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Abstract

Neural implicit functions have emerged as a powerful

representation for surfaces in 3D. Such a function can en-

code a high quality surface with intricate details into the

parameters of a deep neural network. However, optimiz-

ing for the parameters for accurate and robust reconstruc-

tions remains a challenge, especially when the input data

is noisy or incomplete. In this work, we develop a hy-

brid neural surface representation that allows us to impose

geometry-aware sampling and regularization, which signif-

icantly improves the fidelity of reconstructions. We propose

to use iso-points as an explicit representation for a neural

implicit function. These points are computed and updated

on-the-fly during training to capture important geometric

features and impose geometric constraints on the optimiza-

tion. We demonstrate that our method can be adopted to im-

prove state-of-the-art techniques for reconstructing neural

implicit surfaces from multi-view images or point clouds.

Quantitative and qualitative evaluations show that, com-

pared with existing sampling and optimization methods, our

approach allows faster convergence, better generalization,

and accurate recovery of details and topology.

1. Introduction

Reconstructing surfaces from real-world observations is

a long-standing task in computer vision. Recently, repre-

senting 3D geometry as a neural implicit function has re-

ceived much attention [40, 36, 7]. Compared with other

3D shape representations, such as point clouds [29, 20, 54],

polygons [24, 31, 39, 32], and voxels [8, 47, 35, 22], it pro-

vides a versatile representation with infinite resolution and

unrestricted topology.

Fitting a neural implicit surface to input observations is

an optimization problem. Some common application exam-

ples include surface reconstruction from point clouds and

multi-view reconstruction from images. For most cases, the

observations are noisy and incomplete. This leads to fun-

damental geometric and topological problems in the final

reconstructed surface, as the network overfits to the imper-

fect data. We observe that this problem remains, and can

become more prominent with the recent powerful architec-
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optimization

optimization with
iso-points

input

Figure 1: We propose a hybrid neural surface representation with implicit

functions and iso-points, wich leads to accurate and robust surface recon-

struction from imperfect data. The iso-points allows us to augment ex-

isting optimization pipelines in a variety of ways: geometry-aware regu-

larizers are incorporated to reconstruct a surface from a noisy point cloud

(first row); geometric details are preserved in multi-view reconstruction

via feature-aware sampling (second row); iso-points can serve as a 3D

prior to improve the topological accuracy of the reconstructed surface

(third row). The input data are respectively: reconstructed point cloud [12]

of model 122 of DTU-MVS dataset [21], multi-view rendered images of

DOG-WINGED model from Sketchfab dataset [55] and multi-view images

of model 55 of DTU-MVS dataset

tures, e.g. sine activations [45] and Fourier features [41].

We show examples of problems in fitting neural implicit

functions in Figure 1. When fitting a neural surface to

a noisy point cloud, “droplets” and bumps emerge where

there are outlier points and holes (first row); when fitting a

surface to image observations, fine-grained geometric fea-

tures are not captured due to under-sampling (second row);

topological noise is introduced when inadequate views are

available for reconstruction (third row).

In this work, we propose to alleviate these problems by

introducing a hybrid neural surface representation using

iso-points. The technique converts from an implicit neural

surface to an explicit one via sampling iso-points, and goes

back to the implicit representation via optimization. The
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two-way conversion is performed on-the-fly during training

to introduce geometry-aware regularization and optimiza-

tion. This approach unlocks a large set of fundamental tools

from geometry processing to be incorporated for accurate

and robust fitting of neural surfaces.

A key challenge is to extract the iso-points on-the-fly ef-

ficiently and flexibly during the training of a neural surface.

Extending several techniques from point-based geometry

processing, we propose a multi-stage strategy, consisting of

projection, resampling, and upsampling. We first obtain a

sparse point cloud on the implicit surface via projection,

then resample the iso-points to fix severely under-sampled

regions, and finally upsample to obtain a dense point cloud

that covers the surface. As all operations are GPU friendly

and the resampling and upsampling steps require only local

point distributions, the entire procedure is fast and practical

for training.

We illustrate the utility of the new representation with

a variety of applications, such as multi-view reconstruction

and surface reconstruction from noisy point clouds. Quan-

titative and qualitative evaluations show that our approach

allows for fast convergence, robust optimization, and accu-

rate reconstruction of details and topology.

