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Abstract

We propose the Temporal Point Cloud Networks (TPCN),

a novel and flexible framework with joint spatial and tem-

poral learning for trajectory prediction. Unlike existing ap-

proaches that rasterize agents and map information as 2D

images or operate in a graph representation, our approach

extends ideas from point cloud learning with dynamic tem-

poral learning to capture both spatial and temporal infor-

mation by splitting trajectory prediction into both spatial

and temporal dimensions. In the spatial dimension, agents

can be viewed as an unordered point set, and thus it is

straightforward to apply point cloud learning techniques

to model agents’ locations. While the spatial dimension

does not take kinematic and motion information into ac-

count, we further propose dynamic temporal learning to

model agents’ motion over time. Experiments on the Argov-

erse motion forecasting benchmark show that our approach

achieves state-of-the-art results.

1. Introduction

Motion forecasting in autonomous driving concerns fu-

ture trajectories of agents, including vehicles and pedestri-

ans. For a self-driving car, the predicted future trajectories

of surrounding traffic participants serve as key information

to plan its future trajectories. A self-driving car should be

able to predict the distribution or a few possible future tra-

jectories of each agent as the future is full of uncertainty,

given the relevant sensor input information in the past.

Traditional methods for motion forecasting [15, 28, 34,

39] are based on kinematic constraints and road map infor-

mation with handcrafted rules. Though these approaches

are sufficient in many simple situations, they fail to capture

the rich behavior strategies and interaction in complex ur-

ban scenarios. Great progress has been made to explore the

power of data-driven methods in motion forecasting with

deep learning [2, 4, 6, 7, 25]. These methods encode the

agents (e.g., vehicles, pedestrians, and cyclists) and high-

definition map (HD map) information by rasterizing the cor-

responding elements (lanes, crosswalks) as lines and poly-
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Figure 1. A high-level illustration of our approach. Red points

represent the agent history trajectory points, while blue points are

discrete map lane points. We use a spatial module based on point

cloud learning to extract geometric features and a temporal mod-

ule to extract sequential features. Both modules utilize the output

of the other module and propagate mutually to output future tra-

jectory points.

gons with different colors. A standard image backbone net-

work [12, 31] is then applied to the rasterized image to ex-

tract the map and agent features and perform motion pre-

diction.

However, the rasterized image is an overly complex rep-

resentation for environment and agent history and requires

significantly more computation and data to train and deploy.

More succinct representations have been explored to avoid

this heavy process. VectorNet [10] proposes a vector rep-

resentation to exploit the spatial locality of individual road

components with graph neural networks. LaneConv [19]

constructs a lane graph from vectorized map data and pro-

poses LaneGCN to capture the topology and long depen-

dency of the agents and map information. Both Vector-

Net [10] and LaneConv [19] can be viewed as extensions

of graph neural network in prediction with strong capability

to extract spatial locality. However, both works fail to fully

utilize the temporal information of agents with less focus on

temporal feature extraction.

In this work, we extend ideas from 3D point cloud learn-

ing to the motion forecasting task. Previous works on point

cloud networks focus on spatial points. We extend the met-
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ric space to the joint spatial-temporal space and represent

the agents’ history observations and map data as points in

this space. Since the raw input data of prediction is a set

of points that contain different agents with historical ob-

servations and map data, spatial and temporal learning will

be two key components in prediction learning. Ignoring ei-

ther information will lead to information loss and reduce the

model’s capability of context learning.

