
Real-Time Selfie Video Stabilization

Jiyang Yu1,3 Ravi Ramamoorthi1 Keli Cheng2 Michel Sarkis2 Ning Bi2

1University of California, San Diego 2Qualcomm Technologies Inc. 3JD AI Research, Mountain View
jiy173@eng.ucsd.edu ravir@cs.ucsd.edu {kelic,msarkis,nbi}@qti.qualcomm.com

Figure 1. Our method stabilizes selfie videos using A© background feature points and foreground face vertices in each frame. B© The two-
branch stabilization network infers C© the moving least squares (MLS) warping for each frame. D© We show the face and background motion
of the input vs. our stabilized result. For visualization only, the background tracks are computed from the translation component of the
homography between consecutive frames. The face tracks are computed from the centroid of the fitted face vertices in each frame.

Abstract

We propose a novel real-time selfie video stabilization
method. Our method is completely automatic and runs at
26 fps. We use a 1D linear convolutional network to di-
rectly infer the rigid moving least squares warping which
implicitly balances between the global rigidity and local
flexibility. Our network structure is specifically designed
to stabilize the background and foreground at the same
time, while providing optional control of stabilization fo-
cus (relative importance of foreground vs. background) to
the users. To train our network, we collect a selfie video
dataset with 1005 videos, which is significantly larger than
previous selfie video datasets. We also propose a grid ap-
proximation to the rigid moving least squares that enables
the real-time frame warping. Our method is fully auto-
matic and produces visually and quantitatively better results
than previous real-time general video stabilization meth-
ods. Compared to previous offline selfie video methods,
our approach produces comparable quality with a speed
improvement of orders of magnitude. Our code and selfie
video dataset is available at https://github.com/
jiy173/selfievideostabilization.

1. Introduction

Selfie videos are pervasive in daily communications.
However, capturing high quality selfie video is challenging
without specialized stabilization devices like gimbals, which
is not convenient, and may not even be allowed in some
cases. On the other hand, from the perspective of algorithms,
selfie video stabilization is also challenging. In general, there
are three major steps in video stabilization algorithms. The
first step is to detect the motion in the input video. Selfie
videos have a significant foreground occlusion imposed by
human, which is a common limitation of video stabiliza-

tion algorithms since tracking the frame motion is difficult
in the presence of large occlusion. The second step is to
replan/stabilize the motion. In selfie videos, the motions in
foreground/background are usually very different. Existing
selfie video stabilization methods like [19] aim to stabilize
the face. However, stabilizing according to only foreground
results in significant shake in the background, and vice versa.
The third step is the warping of the frames. For selfie videos,
the users are sensitive to distortion on the human face. This
requires high rigidity in the foreground warping while main-
taining the flexibility in the background warping.

Critically, consumer applications like selfie video stabi-
lization require a significantly fast or even real-time online
algorithm to be practical. This rules out most video stabiliza-
tion algorithms requiring high overhead pre-processing like
SFM [10], optical flow [15, 25, 4] and future motion informa-
tion [6, 11]. A previous selfie video stabilization method [24]
is an optimization based method and cannot achieve real-
time performance. Although another selfie video stabiliza-
tion work Steadiface [19] achieves real-time performance, it
only estimates global homography for stabilization and can-
not handle non-linear local motions, e.g. rolling shutter. Ad-
ditionally, their work also requires gyroscope information.

In this paper, we propose a novel learning based real-time
selfie video stabilization method. Our method is fully auto-
matic and requires no preprocessing and user assistance. The
method is designed to tackle the challenges discussed above.
An overview of our method is shown in Fig. 1. To achieve
real-time performance, our method is purely 2D video stabi-
lization, meaning that our method only depends on the mo-
tion of sparse 2D points detected from input video (Fig. 1 A©).
This makes our method significantly faster than the offline
selfie video stabilization [24]. In the first step, we avoid the
occlusion problem by training a segmentation network to in-
fer the foreground regions and remove the feature points in

12036



the foreground. To take foreground motion into considera-
tion, we use the 3DDFA [26] to fit a 3D mesh to video frames.

To warp the original frames into stabilized frames, we use
the rigid moving least squares (MLS) [18] (Fig. 1 C©). In
our method, we directly use the background feature points
as the warp nodes so that the face shape remains undistorted.
Since the original MLS warping is computationally expen-
sive, we use a grid approximation to maintain the real-time
performance. Although faster warping methods exist, e.g. as-
similar-as-possible warping in Liu et al. [14], MLS warping
is necessary for our method. First, traditional grid warping
requires an additional hyperparameter to regularize the grid
shape. These terms usually conflict with the motion loss and
manually setting the weight between visual distortion and sta-
bility is tricky. On the other hand, MLS warping guarantees
rigidity implicitly and does not require human intervention.
It also preserves the original shape of regions that lack warp
nodes. Second and more importantly, our method is learning
based instead of optimization based. In the traditional opti-
mization process, it is easy to define the mapping between
grid vertices and their enclosed feature points in the Jaco-
bian. However, learning this spatial relation between feature
points and grid vertices is difficult and suffers from general-
ization problems. In Sec. 6 and the supplementary video, we
will show that our setup with MLS warping directly defined
on unstructured warp nodes (feature points) is more effective
than directly learning the grid like Wang et al. [21].