2. Related work

We begin by discussing existing representations of im-

plicit surfaces, move on to the associated optimization and

differentiable rendering techniques given imperfect input

observations, and finally review methods proposed to sam-

ple points on implicit surfaces.

Implicit surface representations. Implicit functions

are a flexible representation for surfaces in 3D. Tradi-

tionally, implicit surfaces are represented globally or lo-

cally with radial basis functions (RBF) [6], moving least

squares (MLS) [28], volumetric representation over uni-

form grids [9], or adaptive octrees [25]. Recent works in-

vestigate neural implicit surface representations, i.e., using

deep neural networks to encode implicit function [40, 45],

which achieves promising results in reconstructing surfaces

from 3D point clouds [3, 44, 11] or images [30, 52, 38].

Compared with simple polynomial or Gaussian kernels,

implicit functions defined by nested activation functions,

e.g., MLPs [7] or SIREN [45], have more capability in

representing complex structures. However, the fiting of

such neural implicit function requires clean supervision

points [51] and careful optimization to prevent either over-

fitting to noise or underfitting to details and structure.

Optimizing neural implicit surfaces with partial ob-

servations. Given raw 3D data, Atzmon et al. [3, 4] use

sign agnostic regression to learn neural implicit surfaces

without using a ground truth implicit function for supervi-

sion. Gropp et al. [14] use the Eikonal term for implicit

geometric regularization and provide a theoretical analysis

of the plane reproduction property possessed by the neural

zero level set surfaces. Erler et al. [11] propose a patch-

based framework that learns both the local geometry and the

global inside/outside information, which outperforms exist-

ing data-driven methods. None of these methods exploit an

explicit sampling of the implicit function to improve the op-

timization. Poursaeed et al. [42] use two different encoder-

decoder networks to simultaneously predict both an explicit

atlas [15] and an implicit function. In contrast, we propose

a hybrid representation using a single network.

When the input observations are in the form of 2D im-

ages, differentiable rendering allows us to use 2D pixels to

supervise the learning of 3D implicit surfaces through au-

tomatic differentiation and approximate gradients [23, 46].

The main challenge is to render the implicit surface and

compute reliable gradients at every optimization step effi-

ciently. Liu et al. [34] accelerate the ray tracing process via

a coarse-to-fine sphere tracing algorithm [16], and use an

approximate gradient in back propagation. In [33], a ray-

based field probing and an importance sampling technique

are proposed for efficient sampling of the object space. Al-

though these methods greatly improve rendering efficiency,

the sampling of ray-based algorithms, i.e., the intersection

between the ray and the iso-surface, are intrinsically irregu-

lar and inefficient. Most of the above differentiable render-

ers use ray casting to generate the supervision points. We

propose another type of supervision points by sampling the

implicit surface in-place.

Sampling implicit surfaces. In 1992, Figueiredo et

al. [10] proposed a powerful way to sample implicit sur-

faces using dynamic particle systems that include attraction

and repulsion forces. Witkin and Heckbert [50] further de-

veloped this concept by formulating an adaptive repulsion

force. While the physical relaxation process is expensive,

better initialization techniques have been proposed, such as

using seed flooding on the partitioned space [27] or the oc-

tree cells [43]. Huang et al. [19] resample point set sur-

faces to preserve sharp features by pushing points away

from sharp edges before upsampling. When sampling a

neural implicit surface, existing works such as Atzmon et

al. [2] project randomly generated 3D points onto the iso-

surface along with the gradient of the neural level set. How-

ever, such sampled points are unevenly distributed, and may

leave parts of the surface under-sampled or over-sampled.

3. Method

Given a neural implicit function ft(p; θt) representing

the surface St, where θt are the network parameters at the

t-th training iteration, our goal is to efficiently generate and

utilize a dense and uniformly distributed point set on the

zero level set, called iso-points, which faithfully represents

the current implicit surface St. Intuitively, we can deploy
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the iso-points back into the ongoing optimization to serve

various purposes, e.g. improving the sampling of training

data and providing regularization for the optimization, lead-

ing to a substantial improvement in the convergence rate

and the final optimization quality.

In this section, we first focus on how to extract the iso-

points via projection and uniform resampling. We then ex-

plain how to utilize the iso-points for better optimization in

practical scenarios.