In order to combine spatial and temporal learning in

a flexible and unified framework, we propose Temporal

Point Cloud Networks (TPCN). Compared with GCN based

methods [10, 19], our TPCN does not manually specify

the interaction structures (e.g., connectivity in the graph)

and avoid the complex correlation learning process. TPCN

models the prediction learning task as joint learning be-

tween a spatial module and a temporal module. In the spa-

tial module, note that the waypoints and map points have

very similar properties as point clouds, both being sparse

and permutation invariant, and have a strong geometric cor-

relation. Thus, point cloud learning strategies can be ef-

fective for spatial feature extractions. Instead of directly

applying works [26, 27, 33, 36] whose computation cost is

high, we propose our novel spatial learning layer, namely

Dual-representation Spatial Learning to obtain pointwise

and voxelwise features through point cloud learning. Mean-

while, we propose Dynamic Temporal Learning in the

temporal module to effectively extract the time-series infor-

mation and motion estimation. Compared with traditional

Hard Temporal Learning [1, 18, 19], our dynamic tempo-

ral learning layer naturally handles variant time lengths of

different agents in the same sequence without the need to

pad the history. By switching between the two modules,

the spatial features and temporal features from these two

modules are propagated mutually, each module taking the

features of the other module as input. As such, spatial learn-

ing will utilize the temporal information (e.g., motion state),

while the temporal learning will have some spatial guidance

(e.g., map information), namely Joint Learning. Fig. 1 il-

lustrates the overall architecture of our approach. Note that

we model the selection of multi-modal trajectories problem

as displacement regression rather than classification.

Our contributions are summarized as follows:

• We propose a novel and flexible architecture for pre-

diction learning, which models the complex pro-

cess as joint spatial and temporal learning. Dual-

representation Spatial Learning for feature extraction

of waypoints and map data is proposed as the spatial

module. Meanwhile, we propose novel Dynamic Tem-

poral Learning, consisting of Multi-interval Learning

and Instance Pooling.

• We propose displacement prediction for multi-modal

trajectories selection, which alleviates the hard assign-

ment in classification through regression.

• Extensive experiments are conducted on the large-

scale Argoverse motion forecasting benchmark to

show the effectiveness of our approach.

2. Related Work

Most existing works on prediction can be roughly di-

vided into three categories according to their representation

and architecture.

Rasterization based methods. Rasterization BEV images

are the most common and direct ways to represent the struc-

ture of map and neighborhood relationships among agents.

Some methods [2, 3, 21, 25] render the HD map elements

(junctions, lanes) as BEV images with different colors ac-

cording to their types. In the format of images, a series

of standard convolution layers or backbones [12] can be

applied to simplify the prediction task as trajectories se-

lection and offset regression problems. Furtherly, some

works [4, 25] propose to use anchor trajectories with human

prior knowledge based on motion constraint to make the

results more consistent with the current dynamic state and

alleviate the difficulties in multi-modal prediction. How-

ever, these approaches have internal limitations since the

performance is highly related to the spatial resolutions of

the rasterized images. The temporal information can not be

represented or modeled in the rendered images intuitively.

GCN based methods. Graph Convolutional Network

(GCN) [8, 13, 30] nowadays gains its popularity in pro-

cessing non-structural data and dealing with correlation re-

lationship. Compared with traditional CNN, GCN shows its

great promise in capturing the spatial locality on both eu-

clidean and non-euclidean structures. With adjacency ma-

trices, GCN focuses on learning the relationship between

graph nodes and vertices. VectorNet [10] introduces a novel

vector representation and applies a graph neural network to

predict the intent of vehicles. M Liang et al. [19] proposes

LaneGCN based on GCN, which is a specialized version

designed for lane graphs. In order to capture the complex

topology of HD maps effectively, it combines with multi-

scale dilated convolution. Social-STGCNN [24] models in-

teractions as a graph by defining a novel kernel function to

learn spatial and temporal patterns from pedestrian trajecto-

ries and behavior. However, GCN based methods are often

faced with an efficiency problem when dealing with large-

scale scenarios that contain lots of nodes and vertices.

