
Center-based 3D Object Detection and Tracking

Tianwei Yin

UT Austin

yintianwei@utexas.edu

Xingyi Zhou

UT Austin

zhouxy@cs.utexas.edu

Philipp Krähenbühl

UT Austin

philkr@cs.utexas.edu

Abstract

Three-dimensional objects are commonly represented as

3D boxes in a point-cloud. This representation mimics the

well-studied image-based 2D bounding-box detection but

comes with additional challenges. Objects in a 3D world do

not follow any particular orientation, and box-based detec-

tors have difficulties enumerating all orientations or fitting

an axis-aligned bounding box to rotated objects. In this

paper, we instead propose to represent, detect, and track 3D

objects as points. Our framework, CenterPoint, first detects

centers of objects using a keypoint detector and regresses

to other attributes, including 3D size, 3D orientation, and

velocity. In a second stage, it refines these estimates using

additional point features on the object. In CenterPoint, 3D

object tracking simplifies to greedy closest-point matching.

The resulting detection and tracking algorithm is simple,

efficient, and effective. CenterPoint achieved state-of-the-

art performance on the nuScenes benchmark for both 3D

detection and tracking, with 65.5 NDS and 63.8 AMOTA

for a single model. On the Waymo Open Dataset, Center-

Point outperforms all previous single model methods by a

large margin and ranks first among all Lidar-only submis-

sions. The code and pretrained models are available at

https://github.com/tianweiy/CenterPoint.

1. Introduction

Strong 3D perception is a core ingredient in many state-

of-the-art driving systems [1, 48]. Compared to the well-

studied 2D detection problem, 3D detection on point-clouds

offers a series of interesting challenges: First, point-clouds

are sparse, and most parts of 3D objects are without mea-

surements [22]. Second, the resulting output is a three-

dimensional box that is often not well aligned with any

global coordinate frame. Third, 3D objects come in a wide

range of sizes, shapes, and aspect ratios, e.g., in the traf-

fic domain, bicycles are near planer, buses and limousines

elongated, and pedestrians tall. These marked differences be-

tween 2D and 3D detection made a transfer of ideas between

a) Anchor-based t=1

c) Anchor-based t=2

b) Center-based t=1

d) Center-based t=2

Figure 1: We present a center-based framework to represent,

detect and track objects. Previous anchor-based methods

use axis-aligned anchors with respect to ego-vehicle coor-

dinate. When the vehicle is driving on straight roads, both

anchor-based (red boxes) and our center-based (red points)

method can detect objects accurately (top). However, during

a safety-critical left turn (bottom), anchor-based methods

have difficulty fitting axis-aligned bounding boxes to rotated

objects. Our center-based model accurately detects objects

through rotationally invariant points. Best viewed in color.

the two domains harder [43, 45, 58]. An axis-aligned 2D

box [16, 17] is a poor proxy of a free-form 3D object. One

solution might be to classify a different template (anchor)

for each object orientation [56, 57], but this unnecessarily in-

creases the computational burden and may introduce a large

number of potential false-positive detections. We argue that

the main underlying challenge in linking up the 2D and 3D

domains lies in this representation of objects.

In this paper, we show how representing objects as

points (Figure 1) greatly simplifies 3D recognition. Our

two-stage 3D detector, CenterPoint, finds centers of ob-

11784

jects and their properties using a keypoint detector [62], a

second-stage refines all estimates. Specifically, CenterPoint

uses a standard Lidar-based backbone network, i.e., Voxel-

Net [54, 64] or PointPillars [27], to build a representation

of the input point-cloud. It then flattens this representation

into an overhead map-view and uses a standard image-based

keypoint detector to find object centers [62]. For each de-

tected center, it regresses to all other object properties such

as 3D size, orientation, and velocity from a point-feature at

the center location. Furthermore, we use a light-weighted

second stage to refine the object locations. This second stage

extracts point-features at the 3D centers of each face of the

estimated objects 3D bounding box. It recovers the lost local

geometric information due to striding and a limited receptive

field and brings a decent performance boost with minor cost.

The center-based representation has several key advan-

tages: First, unlike bounding boxes, points have no intrinsic

orientation. This dramatically reduces the object detector’s

search space and allows the backbone to learn the rotational

invariance and equivalence of objects. Second, a center-

based representation simplifies downstream tasks such as

tracking. If objects are points, tracklets are paths in space

and time. CenterPoint predicts the relative offset (veloc-

ity) of objects between consecutive frames and links objects

greedily. Thirdly, point-based feature extraction enables us

to design an effective two-stage refinement module that is

much faster than the previous approaches [42–44].

We test our models on two popular large datasets: Waymo

Open [46], and nuScenes [6]. We show that a simple switch

from the box representation to center-based representation

yields a 3-4 mAP increase in 3D detection under different

backbones [27, 54, 64, 65]. Two-stage refinement further

brings an additional 2 mAP boost with a small (< 10%)

computation overhead. Our best single model achieves 71.8
and 66.4 level 2 mAPH for vehicle and pedestrian detec-

tion on Waymo, 58.0 mAP and 65.5 NDS on nuScenes,

outperforming all published methods on both datasets. No-

tably, in NeurIPS 2020 nuScenes 3D Detection challenge,

CenterPoint forms the basis of 3 of the top 4 winning en-

tries. For 3D tracking, our model performs at 63.8 AMOTA

outperforming the prior state-of-the-art by 8.8 AMOTA on

nuScenes. On Waymo 3D tracking benchmark, our model

achieves 59.4 and 56.6 level 2 MOTA for vehicle and pedes-

trian tracking, respectively, surpassing previous methods by

up to 50%. Our end-to-end 3D detection and tracking system

runs near real-time, with 11 FPS on Waymo and 16 FPS on

nuScenes.