3.1. Iso­surface sampling

As shown in Figure 2, our iso-surface sampling consists

of three stages. First, we project a set of initial points Qt

onto the zero level set to get a set of base iso-points Q̃t. We

then resample Q̃t to avoid clusters of points and fill large

holes. Finally, we upsample the points to obtain dense and

uniformly distributed iso-points Pt.

Projection. Projecting a point onto the iso-surface can

be seen as using Newton’s method [5] to approximate the

root of the function starting from a given point. Atzmon et

al. [2] derive the projection formula for functions modeled

by generic networks. For completeness, we recap the steps

here, focusing on f : R3 → R.

Given an implicit function f(p) representing a signed

distance field and an initial point q0 ∈ R
3, we can find

an iso-point p on the zero level set of f using Newton

iterations: qk+1 = qk − Jf (qk)
+f(qk), where J+

f is the

Moore-Penrose pseudoinverse of the Jacobian. In our case,

Jf is a row 3-vector, so that J+
f (qk) =

JT

f (qk)

‖Jf (qk)‖2 , where

the Jacobian Jf (qk) can be conveniently evaluated in the

network via backpropagation.

However, for some contemporary network designs, such

as sine activation functions [44] and positional encod-

ing [37], the signed distance field can be very noisy and the

gradient highly non-smooth. Directly applying Newton’s

method then causes overshooting and oscillation. While one

could attempt more sophisticated line search algorithms, we

instead address this issue with a simple clipping operation

to bound the length of the update, i.e.

qk+1 = qk − τ

(

JT

f (qk)

‖Jf (qk)‖2 f(qk)

)

, (1)

where τ(v) = v

‖v‖ min(‖v‖, τ0). We set τ0 = D
2|Qt|

withD

denoting the diagonal length of the shape’s bounding box.

In practice, we initialize Qt with randomly sampled

points at the beginning of the training and then with iso-

points Pt−1 from the previous training iteration. Similar to

[2], at each training iteration, we perform a maximum of 10

Newton iterations and terminate as soon as all points have

converged, i.e. |f(qk)| < ǫ, ∀q ∈ Qt. The termination

threshold ǫ is set to 10−4 and gradually reduced to 10−5

during training.

S
t

P
t

s = f
t
(p; 𝜃) sampling , 

regularization

project resample upsample 

t

Figure 2: Overview of our hybrid representation. We efficiently extract a

dense, uniformly distributed set of iso-points as an explicit representation

for a neural implicit surface. Since the extraction is fast, iso-points can be

integrated back into the optimization as a 3D geometric prior, enhancing

the optimization.

Uniform resampling. The projected base iso-points Q̃t

can be sparse and hole-ridden due to the irregularity present

in the neural distance field, as shown in Figure 2. Such

irregular sample distribution prohibits us from many down-

stream applications described later.

The resampling step aims at avoiding over- and under-

sampling by iteratively moving the base iso-points away

from high-density regions, i.e.

q̃← q̃− αr, (2)

where α =
√

D/|Q̃t| is the step size. The update direc-

tion r is a weighted average of the normalized translations

between q̃ and its K-nearest points (we set K = 8):

r =
∑

q̃i∈N (q̃)

w(q̃i, q̃)
q̃i − q̃

‖q̃i − q̃‖
. (3)

The weighting function is designed to gradually reduce the

influence of faraway neighbors, specifically

w(q̃i, q̃) = e
−

‖q̃i−q̃‖2

σp , (4)

where the density bandwidth σp is set to be 16D/|Q̃t|.

Upsampling. Next, we upsample the point set to the

desired density while further improving the point distribu-

tion. Our upsampling step is based on edge-aware resam-

pling (EAR) proposed by Huang et al. [19]. We explain the

key steps and our main differences to EAR as follow.

First, we compute the normals as the normalized Jaco-

bians and apply bilateral normal filtering, just as in EAR.

Then, the points are pushed away from the edges to create

a clear separation. We modify the original optimization for-

mulation with a simpler update consisting of an attraction

and a repulsion term. The former pulls points away from

3376



the edge and the latter prevents the points from clustering.

∆pattraction =

∑

pi∈N (p) φ(ni,pi − p)(p− pi)
∑

pi∈N (p) φ(ni,pi − p)
, (5)

∆prepulsion = 0.5

∑

pi∈N (p) w(pi,q)(pi − p)
∑

pi∈N (p) w(pi,q)
, (6)

p← p− τ(∆prepulsion)− τ(∆pattraction), (7)

where φ(ni,p−pi) = e
−

(nT

i
(p−pi))

2

σp is the anisotropic pro-

jection weight, ni is the point normal of neighbor pi and w
is the spatial weight defined in (4). We use the same direc-

tional clipping function τ as before to bound the two update

terms individually, which improves the stability of the algo-

rithm for sparse point clouds.