Hybird Methods. To provide more interpretable and kine-

matic constraints, some works [3, 22, 38, 37] decouple the

task as two-stage. Firstly, they discretize search space via

uniform sampling or based on HD maps to generate some

proposals. Compared with anchor trajectories, these pro-

posals can be more stable and more informative to capture

the uncertainty of the multi-modal prediction. Secondly,
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Figure 2. An example that shows the instance time indexing sys-

tem. The points with the same color belong to the same instance.

they encode the HD map and agents via vector represen-

tation or rasterized images to furtherly refine each proposal.

To some extent, two-stage methods can fully incorporate

expert knowledge or classical planning or prediction ap-

proaches. On the other hand, it means the final outputs of

refinement networks have a strong dependency on the qual-

ity of the proposals, which requires a reasonable sampling

strategy or mature planning module.

In comparison with these methods above, our TPCN has

a novel representation and architecture, including spatial

learning based on dual-representation point cloud learning

and dynamic temporal information learning. We split the

task into submodules to capture both spatial and temporal

information effectively.

3. Approach

The overall network architecture of our TPCN approach

consists of two modules: 1) Dual-representation Spatial

Learning and 2) Dynamic Temporal Learning. The Dual-

representation Spatial Learning serves as the spatial mod-

ule to model spatial features, and the Dynamic Temporal

Learning is the temporal module to extract temporal fea-

tures. Both modules are integrated to propagate features

mutually in spatial and temporal dimensions to achieve

Joint Learning. As shown in Fig. 1, each module takes the

pointwise features of the other module as input to generate

corresponding pointwise output features, which is a natural

foundation for fusing pointwise context information across

multiple domains.

Typically, the motion prediction task will contain agents’

data and environment information encoded with map data.

We define an agent instance as an agent with a set of trajec-

tory points. While map data refers to static objects without

temporal information, a map instance can be described as an

ordered point set for one specific element (e.g., a piece of

lane centerline points). Thus, agent data will be represented

by {pi,1,pi,2, . . . ,pi,Ti
}, where pi,t means the i-th agent’s

coordinate at time t, and Ti is the time sequence length for

i-th agent. Meanwhile, we represent map data in the for-

mat of {pi,1,pi,2, . . . ,pi,Ni
}, where pi,j is the j-th point

of i-th map element instance with Ni points in total.

Voxelization. Given a grid size s, we can construct the

mapping from a point pi = (xi, yi) to its voxel index vi:

vi = (⌊xi/s⌋, ⌊yi/s⌋) , (1)

where ⌊·⌋ is a floor function. Thus we can build a hash

table for the conversion between point coordinate space and

voxel coordinate space {pi,vi}.

Instance Time Indexing. Apart from voxel and point

spaces, we formulate the temporal space indexing system

to address the dynamic and different sequential lengths of

different agents. We represent all the instances over time as

{mi}, where the i-th element mi = (insi, ti) is an instance

time index referring to the ti-th trajectory point of instance

insi. See Fig. 2 for an example. A special case is that ti is

zero for all static instances in the map data.

Both voxelization and instance time indexing aim to pro-

vide space mapping or hashing: voxelization maps from the

Cartesian coordinate system to a structural grid represen-

tation and instance time indexing maps from an index to a

trajectory point of an instance. These mapping or hashing

systems provide convenience for feature transformation be-

tween different spaces or representations.

3.1. Dualrepresentation Spatial Learning

For the spatial module, we choose a point cloud learning

approach to retrieve the spatial features of waypoints and

map data with their locality and spatial geometry. Inspired

by recent multiple representations learning [29, 32] that

shows advantages over a single representation [27, 33], we

propose a dual-representation method to leverage the merits

of mutually complementary information between voxel and

point representations. The overall architecture of the spatial

module is illustrated in Fig. 3.

Pointwise Feature Learning. Pointwise features main-

tain geometric information and neighborhood relationship

for interactions among points. To this end, we utilize the hi-

erarchical feature learning from PointNet++ [27] for point-

wise feature extraction at different levels of the local neigh-

borhood to exploit more local structure and correlation.