2. Related work

2D object detection predicts axis-algined bounding box

from image inputs. The RCNN family [16,17,20,41] finds a

category-agnostic bounding box candidates, then classifies

and refines it. YOLO [40], SSD [32], and RetinaNet [31]

directly find a category-specific box candidate, sidestepping

later classification and refinement. Center-based detectors,

e.g. CenterNet [62] or CenterTrack [61], directly detect the

implicit object center point without the need for candidate

boxes. Many 3D detectors [19, 43, 45, 58] evolved from

these 2D detectors. We show that center-based representa-

tions [61, 62] are an ideal fit for 3D application.

3D object detection aims to predict three dimensional ro-

tated bounding boxes [11,15,27,30,37,54,58,59]. They dif-

fer from 2D detectors on the input encoder. Vote3Deep [12]

leverages feature-centric voting [49] to efficiently process

the sparse 3D point-cloud on equally spaced 3D voxels. Vox-

elNet [64] uses a PointNet [38] inside each voxel to generate

a unified feature representation from which a head with 3D

sparse convolutions [18] and 2D convolutions produces de-

tections. SECOND [54] simplifies the VoxelNet and speeds

up sparse 3D convolutions. PIXOR [55] project all points

onto a 2D feature map with 3D occupancy and point inten-

sity information to remove the expensive 3D convolutions.

PointPillars [27] replaces all voxel computation with a pillar

representation, a single tall elongated voxel per map location,

improving backbone efficiency. MVF [63] and Pillar-od [50]

combine multiple view features to learn a more effective

pillar representation. Our contribution focuses on the output

representation and is compatible with any 3D encoder and

can improve them all.

VoteNet [36] detects objects through vote clustering us-

ing point feature sampling and grouping. In contrast, we

directly regress to 3D bounding boxes through features at

the center point without voting. Wong et al. [53] and Chen

et al. [8] used similar multiple points representation in the

object center region (i.e., point-anchors) and regress to other

attributes. We use a single positive cell for each object and

use a keypoint estimation loss.

Two-stage 3D object detection. Recent works considered

directly applying RCNN style 2D detectors to the 3D do-

mains [9, 42–44, 59]. Most of them apply RoIPool [41] or

RoIAlign [20] to aggregate RoI-specific features in 3D space,

using PointNet-based point [43] or voxel [42] feature extrac-

tor. These approaches extract region features from 3D Lidar

measurements (points and voxels), resulting in a prohibitive

run-time due to massive points. Instead, we extract sparse

features of 5 surface center points from the intermediate

feature map. This makes our second stage very efficient and

keeps effective.

3D object tracking. Many 2D tracking algorithms [2, 4,

26, 52] readily track 3D objects out of the box. However,

dedicated 3D trackers based on 3D Kalman filters [10, 51]

still have an edge as they better exploit the three-dimensional

motion in a scene. Here, we adopt a much simpler approach

following CenterTrack [61]. We use a velocity estimate to-

gether with point-based detection to track centers of objects

through multiple frames. This tracker is much faster and

11785

more accurate than dedicated 3D trackers [10, 51].

3. Preliminaries

2D CenterNet [62] rephrases object detection as keypoint

estimation. It takes an input image and predicts a w × h
heatmap Ŷ ∈ [0, 1]w×h×K for each of K classes. Each

local maximum (i.e., pixels whose value is greater than its

eight neighbors) in the output heatmap corresponds to the

center of a detected object. To retrieve a 2D box, CenterNet

regresses to a size map Ŝ ∈ R
w×h×2 shared between all

categories. For each detection object, the size-map stores its

width and height at the center location. The CenterNet archi-

tecture uses a standard fully convolutional image backbone

and adds a dense prediction head on top. During training,

CenterNet learns to predict heatmaps with rendered Gaus-

sian kernels at each annotated object center qi for each class

ci ∈ {1 . . .K}, and regress to object size S at the center of

the annotated bounding box. To make up for quantization er-

rors introduced by the striding of the backbone architecture,

CenterNet also regresses to a local offset Ô.

At test time, the detector produces K heatmaps and

dense class-agnostic regression maps. Each local maxima

(peak) in the heatmaps corresponds to an object, with

confidence proportional to the heatmap value at the peak.

For each detected object, the detector retrieves all regression

values from the regression maps at the corresponding

peak location. Depending on the application domain,

Non-Maxima Suppression (NMS) may be warranted.

3D Detection Let P = {(x, y, z, r)i} be an orderless point-

cloud of 3D location (x, y, z) and reflectance r measure-

ments. 3D object detection aims to predict a set of 3D object

bounding boxes B = {bk} in the bird eye view from this

point-cloud. Each bounding box b = (u, v, d, w, l, h, α)
consists of a center location (u, v, d), relative to the objects

ground plane, and 3D size (w, l, h), and rotation expressed

by yaw α. Without loss of generality, we use an egocentric

coordinate system with the sensor at (0, 0, 0) and yaw= 0.

Modern 3D object detectors [19, 27, 54, 64] uses a 3D

encoder that quantizes the point-cloud into regular bins. A

point-based network [38] then extracts features for all points

inside a bin. The 3D encoder then pools these features into

its primary feature representation. Most of the computation

happens in the backbone network, which operates solely

on these quantized and pooled feature representations. The

output of a backbone network is a map-view feature-map

M ∈ R
W×L×F of width W and length L with F channels

in a map-view reference frame. Both width and height di-

rectly relate to the resolution of individual voxel bins and

the backbone network’s stride. Common backbones include

VoxelNet [54, 64] and PointPillars [27].

With a map-view feature map M, a detection head, most

commonly a one- [31] or two-stage [41] bounding-box de-

tector, then produces object detections from some predefined

bounding boxes anchored on this overhead feature-map. As

3D bounding boxes come with various sizes and orienta-

tion, anchor-based 3D detectors have difficulty fitting an

axis-aligned 2D box to a 3D object. Moreover, during the

training, previous anchor-based 3D detectors rely on 2D Box

IoU for target assignment [42, 54], which creates unneces-

sary burdens for choosing positive/negative thresholds for

different classes or different dataset. In the next section,

we show how to build a principled 3D object detection and

tracking model based on point representation. We introduce

a novel center-based detection head but rely on existing 3D

backbones (VoxelNet or PointPillars).