By design, new points are inserted in areas with low den-

sity or high curvature. The trade-off is controlled by a uni-

fying priority score P (p) = maxpi∈N (p)B(p,pi), where

B is a distance measure (see [19] for the exact definition).

Denoting the point with the highest priority as p∗, a new

point is inserted at the midpoint between p∗ and neighbor

p∗
i∗ , where p∗

i∗ = argmaxpi∈N (p∗)B(p∗,pi). In the orig-

inal EAR method, the insertion is done iteratively, requiring

an update of the neighborhood information and recalcula-

tion of B after every insertion. Instead, to allow parallel

computation at GPU, we approximate this process by si-

multaneously inserting a maximum of |P|/10 points each

step. In this way, however, inserting the midpoint of point

pairs would lead to duplicated new points. Thus, we insert

asymmetrically at 1
3 (p

∗
i∗ + 2p∗) instead.

We then project the upsampled iso-points to the iso-

surface. As shown in Figure 2, the final iso-points success-

fully reflect the 3D geometry of the current implicit surface.

Compared with using marching cubes to extract the iso-

surface, our adaptive sampling is efficient. Since both the

resampling and upsampling steps only require information

of local neighborhood, we implement it on the GPU. Fur-

thermore, since we use the iso-points from the previous it-

eration for initialization, the overall point distribution im-

proves as the training stabilizes, requiring fewer (or even

zero) resampling and upsampling steps at later stages.

3.2. Utilizing iso­points in optimization

We introduce two scenarios of using iso-points to guide

neural implicit surface optimization: (i) importance sam-

pling for multi-view reconstruction and (ii) regularization

when reconstructing neural implicit surfaces from raw in-

put point clouds.

Iso-points for importance sampling. Optimizing a neu-

ral implicit function to represent a high-resolution 3D shape

requires abundant training samples – specifically, many su-

pervision points sampled close to the iso-surface to capture

the fine-grained geometry details accurately. However, for

Figure 3: Examples of importance sampling based on different saliency

metrics. The default uniform iso-points treat different regions of the iso-

surface equally. We compute different saliency metrics on the uniform

iso-points, based on which more samples can be gathered in the salient

regions. The curvature-based metric emphasizes geometric details, while

the loss-based metric allows for hard example mining.

applications where the explicit 3D geometry is not avail-

able during training, the question of how to generate train-

ing samples remains mostly unexplored.

We exploit the geometry information and the predic-

tion uncertainty carried by the iso-points during training.

The main idea is to compute a saliency metric on iso-

points, then add more samples in those regions with high

saliency. To this end, we experiment with two types of met-

rics: curvature-based and loss-based. The former aims at

emphasizing geometric features, typically reflected by high

curvature. The latter is a form of hard example mining, as

we sample more densely where the higher loss occurs, as

shown in Figure 3.

Since the iso-points are uniformly distributed, the cur-

vature can be approximated by the norm of the Lapla-

cian, i.e. Rcurvature(p) = ‖p −
∑

pi∈N (p) pi‖. For the

loss-based metric, we project the iso-points on all train-

ing views and compute the average loss at each point, i.e.

Rloss(p) = 1
N

∑N

i loss(p), where N is the number of oc-

currences of p in all views.

As both metrics evolve smoothly, we need not update

them in each training iteration. Denoting the iso-points at

which we computed the metric as T and the subset of tem-

plate points with high metric values by T ∗ = {t∗}, the

metric-based insertion for each point p in the current iso-

point set Pt can be written as

pnew,i =
2
3p+ 1

3pi, ∀pi ∈ N (p), if mint∗ ‖p− t∗‖ ≤ σ.

The neighborhood radius σ is the same one used in (3).

Iso-points for regularization. The access to an explicit

representation of the implicit surface also enables us to in-

corporate geometry-motivated priors into the optimization

objective, exerting finer control of the reconstruction result.