Point-Voxel Feature Propagation. Inspired by

HVNet [36], we can transform pointwise features to voxel

space by scattering operations. In this process, we main-

tain the hash table for each point, which stores the key and

value pairs to map a Cartesian coordinate to a voxel index.
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Figure 3. Dual-representation Spatial Learning.

Then, following the Feature Transformation Propagation al-

gorithm (FTP) 1, we put all the points that share the same

voxel index into the same cluster (each voxel may contain

more than one point). Finally, we calculate the mean fea-

tures over the points in each cluster as final features for the

corresponding voxel, which is similar to average pooling.

Algorithm 1 Feature Transformation Propagation

Require: All pointwise features PF with corresponding

indexing hash table H
1: clusters = {}
2: for each PFi ∈ PF do

3: clusters.at(Hi).append(PFi)
4: end for

5: for each Hi ∈ H do

6: clusters.at(Hi) = mean(clusters.at(Hi))
7: end for

8: return clusters

Voxelwise Feature Learning. Voxelwise features have

a strong capability to extract semantic context informa-

tion [20]. Most existing works apply 2D or 3D CNN to

the rasterized or voxelized images for feature extraction in

order to exploit the structural data with the current popular

backbone [12]. One of the key parameters for these meth-

ods is the grid size. Smaller grid size leads to less infor-

mation loss but brings higher computation cost and latency.

Meanwhile, compact 2D or 3D tensor of rasterized images

neglect the sparsity of the input data and involve plenty of

non-activated regions that may mess up feature learning.

Therefore, we employ the sparse convolution [11, 35]

as our feature extractor to afford a smaller grid size for

fine-grained voxelwise features. Furthermore, we build a

Sparse BottleNeck network with skip connections, which

replaces the bottleneck blocks with sparse convolutions in

ResNet [12]. Stacking Sparse BottleNeck layers not only

quickly expands the receptive field at a low computational

cost but also keeps the activation sparse.

Voxel-Point Feature Propagation. With voxelwise

features, feature propagation from voxel representation to

point representation can be performed by the naive near-

est neighbor interpolation. PVCNN [20] interpolates the

pointwise features with corresponding neighboring voxel-

wise features. Since the interpolation weights are based on

the physical distance to the neighboring grids accordingly,

we extend the weights to be learnable by applying MLP to

distance embedding that also concatenates associated vox-

elwise features.

Dual-representation Fusion. With pointwise and vox-

elwise features, we fuse these two types of features by fea-

ture concatenation. Thus, we obtain the features with dual

representations and higher context information, which will

be passed to the next stage of dynamic temporal learning.

3.2. Dynamic Temporal Learning

In a motion prediction task, different agents have differ-

ent lengths of observed past trajectories due to the different

lifespan of each agent. Existing methods [14, 19] pad the

agents’ data whose size is smaller than a given size T with

zero in order to process data with the same length. We name

this operation as Hard Temporal Learning (HTL). HTL has

two main drawbacks: 1) padding data will introduce extra

unnecessary computation cost, especially when the agents

only appear in very few shots; 2) processing padded data

will lead to the feature confusion problem, especially when

invalid padding data involves the feature propagation. HTL

forces the network to capture useless information.

We propose Dynamic Temporal Learning to address

these limitations. Instead of padding, we only preserve the

originally provided information without the requirement for

a fixed time buffer size for each agent data. Therefore, we

can retain each agent with a dynamic time sequence length.

Furthermore, Dynamic Temporal Learning consists of the

following two parts.

Multi-interval Learning. The time interval is a key

factor for time series data feature learning since it deter-

mines the time window size, similar to the receptive field

in a CNN. Inspired by the multi-scale or multi-resolution

hierarchy that has been proven its effectiveness in captur-

ing local correlations and context, we also exploit Multi-

interval Learning with prediction data. However, the main

challenge for our application lies in the dynamic property.