4. CenterPoint

Figure 2 shows the overall framework of the CenterPoint

model. Let M ∈ R
W×H×F be the output of the 3D back-

bone. The first stage of CenterPoint predicts a class-specific

heatmap, object size, a sub-voxel location refinement, rota-

tion, and velocity. All outputs are dense predictions.

Center heatmap head. The center-head’s goal is to produce

a heatmap peak at the center location of any detected object.

This head produces a K-channel heatmap Ŷ , one channel for

each of K classes. During training, it targets a 2D Gaussian

produced by the projection of 3D centers of annotated bound-

ing boxes into the map-view. We use a focal loss [28, 62].

Objects in a top-down map view are sparser than in an image.

In map-view, distances are absolute, while an image-view

distorts them by perspective. Consider a road scene, in map-

view the area occupied by vehicles small, but in image-view,

a few large objects may occupy most of the screen. Further-

more, the compression of the depth-dimension in perspective

projection naturally places object centers much closer to each

other in image-view. Following the standard supervision of

CenterNet [62] results in a very sparse supervisory signal,

where most locations are considered background. To coun-

teract this, we increase the positive supervision for the target

heatmap Y by enlarging the Gaussian peak rendered at each

ground truth object center. Specifically, we set the Gaussian

radius to σ = max(f(wl), τ), where τ = 2 is the smallest

allowable Gaussian radius, and f is a radius function defined

in CornerNet [28]. In this way, CenterPoint maintains the

center-based target assignment’s simplicity; the model gets

denser supervision from nearby pixels.

Regression heads. We store several object properties at

center-features of objects: a sub-voxel location refinement

o ∈ R
2, height-above-ground hg ∈ R, the 3D size s ∈ R

3,

and a yaw rotation angle (sin(α), cos(α)) ∈ [−1, 1]2. The

sub-voxel location refinement o reduces the quantization

error from voxelization and striding of the backbone network.

The height-above-ground hg helps localize the object in 3D

and adds the missing elevation information removed by the

map-view projection. The orientation prediction uses the

11786

H
e

a
d

(a) Point cloud (c) Centers and 3D Boxes (d) Second stage(b) Map-view Features

…

M
L

P

3
D

 B
a

c
k
b

o
n

e

score

3D box

0.765

…

M
L

P

score

3D box

0.436

(a) Point. cloud (b) Map-view features

(c) First stage:

Centers and 3D boxes

(d) Second stage:

Score and 3D boxes

Figure 2: Overview of our CenterPoint framework. We rely on a standard 3D backbone that extracts map-view feature

representation from Lidar point-clouds. Then, a 2D CNN architecture detection head finds object centers and regress to full 3D

bounding boxes using center features. From this box prediction, we extract point features at the 3D centers of each face of

the estimated 3D bounding box, and pass them into a MLP to predict an IoU-guided confidence score and box regression

refinement. Best viewed in color.

sine and cosine of the yaw angle as a continuous regression

target. Combined with box size, these regression heads

provide the full state information of the 3D bounding box.

Each output uses its own head. We train all outputs using

an L1 loss at the ground truth center location. We regress

to logarithmic size to better handle boxes of various shapes.

At inference time, we extract all properties by indexing into

dense regression head outputs at each object’s peak location.

Velocity head and tracking. To track objects through time,

we learn to predict a two-dimensional velocity estimation

v ∈ R
2 for each detected object as an additional regression

output. The velocity estimate requires temporal point cloud

sequences [6]. In our implementation, we transform and

merge points from previous frames into the current reference

frame and predict the difference in object position between

the current and the past frame normalized by the time differ-

ence (velocity). Like other regression targets, the velocity

estimation is also supervised using L1 loss at the ground

truth object’s location at the current time-step.

At inference time, we use this offset to associate current

detections to past ones in a greedy fashion. Specifically, we

project the object centers in the current frame back to the

previous frame by applying the negative velocity estimate

and then matching them to the tracked objects by closest

distance matching. Following SORT [4], we keep unmatched

tracks up to T = 3 frames before deleting them. We update

each unmatched track with its last known velocity estimation.

See supplement for the detailed tracking algorithm diagram.

CenterPoint combines all heatmap and regression losses

in one common objective and jointly optimizes them. It

simplifies and improves previous anchor-based 3D detec-

tors (see experiments). However, all object properties are

currently inferred from the object’s center-feature, which

may not contain sufficient information for accurate object

localization. For example, in autonomous driving, the sensor

often only sees the side of the object, but not its center. Next,

we improve CenterPoint by using a second refinement stage

with a light-weight point-feature extractor.

4.1. Two­Stage CenterPoint

We use CenterPoint unchanged as a first stage. The sec-

ond stage extracts additional point-features from the output

of the backbone. We extract one point-feature from the 3D

center of each face of the predicted bounding box. Note

that the bounding box center, top and bottom face centers

all project to the same point in map-view. We thus only

consider the four outward-facing box-faces together with the

predicted object center. For each point, we extract a feature

using bilinear interpolation from the backbone map-view

output M. Next, we concatenate the extracted point-features

and pass them through an MLP. The second stage predicts a

class-agnostic confidence score and box refinement on top

of one-stage CenterPoint’s prediction results.

For class-agnostic confidence score prediction, we follow

[25, 29, 42, 44] and use a score target I guided by the box’s

3D IoU with the corresponding ground truth bounding box:

I = min(1,max(0, 2× IoUt − 0.5)) (1)

where IoUt is the IoU between the t-th proposal box and the

ground-truth. We train using a binary cross entropy loss:

Lscore = −It log(Ît)− (1− It) log(1− Ît) (2)

where Ît is the predicted confidence score. During the infer-

ence, we directly use the class prediction from one-stage

11787

CenterPoint and computes the final confidence score as

the geometric average of the two scores Q̂t =
√

Ŷt ∗ Ît
where Q̂t is the final prediction confidence of object t and

Ŷt = max0≤k≤K Ŷp,k and Ît are the first stage and second

stage confidence of object t, respectively.