Let us consider fitting a neural implicit surface to a

point cloud. Depending on the acquisition process, the

point cloud may be sparse, distorted by noise, or distributed

highly unevenly. Similar to previous works [48, 49], we ob-

serve that the neural network tends to reconstruct a smooth

surface at the early stage of learning, but then starts to pick
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Figure 4: Progression of overfitting. When optimizing a neural implicit

surface on a noisy point cloud, the network initially outputs a smooth sur-

face, but increasingly overfits to the noise in the data. Shown here are

the reconstructed surfaces after 1000, 2000 and 5000 iterations. The input

point cloud is acquired in-house using an Artec Eva scanner.

up higher frequency signals from the corrupted observa-

tions and overfits to noise and other caveats in the data, as

shown in Figure 4. This characteristic is consistent across

network architectures, including those designed to accom-

modate high-frequency information, such as SIREN.

Existing methods that address overfitting include early

stopping, weight decay, drop-out etc. [13]. However,

whereas these methods are generic tools designed to

improve network generalizability for training on large

datasets, we propose a novel regularization approach that

is specifically tailored to training neural implicit surfaces

and serves as a platform to integrate a plethora of 3D priors

from classic geometry processing.

Our main idea is to use the iso-points as a consistent,

smooth, yet dynamic approximation of the reference geom-

etry. Consistency and smoothness ensure that the optimiza-

tion does not fluctuate and overfit to noise; the dynamic

nature lets the network pick up consistent high-frequency

signals governed by underlying geometric details.

To this end, we extract iso-points after a short warmup

training (e.g. 300 iterations). Because of the aforemen-

tioned smooth characteristic of the network, the noise level

in the initial iso-points is minimal. Then, during subsequent

training, we update the iso-points periodically (e.g. every

1000 iterations) to allow them to gradually evolve as the

network learns more high-frequency information.

The utility of the iso-points includes, but is not lim-

ited to 1) serving as additional training data to circumvent

data scarcity, 2) enforcing additional geometric constraints,

3) filtering outliers in the training data.

Specifically, for sparse or hole-ridden input point clouds,

we take advantage of the uniform distribution of iso-points

and augment supervision in undersampled areas by enforc-

ing the signed distance value on all iso-points to be zero:

LisoSDF =
1

|P|

∑

p∈P

|f(p)|. (8)

Given the iso-points, we compute their normals from

their local neighborhood using principal component analy-

sis (PCA) [18]. We then increase surface smoothness by en-

forcing consistency between the normals estimated by PCA

Figure 5: Iso-points for regularization. At the early stage of the training,

the implicit surface is smooth (left), and we extract iso-points (middle)

as a reference shape, which can facilitate various regularization terms. In

the example on the right, we use the iso-points to reduce the influence of

outliers (shown in red).

and those computed from the gradient of the network, i.e.

LisoNormal =
1

|P|

∑

p∈P

(1− | cos(JT

f (p),nPCA)|). (9)

The larger the PCA neighborhood is, the smoother the re-

construction becomes. Optionally, additional normal filter-

ing can be applied after PCA to reduce over-smoothing and

enhance geometric features.

Finally, we can use the iso-points to filter outliers in the

training data. Specifically, given a batch of training points

Q = {q}, we compute a per-point loss weight based on

their alignment with the iso-points. Here, we choose to use

bilateral weights to take both the Euclidean and the direc-

tional distance into consideration. Denoting the normalized

gradient of an iso-point p and a training point q as np and

nq, respectively, the bilateral weight can written as

v(q) = min
p∈P

φ(np,p− q)ψ(np,nq), with (10)

ψ(np,nq) = e
−

(

1−
1−n

T
p
nq

1−cos(σn)

)2

, (11)

where σn regulates the sensitivity to normal difference; we

set σn = 60◦ in our experiments. This loss weight can be

incorporated into the existing loss functions to reduce the

impact of outliers. A visualization of the outliers detected

by this weight is shown in Figure 5.

4. Results

Iso-points can be incorporated into the optimization

pipelines of existing state-of-the-art methods for implicit

surface reconstruction. In this section, we demonstrate the

benefits of the specific techniques introduced in Section 3.2.

We choose state-of-the-art methods as the baselines, then

augment the optimization with iso-points. Results show that

the augmented optimization outperforms the baseline quan-

titatively and qualitatively.