As a result, we utilize the Instance Time Indexing system

and previously introduced FTP 1, and then perform high ef-
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Figure 4. An example of multi-interval learning with an interval

size of 2. ⊕ means tensor concatenation and points stand for the

sequential historical waypoint data for one specific instance.

ficient Multi-interval Learning (MIL) according to the fol-

lowing Multi-interval Learning algorithm 2. Given a set of

different intervals, we first regroup the instance time index-

ing to ensure that each point with the same instance ID and

timestamp within the same interval will be clustered into

the same group. Consequently, we employ the FTP algo-

rithm 1 to obtain the mean features of the corresponding

interval and map to pointwise features by the following two

steps; 1) slicing by using the inverse hash or indexing table

to gather the pointwise features and 2) concatenating the

input tensor as a shortcut connection. Note that the output

feature of the current time interval will be passed to the next

level as input to progressively and aggressively capture fea-

tures at increasingly larger intervals over a multi-resolution

hierarchy. Fig. 4 illustrates a special case for Multi-interval

Learning with an interval size of 2.

Algorithm 2 Multi-interval Learning

Require: All pointwise features PF with instance time in-

dexing m and the predefined set of time intervals T

Ensure: All pointwise output features Op

1: Op = PF
2: for each t ∈ T do

3: m∗ = (m[0], ⌊m[1]/t⌋)
4: Ft = MLP(Op)
5: O = FTP(Ft,m

∗)
6: Op = slice(O,m∗)
7: Op = concat(Op, Ft)
8: end for

9: return Op

Instance Pooling. Instance-level features that aggregate

information of an instance over time is a crucial compo-

nent beyond the point, voxel, and time level features, as the

fundamental data in this task is composed of instances as

mentioned [10]. Moreover, instance-level features can cap-

ture the long-range or large time interval dependency under

some scenarios. For example, when the start point and end-

point of a lane centerline are far away from each other, it is

hard to design a suitable architecture to handle this depen-

dency or correlation. To this end, we propose our Instance

Pooling (Ins-Pool) to provide a more flexible way for the

instance feature extraction. In this process, the Instance

Pooling can be viewed as a special case of Multi-interval

Learning as it applies pooling operation along with the set

of points with the same instance ID to extract global entity

features.

For implementations of the above algorithm 1 and 2,

we optimize and utilize GPU-based scatter, gather and hash

table operations to increase runtime efficiency by parallel.

3.3. Displacement Prediction and Learning

A prediction header is built to predict the final forecast-

ing that takes the features from fusion features of spatial and

temporal modules as input. Most existing works [4, 6, 19]

predict K possible trajectories with their confidence scores

respectively to model the multi-modal property. The loss

is often split into regression and classification parts. Dur-

ing training, the loss will only be backpropagated at the

trajectory that has the minimum displacement error at the

endpoint. However, loss of classification for trajectory se-

lection based on positive and negative sample assignment

is not reasonable and too handcrafted, especially when two

trajectories have very close displacement error. Inspired by

the popular concept of IoU prediction [16] in object detec-

tion, we predict the final displacement error rather than the

trajectory’s confidence. Therefore, we alleviate the prob-

lem of classification that requires hard assignments by dis-

placement regression. We define the output of our predic-

tion header as τdisp and τreg:

τdisp = {d0, d1, . . . , dK−1}, (2)

τkreg = {(xk
1
, yk

1
), (xk

2
, yk

2
), . . . , (xk

T , y
k
T )}, (3)

where τkreg is the k-th predicted trajectory among K possi-

ble trajectories, which contains T waypoints with 2D (x, y)
vector representation. τdisp is the predicted displacement

error at endpoint associated with each possible trajectory.

Loss Functions. We sum the trajectory regression Lreg

and trajectory displacement Ldisp as final loss for training.