The core of our method is the stabilization network
(Fig. 1 B©). The network generates the displacement of the
warp nodes from the input face vertices and feature points,
so that motions of both the foreground (represented by face
vertices) and the background (represented by feature points)
are minimized. We also design the network structure so that
the user can optionally control the degree of stabilization of
the foreground and background on the fly. In addition, we
find that removing activation layers used in traditional neural
networks yields better results(supplementary Table d). The
reason is that our formulation requires a linear relation be-
tween the input feature point scale and output warp node dis-
placement scale. Although our network ultimately represents
a linear relationship between input feature points and the dis-
placement of output warp nodes, we will show in the supple-
mentary material that direct optimization for this linear re-
lationship is prohibitive in terms of computational efficiency
and accuracy (supplementary Table c)1. Training a linear net-
work instead makes the problem tractable, which is similar
to how optimizing over non-linear network weights has regu-
larized optimization problems in video stabilization [25] and
other domains [8] in previous works.

The contribution of our paper includes:

1) A novel selfie video stabilization network that enables
real-time selfie video stabilization. Our network directly
infers the moving least squares warp from the 2D feature
points, stabilizing both the foreground face and background
feature motion (Sec. 3.1 and Sec. 3.2). In Sec. 4.3 we will
show that the structure of our network allows an optional con-
trol of stabilization focus.

2) Grid approximated moving least squares warping that

1Note that the objective function we use is non-linear, so a non-linear
optimizer needs to be used in any case, rather than simple linear least squares
solvers.

works at a real-time rate. For our method, the MLS algorithm
with hundreds of warp nodes requires a significant amount of
time to warp a frame. We use a sparse grid to approximate
the MLS warping (Sec. 5) that improves the warping speed
by two orders of magnitude. Our entire pipeline is able to
stabilize the video at 26fps.

3) A novel large selfie video dataset with per-frame la-
beled foreground masks. We will discuss the details of our
dataset in Sec. 4.1. The dataset enables the training of the
foreground detection network and the stabilization network
in our paper. We will make our dataset publicly available for
face and video related researches.

2. Previous Work

While video stabilization has been extensively studied,
most of the works belong to the offline video stabilization
category. The major reason is that most video stabilization
methods rely on temporally global motion information to
compute the warping for the current frame. Recent works us-
ing global motion information include the L1 optimal camera
paths [6], bundled camera paths [14], subspace video stabi-
lization [11], video stabilization using epipolar geometry [5],
content-preserving warps [10] and spatially and temporally
optimized video stabilization [22]. These works all involve
the detection of feature tracks and smoothing under certain
constraints. Some works use optical flow [15, 25] or video
coding [12] instead of feature tracking as the motion detec-
tion method. However, they still inherently require future
motion information for the global motion optimization.

One may argue that these global optimization based video
stabilization methods can be easily modified to online meth-
ods by applying a sliding window scheme. However, note
that methods like bundled camera paths [14] only smooth
tracks formed by feature points. Falsely detected features can
easily affect the optimization, especially when the window
size is small. Moreover, [14] requires global motion infor-
mation to achieve the reported result. One can expect per-
formance to decrease if a short sliding window is applied.
In Sec. 6 we will show that [14] already generates inferior
results than ours using the entire video (Fig. 8 and Fig. 9).
As we will discuss in Sec. 4, our pipeline considers all fea-
ture points in a window as a whole; the feature points are not
only temporally related but also spatially related. Note that
this makes the objective function non-linear, thus we cannot
simply use the least squares optimization of [14]. Moreover,
our network contains several downsample layers, which ef-
fectively blend feature points. This makes our network robust
to individual erroneous features, and it generates satisfactory
results with a short 5-frame sliding window.

Deep learning has also been applied to video stabiliza-
tion in some works. These attempts include using adversar-
ial networks to generate stabilized video directly from unsta-
bilized input frames [23] and estimate a warp grid from in-
put frames [21]. These methods are difficult to generalize to
videos in the wild. Other learning based works (e.g., [4]) it-
eratively interpolate frames at intermediate positions. These
works still require optical flow and are prone to artifacts at
moving object boundaries.