4.1. Sampling with iso­points

We evaluate the benefit of utilizing iso-points to generate

training samples for multi-view reconstruction. As the base-

line, we employ the ray-tracing algorithm from a state-of-

the-art neural implicit renderer IDR [53], which generates
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in-surface sample

sampling with ray-tracing sampling with iso-points

on-surface sample out-surface sample

Figure 6: A 2D illustration of two sampling strategies for multi-view

reconstruction. Ray-tracing (left) generates training samples by shoot-

ing rays from camera C through randomly sampled pixels; depending on

whether an intersection is found and whether the pixel lies inside the ob-

ject silhouette, three types of samples are generated: on-surface, in-surface

and out-surface points. We generate on-surface samples directly from iso-

points, obtaining evenly distributed samples on the implicit surface, and

also use the iso-points to generate more reliable in-surface samples.

baseline

(ray-tracing)

uniform curvature-

based

loss-

based

CD ·10−4(position) 17.24 1.80 1.83 1.71

CD ·10−1(normal) 1.51 1.10 0.99 0.95

Table 1: Quantitative effect of importance sampling with iso-points. Com-

pared to the baseline, which generates training points via ray-marching, we

use iso-points to draw more attention on the implicit surface. The result is

averaged over 10 models selected from the Sketchfab dataset [55].

training samples by ray-marching from the camera center

through uniformly sampled pixels in the image. As shown

in Figure 6, three types of samples are used for different

types of supervision: on-surface samples, which are ray-

surface intersections inside the object’s 2D silhouette, in-

surface samples, which are points with the lowest signed

distance on the non-intersecting rays inside 2D silhouette,

and out-surface samples, which are on the rays outside the

2D silhouette either at the surface intersection or at the po-

sition with the lowest signed distance.

On this basis, we incorporate the iso-points directly as

on-surface samples. We can direct the learning attention

by varying the distribution of iso-points using the saliency

metrics described in Section 3.2. The iso-points also pro-

vide us prior knowledge to generate more reliable in-surface

samples. More specifically, as shown in Figure 6 (right),

we generate the three types of samples as follows: a) on-

surface samples: we remove occluded iso-points by visi-

bility testing using a point rasterizer, and select those iso-

points whose projections are inside the object silhouette;

b) in-surface samples: on the camera rays that pass through

the on-surface samples, we determine the point with the

lowest signed distance on the segment between the on-

surface sample and the farther intersection with the object’s

bounding sphere. c) out-surface samples: we shoot camera

rays through pixels outside the object silhouette, and choose

the point with the lowest signed distance.

Figure 7: Qualitative comparison between sampling strategies for multi-

view reconstruction. Using the same optimization time and similar total

sample count, sampling the surface points with uniformly distributed iso-

points considerably improves the reconstruction accuracy. A loss based

importance sampling further improves the recovery of small-scale struc-

tures. The models shown here are the COMPRESSOR and ANGEL2 from

the Sketchfab dataset [55].

Below, we demonstrate two benefits of the proposed

sampling scheme.

Surface details from importance sampling. First, we

examine the effect of drawing on-surface samples using iso-

points by comparing the optimization results under fixed

optimization time and the same total sample count.

As inputs, we render 512 × 512 images per object un-

der known lighting and material from varied camera posi-

tions. When training with the iso-points, we extract 4,000

iso-points after 500 iterations, then gradually increase the

density until reaching 20,000 points. To match the sample

count, in the ray-tracing variation, we randomly draw 2,048

pixels per image and then increase the sample count until

reaching 10,000 pixels. We use a 3-layer SIREN model

with the frequency multipliers set to 30, and optimize with

a batch size of 4.

We evaluate our method quantitatively using 10 water-

tight models from the Sketchfab dataset [55]. As shown in

Table 1, we compute 2-way chamfer point-to-point distance

(‖pi−pj‖
2) and normal distance (1− cos(ni,nj)) on 50K

points, uniformly sampled from the reconstructed meshes.

Results show that using uniform iso-points as on-surface

samples compares favorably against the baseline, especially

in the normal metric. It suggests that we achieve higher fi-

delity on the finer geometric features, as our surface sam-

ples overcome under-sampling issues occurring at small

scale details. We also see that importance sampling with

iso-points and loss based upsampling exhibits a substantial

advantage over other variations, demonstrating the effec-

tiveness of smart allocation of the training samples accord-

ing to the current learning state. In comparison, curvature-

based sampling performs similarly to the baseline, but no-

tability worse than with the uniform iso-points. We observe

that the iso-points, in this case, are highly concentrated on a
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Figure 8: Topological correctness of the reconstructed surface in multi-

view reconstruction. The erroneous inner structures of IDR are indicated

by the artifacts in the images rendered by Blender [17] (using glossy and

transparent material) and by the contours of the signed distance field on

cross-sections.

few spots on the surface and ignore regions where the cur-

rent reconstruction is problematic (Figure 3).