For box regression, the model predicts a refinement on

top of first stage proposals, and we train the model with L1

loss. Our two-stage CenterPoint simplifies and accelerates

previous two-stage 3D detectors that use expensive PointNet-

based feature extractor and RoIAlign operations [42, 43].

4.2. Architecture

All first-stage outputs share a first 3 × 3 convolutional

layer, Batch Normalization [24], and ReLU. Each output

then uses its own branch of two 3×3 convolutions separated

by a batch norm and ReLU. Our second-stage uses a shared

two-layer MLP, with a batch norm, ReLU, and Dropout [21]

with a drop rate of 0.3, followed by separate three-layer

MLPs for confidence prediction and box regression.

5. Experiments

We evaluate CenterPoint on Waymo Open Dataset and

nuScenes dataset. We implement CenterPoint using two 3D

encoders: VoxelNet [54,64,65] and PointPillars [27], termed

CenterPoint-Voxel and CenterPoint-Pillar respectively.

Waymo Open Dataset. Waymo Open Dataset [46] contains

798 training sequences and 202 validation sequences for ve-

hicles and pedestrians. The point-clouds contain 64 lanes of

Lidar corresponding to 180k points every 0.1s. The official

3D detection evaluation metrics include 3D bounding box

mean average precision (mAP) and mAP weighted by head-

ing accuracy (mAPH). The mAP and mAPH are based on

an IoU threshold of 0.7 for vehicles and 0.5 for pedestrians.

For 3D tracking, the official metrics are Multiple Object

Tracking Accuracy (MOTA) and Multiple Object Tracking

Precision (MOTP) [3]. The official evaluation toolkit also

provides a performance breakdown for two difficulty levels:

LEVEL 1 for boxes with more than five Lidar points, and

LEVEL 2 for boxes with at least one Lidar point.

Our Waymo model uses a detection range of

[−75.2m, 75.2m] for the X and Y axis, and [−2m, 4m] for

the Z axis. CenterPoint-Voxel uses a (0.1m, 0.1m, 0.15m)
voxel size following PV-RCNN [42] while CenterPoint-Pillar

uses a grid size of (0.32m, 0.32m).

nuScenes Dataset. nuScenes [6] contains 1000 driving

sequences, with 700, 150, 150 sequences for training, vali-

dation, and testing, respectively. Each sequence is approxi-

mately 20-second long, with a Lidar frequency of 20 FPS.

The dataset provides calibrated vehicle pose information for

each Lidar frame but only provides box annotations every

ten frames (0.5s). nuScenes uses a 32 lanes Lidar, which

produces approximately 30k points per frame. In total, there

are 28k, 6k, 6k, annotated frames for training, validation,

and testing, respectively. The annotations include ten classes

with a long-tail distribution. The official evaluation met-

rics are an average among the classes. For 3D detection,

the main metrics are mean Average Precision (mAP) [13]

and nuScenes detection score (NDS). The mAP uses a bird-

eye-view center distance < 0.5m, 1m, 2m, 4m instead of

standard box-overlap. NDS is a weighted average of mAP

and other attributes metrics, including translation, scale, ori-

entation, velocity, and other box attributes [6]. After our

test set submission, the nuScenes team adds a new neural

planning metric (PKL) [35]. The PKL metric measures

the influence of 3D object detection for down-streamed au-

tonomous driving tasks based on the KL divergence of a

planner’s route (using 3D detection) and the ground truth tra-

jectory. Thus, we also report the PKL metric for all methods

that evaluate on the test set.

For 3D tracking, nuScenes uses AMOTA [51], which

penalizes ID switches, false positives, and false negatives

averaged over various recall thresholds.

For experiments on nuScenes, we set the detection range

to [−51.2m, 51.2m] for the X and Y axis, and [−5m, 3m]
for Z axis. CenterPoint-Voxel use a (0.1m, 0.1m, 0.2m)
voxel size and CenterPoint-Pillars uses a (0.2m, 0.2m) grid.

Training and Inference. We use the same network designs

and training schedules as prior works [42, 65]. See supple-

ment for detailed hyper-parameters. During the training of

two-stage CenterPoint, we randomly sample 128 boxes with

1:1 positive negative ratio [41] from the first stage predic-

tions. A proposal is positive if it overlaps with a ground truth

annotation with at least 0.55 IoU [42]. During inference,

we run the second stage on the top 500 predictions after

Non-Maxima Suppression (NMS). The inference times are

measured on an Intel Core i7 CPU and a Titan RTX GPU.

5.1. Main Results

3D Detection We first present our 3D detection results

on the test sets of Waymo and nuScenes. Both results use

a single CenterPoint-Voxel model. Table 1 and Table 2

summarize our results. On the Waymo test set, our model

achieves 71.8 level 2 mAPH for vehicle detection and 66.4
level 2 mAPH for pedestrian detection, surpassing previous

methods by 7.1% mAPH for vehicles and 10.6% mAPH for

pedestrians. On nuScenes (Table 2), our model outperforms

the last-year challenge winner CBGS [65] with multi-scale

inputs and multi-model ensemble by 5.2% mAP and 2.2%
NDS. Our model is also much faster, as shown later. Sup-

plementary material contains a breakdown along classes.

Our model displays a consistent performance improvement

over all categories and shows more significant gains in small

11788

Difficulty Method
Vehicle Pedestrian

mAP mAPH mAP mAPH

Level 1

StarNet [34] 61.5 61.0 67.8 59.9

PointPillars [27] 63.3 62.8 62.1 50.2

PPBA [34] 67.5 67.0 69.7 61.7

RCD [5] 72.0 71.6

Ours 80.2 79.7 78.3 72.1

Level 2

StarNet [34] 54.9 54.5 61.1 54.0

PointPillars [27] 55.6 55.1 55.9 45.1

PPBA [34] 59.6 59.1 63.0 55.8

RCD [5] 65.1 64.7

Ours 72.2 71.8 72.2 66.4

Table 1: State-of-the-art comparisons for 3D detection on

Waymo test set. We show the mAP and mAPH for both level

1 and level 2 benchmarks.