Some works are more related to the selfie video sta-
bilization context. An existing selfie video stabilization
method [24] uses the face centroid to represent the fore-

12037



Figure 2. The pipeline of our method. A© We first detect the fore-
ground regions of the input video frame. B© The background motion
is tracked using feature points. C© The foreground motion is tracked
using 3D face vertices. D© We train a stabilization network to infer
the displacement of the MLS warp nodes. Finally, we use a grid to
approximate the MLS warping and generate the stabilized frame.

ground motions while stabilizing the background motions.
However, their method uses the optical flow to detect the
background motion and the foreground mask, which is com-
putationally expensive for real-time applications. Their
method is also based on global motion optimization, which
makes it impractical in online video stabilization. Our
method does not require the dense optical flow computation
and does not require future motion information, therefore is
more efficient than their method.

Steadiface [19] is an online real-time selfie video stabi-
lization method. They used facial key points as the reference
and the gyroscope information as auxiliary to stabilize hu-
man faces. However, their approach uses simple full-frame
transformation to warp the frame, which cannot compensate
for non-linear distortion like rolling shutter. Our method uses
grid-based MLS warping which provides flexibility to handle
non-linear distortions. Our method also models the face mo-
tion more accurately using a face mesh instead of face land-
marks in [19]. Due to these limitations, Steadiface [19] will
not produce results comparable with ours by simply adding a
hyperparameter to control foreground and background stabi-
lization like our method. We will show that the quality of our
results is significantly better than Steadiface [19] in Fig 10(b)
and the supplementary video.

MeshFlow [13] is an online real-time general video stabi-
lization method. They use a sparse grid and feature points
to estimate the dense optical flow. However, as a general
video stabilization method, they do not consider the fore-
ground/background motion and the large occlusion imposed
by the face and body. This reduces the robustness in the con-
text of selfie videos.

In Sec. 6, we will compare our result with selfie video sta-
bilization [24], Steadiface [19], MeshFlow [13] and the state-
of-the-art learning based approaches [4, 21]. We also com-
pare with the bundled camera path video stabilization [14]
representing a typical offline general video stabilization
method as the reference.

Figure 3. The warping strategy of our method. The background fea-
ture points in the same color are in correspondence. The feature
points with grid patterns are the warp nodes. The arrows repre-
sent the MLS warping operation. During the stabilization, both the
feature points Pt(solid blue points) and the face vertices Ft(solid
yellow points) are warped by the warp nodes Qt(grid green points).

3. Overview of algorithm pipeline

Our pipeline is shown in Fig. 2. The pipeline consists of
three major parts: motion detection, stabilization and warp-
ing. In this section, we will introduce these parts separately
and provide an overview of the selfie video stabilization pro-
cess. For completeness, we summarize the notations used in
our paper and supplementary material in supplementary Ta-
ble a. The training of the neural networks mentioned below
will be discussed in Sec. 4.

3.1. Motion Detection

As discussed in Sec. 1, for selfie videos, we seek to stabi-
lize the foreground and background at the same time. There-
fore, both the motion of the face and the background need
to be detected. To distinguish the foreground and the back-
ground, we first use a pre-trained foreground detection net-
work to infer a foreground mask Mt where Mt = 1 rep-
resents the foreground region of frame t. We show a sam-
ple foreground mask in Fig. 2 A©. The details regarding the
foreground detection network will be discussed in Sec. 4.2.
For the background region where Mt = 0, we use the Shi-
Tomasi corner detector[20] to detect feature points in a frame
and the KLT tracker to find their correspondences in the next
frame, as shown in Fig. 2 B©. We uniformly sample 512 fea-
ture points for each frame, since fewer feature points can-
not provide enough coverage of frame regions and more fea-
ture points will make the pipeline less efficient without sig-
nificant improvement in warping quality. We will visually
compare the different number of feature point selections in
Sec. 6. We denote the selected feature points in frame t as
Pt ∈ R

2×512. Their correspondences in frame t + 1 are de-
noted as Qt+1 ∈ R

2×512.
To detect the motion of the foreground, we fit a 3D face

mesh to each frame using 3DDFA proposed in [26]. An ex-
ample of a fitted 3D face mesh is shown in Fig. 2 C©. As in the
background, we uniformly sample 512 face vertices to repre-
sent the face position in a frame. Furthermore, we only con-
sider the 2D projection of the face mesh in our method. In this
paper, we denote the selected face vertices as Ft ∈ R

2×512,
where t represents the frame index.

3.2. Stabilization

To stabilize the video, we use the rigid moving least
square(MLS) warping[18] to warp the frames. In Fig. 3, we
depict the warping strategy of a video sequence. The mov-
ing least square warping requires a set of warp nodes for

12038



Figure 4. A© Our selfie video dataset. From left to right: color frame, ground truth foreground mask, background feature points, 3D face mesh.
B© Examples of the foreground mask detected with our trained foreground detection network.