For trajectory regression, we follow the previous routine

that we choose the best trajectory k∗ whose displacement

error with ground-truth trajectory is minimum:

Lreg =
1

T

T∑

i=1

ρ(xk∗

i , xgt
i ) + ρ(yk

∗

i , ygti ), (4)

where (xgt
i , ygti ) represents the ground-truth coordinate at
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timestamp i, and ρ is a smooth L1 loss function:

Ldisp =
1

K

K∑

i=1

ρ(di, d
∗

i ), (5)

where d∗i is the ground-truth displacement between the k-

th trajectory and ground-truth trajectory. For inference, we

sort the trajectories according to their predicted displace-

ment in an ascending order.

4. Experiments

In this section, we conduct extensive experiments on

Argoverse [5], which is one of the largest public motion

forecasting datasets with rich HD map information. We

also evaluate the proposed modules with ablation studies

to show their effectiveness.

4.1. Experimental setup

Dataset. Argoverse [5] is a public motion forecasting

dataset. It has more than 300K 5-second sequences col-

lected in Pittsburgh and Miami. For each sequence, the sam-

pling rate is 10Hz, meaning that the interval of the same ob-

ject that appears in the next timestamp is about 0.1s. There

are multiple objects with centroid coordinates of time series

trajectories within one sequence, with each object tagged

as one of the three types, agent, AV, and others. Moreover,

each sequence has only one object, tagged with type agent

that is required to be predicted the next 3 seconds future

horizon in this challenge. We name this agent as the target

agent and other vehicles, including AV as other agents simi-

lar to Gao et al. [10]. The whole sequences can be split into

training, validation, and test set, with 205942, 39472, and

78143 sequences, respectively. The training and validation

sets provide the full 5 seconds trajectories for each target

agent data. For the test set, only the first 2 seconds trajec-

tories are given. In addition to trajectories data, we could

query the map data represented by lane centerlines points

via a given location and city name.

Metrics. Following the previous works, we also adopt

the widely used metrics Average Displacement Error (ADE)

and Final Displacement Error (FDE) as criteria. ADE is the

average displacement error with ground-truth labels over

the entire time steps, and FDE is defined as the displace-

ment error at the endpoint. For multi-modal prediction

evaluation on Argoverse, minADE, and minFDE are also

used since it allows multiple forecasted trajectories. During

the evaluation, it selects K trajectories and computes mini-

mum ADE and minimum FDE as metrics. Miss Rate(MR)

is also considered in this task, which is the percentage of

the predicted trajectories within a certain threshold (2m) of

ground truth according to endpoint error. We take minADE,

minFDE, MR for K = 1 and K = 6 as evaluation metrics

in our experiments.

Data split
Speed distribution(%)

[0, 5) [5, 10) [10, 15) ≥ 15

Train 26.4 42.4 26.7 4.5

Val 18.6 38.7 29.8 12.9

Test 33.4 52.6 13.1 0.9

Table 1. Speed distribution on different data splits.

Data Augmentation. As shown in Tab. 1, the speed dis-

tribution of target agents varies on different data splits. The

validation set has a larger proportion of high-speed agents,

while the average speed of agents on the test set is lower.

Therefore, we apply global random scaling with the scal-

ing ratio between [0.8, 1.25]. Global random scaling can

simulate agents’ dynamics at different speeds, which can

improve the model’s generalization ability. Besides that,

we apply randomly point dropout with probability 0.9 and

points location perturbation under normal distribution with

mean 0 and standard deviation 0.2.

Experiment details. We apply some similar standard

preprocessing steps as previous works [19, 9]. First, we

translate all the point data to be centered by the coordi-

nate of agent data at t = 0. We use the orientation be-

tween the agent locations at t = 0 and its previous loca-

tion as the positive x-axis. Then, we set the range start-

ing from [−48,−48] to [48, 48] and filter the points outside

the region. For voxelization, we set the grid size g to 0.2m

to keep the balance between efficiency and performance.