Method mAP↑ NDS↑ PKL↓

WYSIWYG [22] 35.0 41.9 1.14

PointPillars [27] 40.1 55.0 1.00

CVCNet [7] 55.3 64.4 0.92

PointPainting [47] 46.4 58.1 0.89

PMPNet [60] 45.4 53.1 0.81

SSN [66] 46.3 56.9 0.77

CBGS [65] 52.8 63.3 0.77

Ours 58.0 65.5 0.69

Table 2: State-of-the-art comparisons for 3D detection

on nuScenes test set. We show the nuScenes detection

score (NDS), and mean Average Precision (mAP).

Difficulty Method
MOTA↑ MOTP↓

Vehicle Ped. Vechile Ped.

Level 1
AB3D [46, 51] 42.5 38.9 18.6 34.0

Ours 62.6 58.3 16.3 31.1

Level 2
AB3D [46, 51] 40.1 37.7 18.6 34.0

Ours 59.4 56.6 16.4 31.2

Table 3: State-of-the-art comparisons for 3D tracking on

Waymo test set. We show MOTA, and MOTP. ↑ signifies

higher is better and ↓ lower is better.

categories (+5.6 mAP for traffic cone) and extreme-aspect

ratio categories (+6.4 mAP for bicycle and +7.0 mAP for

construction vehicle). More importantly, our model signif-

icantly outperforms all other submissions under the neural

planar metric (PKL), a hidden metric evaluated by the orga-

nizers after our leaderboard submission. This highlights the

generalization ability of our framework.

3D Tracking Table 3 shows CenterPoint’s tracking perfor-

mance on the Waymo test set. Our velocity-based closest

distance matching described in Section 4 significantly outper-

Method AMOTA↑ FP↓ FN↓ IDS↓

AB3D [51] 15.1 15088 75730 9027

Chiu et al. [10] 55.0 17533 33216 950

Ours 63.8 18612 22928 760

Table 4: State-of-the-art comparisons for 3D tracking on

nuScenes test set. We show AMOTA, the number of false

positives (FP), false negatives (FN), id switches (IDS), and

per-category AMOTA. ↑ signifies higher is better and ↓ lower

is better.

Encoder Method Vehicle Pedestrain mAPH

VoxelNet
Anchor-based 66.1 54.4 60.3

Center-based 66.5 62.7 64.6

PointPillars
Anchor-based 64.1 50.8 57.5

Center-based 66.5 57.4 62.0

Table 5: Comparison between anchor-based and center-

based methods for 3D detection on Waymo validation. We

show the per-calss and average LEVEL 2 mAPH.

Encoder Method mAP NDS

VoxelNet

Anchor-based 52.6 63.0

Grid Point-based 53.1 62.8

Center-based 56.4 64.8

PointPillars

Anchor-based 46.2 59.1

Grid Point-based 47.1 58.8

Center-based 50.3 60.2

Table 6: Comparison between anchor-based, grid point-

based, and center-based methods for 3D detection on

nuScenes validation. We show mean average precision

(mAP) and nuScenes detection score (NDS).

forms the official tracking baseline in the Waymo paper [46],

which uses a Kalman-filter based tracker [51]. We observe

a 19.4 and 18.9 MOTA improvement for vehicle and pedes-

trian tracking, respectively. On nuScenes (Table 4), our

framework outperforms the last challenge winner Chiu et

al. [10] by 8.8 AMOTA. Notably, our tracking does not re-

quire a separate motion model and runs in a negligible time,

1ms on top of detection.

5.2. Ablation studies

Center-based vs Anchor-based We first compare our

center-based one-stage detector with its anchor-based coun-

terparts [27, 54, 65]. On Waymo, we follow the state-of-the-

art PV-RCNN [42] to set the anchor hyper-parameters: we

use two anchors per-locations with 0°and 90°, a positive/ neg-

ative IoU thresholds of 0.55/0.4 for vehicles and 0.5/0.35
for pedestrians. On nuScenes, we follow the anchor assign-

ment strategy from the last challenge winner CBGS [65]. We

11789

Vehicle Pedestrian

Rel. yaw 0°-15° 15°-30° 30°-45° 0°-15° 15°-30° 30°-45°

annot. 81.4% 10.5% 8.1% 71.4% 15.8% 12.8%

Anchor-based 67.1 47.7 45.4 55.9 32.0 26.5

Center-based 67.8 46.4 51.6 64.0 42.1 35.7

Table 7: Comparison between anchor-based and center based

methods for detecting objects of different heading angles.

Line 2 and 3 list the ranges of the rotation angle and their

corresponding portion of objects. We show the LEVEL 2

mAPH for both methods on the Waymo validation.

Method
Vehicle Pedestrian

small medium large small medium large

Anchor-based 58.5 72.8 64.4 29.6 60.2 60.1

Center-based 59.0 72.4 65.4 38.5 69.5 69.0

Table 8: Effects of object size for the performance of anchor-

based and center-based methods. We show the per-class

LEVEL 2 mAPH for objects in different size range: small

33%, middle 33%, and large 33%

also compare to a grid point-based representation, as used

in VoteNet [36], PointRCNN [43], and PIXOR [55], which

assigns all points inside the ground truth box as positive. For

this experiment, we keep all other parameters the same as

our CenterPoint model.

As shown in Table 5, on Waymo dataset, simply switch-

ing from anchors to our centers gives 4.3 mAPH and 4.5
mAPH improvements for VoxelNet and PointPillars encoder,

respectively. On nuScenes (Table 6) CenterPoint improves

anchor-based counterparts by 3.8-4.1 mAP and 1.1-1.8 NDS

across different backbones. Similar results hold comparing

to grid point-based representation (3.2-3.3 mAP and 1.4-2.0
NDS improvements). To understand the source of this im-

provement, we further show the performance breakdown on

different subsets based on object sizes and orientation angles

on the Waymo validation set.

