv preprint

arXiv:1801.01290, 2018. 1, 2, 5

[12] Dongqi Han, Kenji Doya, and Jun Tani. Variational recurrent

models for solving partially observable control tasks. arXiv

preprint arXiv:1912.10703, 2019. 1, 2

[13] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood,

and Shimon Whiteson. Deep variational reinforcement learn-

ing for pomdps. arXiv preprint arXiv:1806.02426, 2018. 1,

2

[14] Thomas N Kipf and Max Welling. Semi-supervised classi-

fication with graph convolutional networks. arXiv preprint

arXiv:1609.02907, 2016. 2, 7

[15] Eric Kolve, Roozbeh Mottaghi, Winson Han, Eli VanderBilt,

Luca Weihs, Alvaro Herrasti, Daniel Gordon, Yuke Zhu, Ab-

hinav Gupta, and Ali Farhadi. Ai2-thor: An interactive 3d

environment for visual ai. arXiv preprint arXiv:1712.05474,

2017. 2, 5, 7, 8

[16] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,

Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-

tidis, Li-Jia Li, David A Shamma, et al. Visual genome:

Connecting language and vision using crowdsourced dense

image annotations. International Journal of Computer Vision,

123(1):32–73, 2017. 2, 7

[17] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and

Josh Tenenbaum. Hierarchical deep reinforcement learning:

Integrating temporal abstraction and intrinsic motivation. In

Advances in neural information processing systems, pages

3675–3683, 2016. 6

[18] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey

Levine. Stochastic latent actor-critic: Deep reinforce-

ment learning with a latent variable model. arXiv preprint

arXiv:1907.00953, 2019. 1, 2

[19] Andrew Levy, George Konidaris, Robert Platt, and Kate

Saenko. Learning multi-level hierarchies with hindsight.

arXiv preprint arXiv:1712.00948, 2017. 5

[20] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nico-

las Heess, Tom Erez, Yuval Tassa, David Silver, and Daan

Wierstra. Continuous control with deep reinforcement learn-

ing. arXiv preprint arXiv:1509.02971, 2015. 1

[21] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza,

Alex Graves, Timothy Lillicrap, Tim Harley, David Silver,

and Koray Kavukcuoglu. Asynchronous methods for deep re-

inforcement learning. In International conference on machine

learning, pages 1928–1937, 2016. 1, 2, 5, 7, 8

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, An-

drei A Rusu, Joel Veness, Marc G Bellemare, Alex Graves,

Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski,

et al. Human-level control through deep reinforcement learn-

ing. Nature, 518(7540):529–533, 2015. 1, 2, 4, 5

[23] Arsalan Mousavian, Alexander Toshev, Marek Fišer, Jana

Košecká, Ayzaan Wahid, and James Davidson. Visual repre-

sentations for semantic target driven navigation. In 2019 In-

ternational Conference on Robotics and Automation (ICRA),

pages 8846–8852. IEEE, 2019. 2, 7

[24] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey

Levine. Data-efficient hierarchical reinforcement learning. In

Advances in Neural Information Processing Systems, pages

3303–3313, 2018. 5

14109

[25] Soroush Nasiriany, Vitchyr Pong, Steven Lin, and Sergey

Levine. Planning with goal-conditioned policies. In Ad-

vances in Neural Information Processing Systems, pages

14843–14854, 2019. 1

[26] Tai-Long Nguyen, Do-Van Nguyen, and Thanh-Ha Le. Re-

inforcement learning based navigation with semantic knowl-

edge of indoor environments. In 2019 11th International

Conference on Knowledge and Systems Engineering (KSE),

pages 1–7. IEEE, 2019. 2, 7

[27] Yiding Qiu, Anwesan Pal, and Henrik I Christensen. Target

driven visual navigation exploiting object relationships. arXiv

preprint arXiv:2003.06749, 2020. 2, 7

[28] Nikolay Savinov, Alexey Dosovitskiy, and Vladlen Koltun.

Semi-parametric topological memory for navigation. arXiv

preprint arXiv:1803.00653, 2018. 2

[29] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-

ford, and Oleg Klimov. Proximal policy optimization algo-

rithms. arXiv preprint arXiv:1707.06347, 2017. 1

[30] Richard S Sutton and Andrew G Barto. Reinforcement learn-

ing: An introduction. MIT press, 2018. 1

[31] Stephen Tu. The dirichlet-multinomial and dirichlet-

categorical models for bayesian inference. Computer Science

Division, UC Berkeley, 2014. 2

[32] Xin Wang, Qiuyuan Huang, Asli Celikyilmaz, Jianfeng Gao,

Dinghan Shen, Yuan-Fang Wang, William Yang Wang, and

Lei Zhang. Reinforced cross-modal matching and self-

supervised imitation learning for vision-language navigation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6629–6638, 2019. 2

[33] Yuechen Wu, Zhenhuan Rao, Wei Zhang, Shijian Lu, Weizhi

Lu, and Zheng-Jun Zha. Exploring the task cooperation in

multi-goal visual navigation. In Proceedings of the 28th In-

ternational Joint Conference on Artificial Intelligence, pages

609–615. AAAI Press, 2019. 2

[34] Yi Wu, Yuxin Wu, Georgia Gkioxari, and Yuandong Tian.

Building generalizable agents with a realistic and rich 3d

environment. arXiv preprint arXiv:1801.02209, 2018. 2, 5, 7,

8

[35] Yi Wu, Yuxin Wu, Aviv Tamar, Stuart Russell, Georgia

Gkioxari, and Yuandong Tian. Bayesian relational mem-

ory for semantic visual navigation. In Proceedings of the

IEEE International Conference on Computer Vision, pages

2769–2779, 2019. 2

[36] Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and

Roozbeh Mottaghi. Visual semantic navigation using scene

priors. arXiv preprint arXiv:1810.06543, 2018. 2, 5, 7, 8

[37] Xin Ye, Zhe Lin, Joon-Young Lee, Jianming Zhang, Shibin

Zheng, and Yezhou Yang. Gaple: Generalizable approaching

policy learning for robotic object searching in indoor envi-

ronment. IEEE Robotics and Automation Letters, 4(4):4003–

4010, 2019. 7

[38] Xin Ye, Zhe Lin, Haoxiang Li, Shibin Zheng, and Yezhou

Yang. Active object perceiver: Recognition-guided policy

learning for object searching on mobile robots. In 2018

IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), pages 6857–6863. IEEE, 2018. 2, 7

[39] Xin Ye and Yezhou Yang. Efficient robotic object search via

hiem: Hierarchical policy learning with intrinsic-extrinsic

modeling. IEEE Robotics and Automation Letters, 2021. 2

[40] Yuke Zhu, Roozbeh Mottaghi, Eric Kolve, Joseph J Lim,

Abhinav Gupta, Li Fei-Fei, and Ali Farhadi. Target-driven

visual navigation in indoor scenes using deep reinforcement

learning. In 2017 IEEE international conference on robotics

and automation (ICRA), pages 3357–3364. IEEE, 2017. 2

14110