The intervals for Multi-interval Learning are predefined as

[2, 4, 6, 8, 16] that is enough for capturing sequential infor-

mation. TPCN is trained for 36 epochs using a batch size

of 32 with Adam [17] optimizer with an initial learning rate

of 0.001. Besides that, the learning rate decays at every 10

epochs in a ratio of 0.1.

4.2. Ablation study

Component study. We conduct an ablation study on the

Argoverse validation set to evaluate and analyze the con-

tributions of our proposed components to the final perfor-

mance. We take the spatial module without dual represen-

tations as our baseline. And then, we add other components

gradually, as shown in Tab. 2. According to the results, we

can draw some conclusions. First, spatial feature extraction

based on point cloud learning that takes the unordered set

of agents and map points is proven to be effective. With

the only spatial module, our model has achieved a strong

baseline compared with state-of-the-art methods [4, 10] that

have provided results on the validation set. Second, spatial

and temporal modules are both indispensable parts of our

model. Spatial module models the geometric information,

neighborhood relationship, and interaction among points.

The temporal module handles the time-series features and

focuses more on single instance feature learning. With both
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Figure 5. The motion forecasting results on the Argoverse validation set. The past trajectory of the target agent is in yellow, predicted

trajectory in green and ground truth in red, respectively. The figures demonstrate the effectiveness of our TPCN on scenarios including

left-turn, right-turn, lane change, and so on.

Spatial Temporal
Aug. minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Point Voxel MIL Ins-Pool

X 1.75 4.00 0.66 1.01 1.88 0.28

X 1.63 3.65 0.62 0.94 1.70 0.23

X X 1.50 3.31 0.57 0.85 1.42 0.16

X X X 1.38 3.02 0.52 0.76 1.19 0.13

X X X X 1.36 2.98 0.51 0.74 1.18 0.12

X X X X X 1.34 2.95 0.50 0.73 1.15 0.11

Table 2. Ablation study of each component on the Argoverse validation set. Point and Voxel represent pointwise feature learning and

voxelwise feature learning, respectively. The temporal module includes Multi-interval Learning (MIL) and Instance Pooling (Ins-Pool).

“Aug.” refers to data augmentation.

modules on, features propagate between spatial and tempo-

ral dimensions, and thus we achieve the best performance

on the validation set. Third, point and voxel features are im-

portant feature compensation between each other due to the

observation that when we apply dual-representation learn-

ing, the performance greatly outperforms single represen-

tation. Multi-interval learning plays a crucial role in tem-

poral learning to capture sequential information, with about

10% improvement on displacement metrics. Furthermore,

Instance Pooling retrieves the global instance features that

address the long-range dependency problem, which leads to

better performance.

Displacement prediction. We also evaluate the effec-

tiveness of the proposed displacement prediction compared

with typical classification. The experiment is based on the

model with both spatial and temporal modules. Tab. 4

shows the displacement prediction with regression loss per-

forms better than classification with cross-entropy loss in

the aspect of trajectory selection. Displacement prediction

gets rid of hard or manual assignment and converts the clas-

sification problem into a regression problem, which helps to

converge to better results. It is worth noting that this change

will not affect results for K = 6, demonstrating that trajec-

tory regression and selection are independent tasks.

Data composition. Since there are mainly three types

of data (agent, non-agent vehicles, map) in the Argoverse

dataset, we conduct experiments to see whether our TPCN

can extract the corresponding features, including map topol-

ogy relationship and locality. During this experiment, we

train our model by removing some specific kinds of data.
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Models minADE1 minFDE1 MR1 minADE6 minFDE6 MR6

Argoverse Baseline [5] 2.96 6.81 0.81 2.34 5.44 0.69

Argoverse Baseline (NN) [5] 3.45 7.88 0.87 1.71 3.29 0.54

Jean (1st) [5, 23] 1.74 4.24 0.68 0.98 1.42 0.13

uulm-mrm (2nd) [5] 1.90 4.19 0.63 0.94 1.55 0.22

LaneConv [19] 1.71 3.78 0.59 0.87 1.36 0.16

TNT [38] 1.77 3.91 0.59 0.94 1.54 0.13

Ours 1.66 3.69 0.588 0.87 1.38 0.158

Table 3. The results of our method and top performing approaches on the Argoverse test set.