We first divide the ground truth instances into three bins

based on their heading angles: 0°to 15°, 15°to 30°, and

30°to 45°. This division tests the detector’s performance

for detecting heavily rotated boxes, which is critical for the

safe deployment of autonomous driving. We also divide the

dataset into three splits: small, medium, and large, and each

split contains 1

3
of the overall ground truth boxes.

Table 7 and Table 8 summarize the results. Our center-

based detectors perform much better than the anchor-based

baseline when the box is rotated or deviates from the average

box size, demonstrating the model’s ability to capture the

rotation and size invariance when detecting objects. These

results convincingly highlight the advantage of using a point-

based representation of 3D objects.

One-stage vs. Two-stage In Table 9, we show the com-

Encoder Method Vehicle Ped. Tproposal Trefine

VoxelNet

First Stage 66.5 62.7 71ms

+ Box Center 68.0 64.9 71ms 5ms

+ Surface Center 68.3 65.3 71ms 6ms

Dense Sampling 68.2 65.4 71ms 8ms

PointPillars

First Stage 66.5 57.4 56ms

+ Box Center 67.3 57.4 56ms 6ms

+ Surface Center 67.5 57.9 56ms 7ms

Dense Sampling 67.3 57.9 56ms 8ms

Table 9: Compare 3D LEVEL 2 mAPH for VoxelNet and

PointPillars encoders using single stage, two stage with 3D

center features, and two stage with 3D center and surface

center features on Waymo validation.

Methods Vehicle Pedestrian Runtime

BEV Feature 68.3 65.3 77ms

w/ VSA [42] 68.3 65.2 98ms

w/ RBF Interpolation [19, 39] 68.4 65.7 89ms

Table 10: Ablation studies of different feature components

for two stage refinement module. VSA stands for Voxel

Set Abstraction, the feature aggregation methods used in PV-

RCNN [42]. RBF uses a radial basis function to interpolate 3

nearest neighbors. We compare bird-eye view and 3D voxel

features using LEVEL 2 mAPH on Waymo validation.

parison between single and two-stage CenterPoint models

using 2D CNN features on Waymo validation. Two-stage

refinement with multiple center features gives a large

accuracy boost to both 3D encoders with small overheads

(6ms-7ms). We also compare with RoIAlign, which densely

samples 6 × 6 points in the RoI [42, 44], our center-based

feature aggregation achieved comparable performance but is

faster and simpler. The voxel quantization limits two-stage

CenterPoint’s improvements for pedestrian detection with

PointPillars as pedestrians typically only reside in 1 pixel

in the model input. Two-stage refinement does not bring

an improvement over the single-stage CenterPoint model

on nuScenes in our experiments. This is in part due to the

sparser point cloud in nuScenes. nuScenes uses 32 lanes

Lidar, which produces about 30k Lidar points per frame,

about 1

6
of the number of points in the Waymo dataset. This

limits the available information and potential improvements

of two-stage refinement. Similar results have been observed

in previous two-stage methods like PointRCNN [43] and

PV-RCNN [42].

Effects of different feature components In our two-stage

CenterPoint model, we only use features from the 2D CNN

feature map. However, previous methods propose to also uti-

lize voxel features for second stage refinement [42,44]. Here,

we compare with two voxel feature extraction baselines:

11790

Figure 3: Example qualitative results of CenterPoint on the Waymo validation. We show the raw point-cloud in blue, our

detected objects in green bounding boxes, and Lidar points inside bounding boxes in red. Best viewed on screen.

Difficulty Method
Vehicle Pedestrian

mAP mAPH mAP mAPH

Level 1

DOPS [33] 56.4

PointPillars [27] 56.6 59.3

PPBA [34] 62.4 66.0

MVF [63] 62.9 65.3

Huang et al. [23] 63.6

AFDet [11, 14] 63.7

CVCNet [7] 65.2

Pillar-OD [50] 69.8 72.5

PV-RCNN [42] 74.4 73.8 61.4 53.4

CenterPoint-Pillar(ours) 76.1 75.5 76.1 65.1

CenterPoint-Voxel(ours) 76.7 76.2 79.0 72.9

Level 2
PV-RCNN [42] 65.4 64.8 53.9 46.7

CenterPoint-Pillar(ours) 68.0 67.5 68.1 57.9

CenterPoint-Voxel(ours) 68.8 68.3 71.0 65.3

Table 11: State-of-the-art comparisons for 3D detection on

Waymo validation.

Detector Tracker AMOTA↑ AMOTP↓ Ttrack Ttot

CenterPoint-Voxel Point 63.7 0.606 1ms 62ms

CBGS [65] Point 59.8 0.682 1ms > 182ms

CenterPoint-Voxel M-KF 60.0 0.765 73ms 135ms

CBGS [65] M-KF 56.1 0.800 73ms >254ms

Table 12: Ablation studies for 3D tracking on nuScenes

validation. We show combinations of different detectors

and trackers. CenterPoint-* are our detectors. Point is our

proposed tracker. M-KF is short for Mahalanobis distance-

based Kalman filter [10]. Ttrack denotes tracking time and

Ttot denotes total time for both detection and tracking.

Voxel-Set Abstraction. PV-RCNN [42] proposes the

Voxel-Set Abstraction (VSA) module, which extends Point-

Net++ [39]’s set abstraction layer to aggregate voxel features

in a fixed radius ball.

Radial basis function (RBF) Interpolation. Point-

Net++ [39] and SA-SSD [19] use a radial basis function to

aggregate grid point features from three nearest non-empty

3D feature volumes.

For both baselines, we combine bird-eye view features

with voxel features using their official implementations. Ta-

ble 10 summarizes the results. It shows bird-eye view

features are sufficient for good performance while being

more efficient comparing to voxel features used in the litera-

tures [19, 39, 42].