The improvement is more pronounced qualitatively, as

shown in Figure 7. Sampling on-surface with uniform iso-

points clearly enhances reconstruction accuracy compared

to the baseline with ray-tracing. The finer geometric details

further improve with loss-based importance sampling.

Topological correctness from 3D prior. IDR can recon-

struct impressive geometric details on the DTU dataset [21],

but a closer inspection shows that the reconstructed surface

contains a considerable amount of topological errors inside

the visible surface. We use iso-points to improve the topo-

logical accuracy of the reconstruction.

We use the same network architecture and training pro-

tocol as IDR, which samples 2048 pixels from a randomly

chosen view in each optimization iteration. We use uniform

iso-points in this experiment. To keep a comparable sam-

ple count, we subsample the visible iso-points to obtain a

maximum of 1500 on-surface samples per iteration. Since

our strategy automatically creates more in-surface samples

(as shown in Figure 6), we halve the loss weight on the in-

surface samples compared to the original implementation.

We visualize the topology of the reconstructed surface

in Figure 8. To show the inner structures of the sur-

face, we render it in transparent and glossy material with

a physically-based renderer [17] and show the back faces

of the mesh. Dark patches in the rendered images indi-

cate potentially erroneous light transmission caused by in-

ner structures. Similarly, we also show the contour lines

of the iso-surface on a cross-section to indicate the irregu-

larity of the reconstructed implicit function. In both visu-

alizations, the incorrect topology in IDR reconstruction is

apparent. In contrast, our sampling enables more accurate

reconstruction of the signed distance field inside and outside

the surface with more faithful topological structure.

4.2. Regularization with iso­points

We evaluate the benefit of using iso-points for regular-

ization. As an example application, we consider surface

reconstruction from a noisy point cloud.

As our baseline method, we use the publicly available

SIREN codebase and adopt their default optimization pro-

tocol. The noisy input point clouds are either acquired with

a 3D scanner (Artec Eva) or reconstructed [12] from the

multi-view images in the DTU dataset.

In each optimization iteration, the baseline method ran-

domly samples an equal number of oriented surface points

Qs = {qs,ns} from the input point cloud and unoriented

off-surface points Qo = {qo} from bounding cube’s inte-

rior. The optimization objective is comprised of four parts:

L = γonSDFLonSDF + γnormalLnormal + γoffSDFLoffSDF + γeikonalLeikonal,

where

LonSDF =
∑

qs∈Qs
|f(qs)|

|Qs|
, Lnormal =

∑

qs∈Qs
|1−cos(JT

f (qs),ns)|

|Qs|
,

LoffSDF =
∑

qo∈Qo
e−α|f(qo)|

|Qo|
, Leikonal =

∑

q∈Qo∪Qs
|1−‖JT

f (q)‖|

|Qs|+|Po|
and

γonSDF = 1000, γnormal = 100, γoffSDF = 50, γeikonal = 100.

We alter this objective with the outlier-aware loss weight de-

fined in (11), and then add the regularizations on iso-points

LisoSDF (8) and LisoNormal (9). The final objective becomes

L = γonSDF(LonSDF + LisoSDF) + γnormal(Lnormal + LisoNormal)+

γoffSDFLoffSDF + γeikonalLeikonal,

where the loss terms with on-surface points are weighted as

follows:

LonSDF = 1
|Qs|

∑

qs∈Qs
v(qs)|f(qs)|,

Lnormal =
1

|Qs|

∑

qs∈Qs
v(qs)|1− cos(JT

f (qs),ns)|.

The iso-points are initialized by subsampling the input point

cloud by 1/8 and updated every 2000 iterations.