Metrics
Loss

Classification Displacement

minADE1 1.44 1.34

minFDE1 3.14 2.95

MR1 0.54 0.50

minADE6 0.74 0.73

minFDE6 1.14 1.15

MR6 0.11 0.11

Table 4. Ablation study on loss designs. Classification refers to

predict scores and use cross-entropy loss to optimize. Displace-

ment is the displacement prediction with regression loss.

As shown in Tab. 5, we see that our TPCN can model the

internal relationship among different types of input data.

Map information brings useful topology of the road net-

works and semantic guidance since most of the driving be-

havior is based on lane keep and lane changes. Meanwhile,

non-agents vehicles provide interaction under some deci-

sions (i.e., nudge, overtake). Lacking any one of the data

will lead to a significant performance drop for our TPCN.

Impact of data augmentation. We conduct an exper-

iment to verify our data augmentation strategy in the pre-

diction task. As shown in Tab. 2, the data augmentation

improves TPCN in all the metrics, especially for minFDE.

4.3. Evaluation

Quantitative results. We compare our model with other

methods that achieve the state-of-the-art in Argoverse mo-

tion forecasting leaderboard. As shown in Tab. 3, our TPCN

improves the metrics for K = 1 by a large margin and out-

performs the existing approaches in minADE1, minFDE1

and MR1 without any complex postprocessing. Moreover,

our TPCN is the first method which achieves minADE1 less

than 1.7m, minFDE1 less than 3.7m and MR1 less than

0.59. In contrast to existing methods [5] that ignore the tem-

poral information or just use 1D CNN or LSTM to encode

agents’ temporal features, we mutually propagate the spatial

and temporal features in order to maintain both locality and

temporality. Furthermore, our proposed spatial module can

Metrics
Data Composition

none agents map agents + map

minADE1 2.53 1.42 1.40 1.34

minFDE1 3.94 3.08 3.04 2.95

MR1 0.81 0.55 0.54 0.50

minADE6 1.77 0.82 0.79 0.73

minFDE6 3.54 1.32 1.29 1.15

MR6 0.65 0.15 0.138 0.11

Table 5. Ablation study of data composition on the Argoverse val-

idation set. Here, agents refer to other agents, and maps refer to

map points data.

effectively capture better map information compared with

LaneConv [19]. Finally, before the CVPR submission dead-

line (16/11/2020), we ranked 1st, 1st, 1st, 2nd, 3rd, 5th on

the leaderboard according to the metrics, respectively.

Quantitative results. We present some multi-modal

prediction trajectories on several hard cases shown in Fig. 5.

Despite the noise of the input trajectory, TPCN can generate

feasible, reasonable, and smooth trajectories with map con-

straints. For the multi-modality under junction scenarios,

TPCN is able to capture the topology of the road network

and give possible trajectories along with the lane’s succes-

sors or neighborhood.

5. Conclusion

In this paper, we propose our TPCN that serves as a novel

and flexible architecture for prediction learning. TPCN

models the motion forecasting problem as joint temporal

point cloud learning, consisting of both spatial and tempo-

ral modules. In the spatial module, TPCN takes the merit

of dual-representation learning in point clouds to maintain

better locality and geometric relationships. The temporal

module utilizes the proposed Multi-interval Learning and

Instance Pooling to capture more fine-grained sequential in-

formation. Both modules are learned and propagated mu-

tually to obtain better context information for prediction

learning. Experiments on the Argoverse motion forecasting

benchmark show the effectiveness of our TPCN.
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