To compare with prior work that did not evaluate on the

Waymo test, we also report results on the Waymo validation

split in Table 11. Our model outperforms all published

methods by a large margin, especially for the challenging

pedestrian class(+18.6 mAPH) of the level 2 dataset, where

boxes contain as little as one Lidar point.

3D Tracking. Table 12 shows the ablation experiments of

3D tracking on nuScenes validation. We compare with last

year’s challenge winner Chiu et al. [10], which uses maha-

lanobis distance-based Kalman filter to associate detection

results of CBGS [65]. We decompose the evaluation into the

detector and tracker to make the comparison strict. Given the

same detected objects, using our simple velocity-based clos-

est point distance matching outperforms the Kalman filter-

based Mahalanobis distance matching [10] by 3.7 AMOTA

(line 1 vs. line 3 and line 2 vs. line4). There are two sources

of improvements: 1) we model the object motion with a

learned point velocity, rather than modeling 3D bounding

box dynamic with a Kalman filter; 2) we match objects

by center point-distance instead of a Mahalanobis distance

of box states or 3D bounding box IoU. More importantly,

our tracking is a simple nearest-neighbor matching without

any hidden-state computation. This saves the computational

overhead of a 3D Kalman filter [10] (73ms vs. 1ms).

Conclusion We proposed a center-based framework for si-

multaneous 3D object detection and tracking from the Lidar

point-clouds. Our method uses a standard 3D point-cloud en-

coder with a few convolutional layers in the head to produce

a bird-eye-view heatmap and other dense regression outputs.

Detection is a simple local peak extraction with refinement,

and tracking is a closest-distance matching. CenterPoint is

simple, near real-time, and achieves state-of-the-art perfor-

mance on the Waymo and nuScenes benchmarks.

Acknowledgement This material is based upon work sup-

ported by the National Science Foundation under Grant No.

IIS-1845485 and IIS-2006820.

11791

References

[1] Mayank Bansal, Alex Krizhevsky, and Abhijit Ogale. Chauf-

feurnet: Learning to drive by imitating the best and synthesiz-

ing the worst. RSS, 2019.

[2] Philipp Bergmann, Tim Meinhardt, and Laura Leal-Taixe.

Tracking without bells and whistles. ICCV, 2019.

[3] Keni Bernardin, Alexander Elbs, and Rainer Stiefelhagen.

Multiple object tracking performance metrics and evaluation

in a smart room environment. Citeseer.

[4] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. ICIP,

2016.

[5] Alex Bewley, Pei Sun, Thomas Mensink, Dragomir Anguelov,

and Cristian Sminchisescu. Range conditioned dilated convo-

lutions for scale invariant 3d object detection. arXiv preprint

arXiv:2005.09927, 2020.

[6] Holger Caesar, Varun Bankiti, Alex H. Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

ancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal

dataset for autonomous driving. CVPR, 2020.

[7] Qi Chen, Lin Sun, Ernest Cheung, Kui Jia, and Alan Yuille.

Every view counts: Cross-view consistency in 3d object detec-

tion with hybrid-cylindrical-spherical voxelization. NeurIPS,

2020.

[8] Qi Chen, Lin Sun, Zhixin Wang, Kui Jia, and Alan Yuille. Ob-

ject as hotspots: An anchor-free 3d object detection approach

via firing of hotspots. ECCV, 2020.

[9] Yilun Chen, Shu Liu, Xiaoyong Shen, and Jiaya Jia. Fast

point r-cnn. ICCV, 2019.

[10] Hsu-kuang Chiu, Antonio Prioletti, Jie Li, and Jeannette Bohg.

Probabilistic 3d multi-object tracking for autonomous driving.

arXiv:2001.05673, 2020.

[11] Zhuangzhuang Ding, Yihan Hu, Runzhou Ge, Li Huang, Sijia

Chen, Yu Wang, and Jie Liao. 1st place solution for waymo

open dataset challenge–3d detection and domain adaptation.

arXiv preprint arXiv:2006.15505, 2020.

[12] Martin Engelcke, Dushyant Rao, Dominic Zeng Wang,

Chi Hay Tong, and Ingmar Posner. Vote3deep: Fast ob-

ject detection in 3d point clouds using efficient convolutional

neural networks. ICRA, 2017.

[13] Mark Everingham, Luc Van Gool, Christopher KI Williams,

John Winn, and Andrew Zisserman. The pascal visual object

classes (voc) challenge. IJCV, 2010.

[14] Runzhou Ge, Zhuangzhuang Ding, Yihan Hu, Yu Wang, Sijia

Chen, Li Huang, and Yuan Li. Afdet: Anchor free one stage

3d object detection. arXiv preprint arXiv:2006.12671, 2020.

[15] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. CVPR, 2012.

[16] Ross Girshick. Fast r-cnn. ICCV, 2015.

[17] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. CVPR, 2014.

[18] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse

convolutional networks. CVPR, 2018.

[19] Chenhang He, Hui Zeng, Jianqiang Huang, Xian-Sheng Hua,

and Lei Zhang. Structure aware single-stage 3d object detec-

tion from point cloud. CVPR, 2020.

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. ICCV, 2017.

[21] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya

Sutskever, and Ruslan R Salakhutdinov. Improving neural

networks by preventing co-adaptation of feature detectors.

JMLR, 2012.

[22] Peiyun Hu, Jason Ziglar, David Held, and Deva Ramanan.

What you see is what you get: Exploiting visibility for 3d

object detection. CVPR, 2020.

[23] Rui Huang, Wanyue Zhang, Abhijit Kundu, Caroline Panto-

faru, David A Ross, Thomas Funkhouser, and Alireza Fathi.

An lstm approach to temporal 3d object detection in lidar

point clouds. ECCV, 2020.

[24] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. ICML, 2015.

[25] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-

ing Jiang. Acquisition of localization confidence for accurate

object detection. ECCV, 2018.