The comparison with the baseline, i.e., vanilla optimiza-

tion without regularization, is shown in Figure 9. For

the DTU-MVS data, we also conduct quantitative evalua-

tion following the standard DTU protocol as shown in Ta-

ble 2, i.e., L1-Chamfer distance between the reconstructed

and reference point cloud within a predefined volumetric

mask [1]. For clarity, we also show the results of screened

Poisson reconstruction [26] and Points2Surf [11]. The for-

mer reconstructs a watertight surface from an oriented point

set by solving local Poisson equations; the latter fits an

implicit neural function to an unoriented point set in a

global-to-local manner. Compared with the baseline and

screened Poisson, our proposed regularizations significantly
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screened Poissonbaselineinput ours

CD:0.42 CD:0.50 CD:0.46 CD:0.46

points2surf

CD:0.56 CD:0.69 CD:0.69 CD:0.98

Figure 9: Implicit surface reconstruction from noisy and sparse point

clouds. From left to right: input, reconstruction with our proposed reg-

ularizations, baseline reconstruction without our regularizations, screened

Poisson reconstruction and Points2Surf. CD denotes L1-Chamfer distance.

The sparse point cloud in the first row is acquired with an Artec Eva scan-

ner, whereas the inputs in the second row and third row are reconstructed

from DTU dataset (model 105 and 122) using [12].

ID ours baseline point2surf screened Poisson

55 0.37 0.41 0.56 0.42

69 0.59 0.65 0.61 0.63

105 0.56 0.69 0.98 0.69

110 0.54 0.51 0.61 0.55

114 0.38 0.45 0.45 0.37

118 0.45 0.49 0.59 0.55

122 0.42 0.50 0.46 0.46

Average 0.53 0.61 0.52 0.47

Table 2: Quantitative evaluation for surface reconstruction from a noisy

sparse point cloud. We evaluate the two-way L1-chamfer distance on a

subset of the DTU-MVS dataset.

suppresses noise. Points2Surf can handle noisy input well,

but the sign propagation appears to be sensitive to the point

distribution, leading to holes in the reconstructed mesh.

Moreover, since their model does not use the points’ nor-

mal information, the reconstruction lacks detail.

4.3. Performance analysis

The main overhead in our approach is the projection step.

One newton iteration requires a forward and a backward

pass. On average, the projection terminates within 4 iter-

ations. This procedure is optimized by only considering

points that are not yet converged at each iteration.

Empirically, the computation time of extracting the iso-

points once is typically equivalent to running 3 training it-

erations. In practice, as we extract iso-points only periodi-

cally, the total optimization time only increases marginally.

In the case of multi-view reconstruction, since the ray-

marching itself is an expensive operation, involving multi-

ple forward passes per ray, the overhead of our approach

is much less notable. As discussed, we filter the occluded

iso-points before the projection, which also saves opti-

mization time. The trade-off between optimization speed

0 2,000 4,000 6,000

10−4

10−3

10−2

time (s)

ch
am

fe
r

d
is

ta
n
ce

ray-marching

iso-points

Figure 10: Validation error in relation to op-

timization time. The first time stamp is at the

100-th iteration.

and quality is de-

picted in a concrete

example in Fig. 10,

where we plot

the evolution of

the chamfer dis-

tance during the

optimization of

the COMPRESSOR

model (first row of

Fig. 7). Compared

to the baseline opti-

mization with ray-tracing, it is evident that the iso-points

augmented optimization consistently achieves better results

at every timestamp. In other words, with iso-points we can

reach a given quality threshold faster.

5. Conclusion and Future Work

In this paper, we leverage the advantages of two inter-

dependent representations: neural implicit surfaces and iso-

points, for 3D learning. Implicit surfaces can represent 3D

structures in arbitrary resolution and topology, but lack an

explicit form to adapt the optimization process to input data.

Iso-points, as a point cloud adaptively distributed on the un-

derlying surface, are fairly straightforward and efficient to

manipulate and analyze the underlying 3D geometry.

We present effective algorithms to extract and utilize

iso-points. Extensive experiments show the power of our

hybrid representation. We demonstrate that iso-points can

be readily employed by state-of-the-art neural 3D recon-

struction methods to significantly improve optimization ef-

ficiency and reconstruction quality.

A limitation of the proposed sampling strategy is that it is

mainly determined by the geometry of the underlying sur-

face and does not explicitly model the appearance. In the

future, we would like to extend our hybrid representation to

model the joint space of geometry and appearance, which

can in turn allow us to apply path-tracing for global illumi-

nation, bridging the gap between existing neural rendering

approaches and classic physically based rendering. Another

promising direction is utilizing the new representation for

consistent space-time reconstructions of articulated objects.
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