[26] H. Karunasekera, H. Wang, and H. Zhang. Multiple object

tracking with attention to appearance, structure, motion and

size. IEEE Access, 2019.

[27] Alex H. Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. Pointpillars: Fast encoders

for object detection from point clouds. CVPR, 2019.

[28] Hei Law and Jia Deng. Cornernet: Detecting objects as paired

keypoints. ECCV, 2018.

[29] Buyu Li, Wanli Ouyang, Lu Sheng, Xingyu Zeng, and Xiao-

gang Wang. Gs3d: An efficient 3d object detection framework

for autonomous driving. CVPR, 2019.

[30] Ming Liang, Bin Yang, Yun Chen, Rui Hu, and Raquel Urta-

sun. Multi-task multi-sensor fusion for 3d object detection.

CVPR, 2019.

[31] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollar. Focal loss for dense object detection. ICCV,

2017.

[32] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

Ssd: Single shot multibox detector. ECCV, 2016.

[33] Mahyar Najibi, Guangda Lai, Abhijit Kundu, Zhichao Lu,

Vivek Rathod, Thomas Funkhouser, Caroline Pantofaru,

David Ross, Larry S Davis, and Alireza Fathi. Dops: Learn-

ing to detect 3d objects and predict their 3d shapes. CVPR,

2020.

[34] Jiquan Ngiam, Benjamin Caine, Wei Han, Brandon Yang,

Yuning Chai, Pei Sun, Yin Zhou, Xi Yi, Ouais Alsharif,

Patrick Nguyen, et al. Starnet: Targeted computation

for object detection in point clouds. arXiv preprint

arXiv:1908.11069, 2019.

[35] Jonah Philion, Amlan Kar, and Sanja Fidler. Learning to eval-

uate perception models using planner-centric metrics. CVPR,

2020.

[36] Charles R. Qi, Or Litany, Kaiming He, and Leonidas Guibas.

Deep hough voting for 3d object detection in point clouds.

ICCV, 2019.

11792

[37] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-d

data. CVPR, 2018.

[38] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification and

segmentation. CVPR, 2017.

[39] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, 2017.

[40] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,

stronger. CVPR, 2017.

[41] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. NIPS, 2015.

[42] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-

voxel feature set abstraction for 3d object detection. CVPR,

2020.

[43] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object proposal generation and detection from point

cloud. CVPR, 2019.

[44] Shaoshuai Shi, Zhe Wang, Jianping Shi, Xiaogang Wang, and

Hongsheng Li. From points to parts: 3d object detection from

point cloud with part-aware and part-aggregation network.

TPAMI, 2020.

[45] Martin Simony, Stefan Milzy, Karl Amendey, and Horst-

Michael Gross. Complex-yolo: An euler-region-proposal

for real-time 3d object detection on point clouds. ECCV,

2018.

[46] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: An open dataset benchmark. CVPR,

2020.

[47] Sourabh Vora, Alex H Lang, Bassam Helou, and Oscar Bei-

jbom. Pointpainting: Sequential fusion for 3d object detection.

CVPR, 2020.

[48] Dequan Wang, Coline Devin, Qi-Zhi Cai, Philipp Krähenbühl,

and Trevor Darrell. Monocular plan view networks for au-

tonomous driving. IROS, 2019.

[49] Dominic Zeng Wang and Ingmar Posner. Voting for voting in

online point cloud object detection. RSS, 2015.

[50] Yue Wang, Alireza Fathi, Abhijit Kundu, David Ross, Caro-

line Pantofaru, Tom Funkhouser, and Justin Solomon. Pillar-

based object detection for autonomous driving. ECCV, 2020.

[51] Xinshuo Weng and Kris Kitani. A Baseline for 3D Multi-

Object Tracking. IROS, 2020.

[52] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple

online and realtime tracking with a deep association metric.

ICIP, 2017.

[53] Kelvin Wong, Shenlong Wang, Mengye Ren, Ming Liang,

and Raquel Urtasun. Identifying unknown instances for au-

tonomous driving. CORL, 2019.

[54] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. Sensors, 2018.

[55] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-time

3d object detection from point clouds. CVPR, 2018.

[56] Xue Yang, Qingqing Liu, Junchi Yan, Ang Li, Zhiqiang

Zhang, and Gang Yu. R3det: Refined single-stage detector

with feature refinement for rotating object. arXiv:1908.05612,

2019.

[57] Xue Yang, Jirui Yang, Junchi Yan, Yue Zhang, Tengfei Zhang,

Zhi Guo, Xian Sun, and Kun Fu. Scrdet: Towards more robust

detection for small, cluttered and rotated objects. ICCV,

2019.

[58] Zetong Yang, Yanan Sun, Shu Liu, and Jiaya Jia. 3dssd:

Point-based 3d single stage object detector. CVPR, 2020.

[59] Zetong Yang, Yanan Sun, Shu Liu, Xiaoyong Shen, and Jiaya

Jia. Std: Sparse-to-dense 3d object detector for point cloud.

ICCV, 2019.

[60] Junbo Yin, Jianbing Shen, Chenye Guan, Dingfu Zhou, and

Ruigang Yang. Lidar-based online 3d video object detec-

tion with graph-based message passing and spatiotemporal

transformer attention. CVPR, 2020.

[61] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl. Track-

ing objects as points. ECCV, 2020.

[62] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Objects

as points. arXiv:1904.07850, 2019.

[63] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang

Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-

sudevan. End-to-end multi-view fusion for 3d object detection

in lidar point clouds. CORL, 2019.

[64] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. CVPR, 2018.

[65] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and

Gang Yu. Class-balanced grouping and sampling for point

cloud 3d object detection. arXiv:1908.09492, 2019.

[66] Xinge Zhu, Yuexin Ma, Tai Wang, Yan Xu, Jianping Shi, and

Dahua Lin. Ssn: Shape signature networks for multi-class

object detection from point clouds. ECCV, 2020.

11793