Figure 5. Our stabilization network structure. On the left we show
a sequence of input frames. A© The feature points and their corre-
spondences in the next frame are concatenated as a 4 × 512 ten-
sor. B© The tensors in the same window are concatenated to a large
4(T − 1) × 512 tensor. The same operation is done for face ver-
tices. The output of C© the feature branch and D© the face branch of
our network are weighted by λ and concatenated. E© The decoder
outputs the displacements of the warp nodes. The layer parameters
are provided in the supplementary material Table b

each frame t. We use the correspondences of detected fea-
ture points, i.e., Qt, as the warp nodes for frame t (marked
by gridded green dots in Fig. 3). Besides all the pixels in
frame t, the feature points Pt (solid blue dots) and the face
vertices Ft (solid yellow dots) are also warped by Qt during
the stabilization to reflect the change of their positions.

Denote the target location of the warp nodes as Q̂t, then
the rigid MLS warping operation (shown as the arrows in

Fig. 3) can be written as a function W (v;Qt, Q̂t), where v is
a pixel/feature point/face vertex to be warped. Denoting each
column of a matrix Qt as qi,t ∈ R

2×1 where i ∈ [1, 512], the
rigid MLS warping procedure is defined by a series of com-
putations. We included the details of the MLS warping in
supplementary material Algorithm 1. In this paper, we pro-
pose a convolutional network (Fig. 2 D©) to infer the displace-

ments of warp nodes Q̂t − Qt. In Sec. 4.3, we will discuss
the training of this stabilization network.

3.3. Warping

More feature points(warp nodes) leads to less warping ar-
tifacts but longer time to detect and track. In our paper, we
use 512 feature points as warp nodes in each frame, which is
a tradeoff between visual quality and runtime performance.
Details will be discussed in supplementary material Sec. C.2.
Although the MLS warping can achieve real-time warping
with a relatively small number of warp nodes, in our applica-
tion, warping with hundreds of warp nodes is both time and
memory inefficient. With our implementation of GPU accel-
erated MLS warping, with 512 warp nodes, a frame of size
448 × 832 must be divided into 16 blocks in order to be fit
in a NVIDIA 2080Ti GPU’s memory and the warp speed is
approximately 1s/frame. This makes it prohibitive for real-
time applications. To address this issue, we use a grid to ap-
proximate the MLS warp field. This approximation enables
real-time performance of our method and yields high-quality
visual results. In Sec. 5, we will demonstrate the details of
the grid warping approximation.

4. Network

In this section, we discuss the details regarding the stabi-
lization network and foreground detection network. We first
present our novel selfie video dataset (Sec. 4.1), then discuss
details of the foreground detection network (Sec. 4.2) and sta-
bilization network (Sec. 4.3). In the supplementary meterial,
we introduce a sliding window scheme to apply our stabiliza-
tion network to arbitrarily long videos (Sec. A.2).

4.1. Dataset

Although large scale video datasets like Youtube-8M [1]
have been widely used, public videos with continuous pres-
ence of faces are difficult to collect. We propose a novel selfie
video dataset containing 1005 selfie video clips, which is sig-
nificantly larger than existing selfie video datasets proposed
in [24](33 videos) and [9](80 videos). We first manually col-
lect long vlog videos captured with mobile devices from the
Internet. In these videos, we aim to locate the clips that have
stable face presence. We use the face detector from Dlib [7]
to detect faces in each frame, and maintain a global counter to
count the number of consecutive frames that contain faces. If
the face can be detected in more than 50 consecutive frames,
we cut the raw video into a new clip. In addition to the reg-
ular color videos, our dataset also includes a ground truth
foreground mask for each frame. We manually label the fore-
ground region of the first frame of each video clip, then use
Siammask E [3] to track the foreground object and gener-
ate the foreground mask for the video clip. In addition, we
also provide the detected feature points in each frame and
their correspondences in the next frame. Finally, for each
frame, we provide the dense 3D face mesh fitted using [26].
In Fig. 4 A©, we show a video still, the corresponding fore-
ground mask, the background feature points and the 3D face
mesh from our dataset. Our dataset will be made publicly
available upon publication.

4.2. Foreground Detection Network

Since we have the ground truth mask for our selfie video
dataset, training a binary segmentation network is straightfor-
ward. We train an FCN8s network proposed in [16] for this
segmentation task. Although there are more advanced struc-
ture for segmentation [17, 2], we find that FCN8s achieves
satisfactory results for our application. The input of the net-
work is the raw RGB frame, and the output is the binary seg-
mentation mask M mentioned in Sec. 3.2. The training uses
Adam optimizer with a 10−3 learning rate and a binary cross
entropy loss. Figure 4 B© provides examples of the inferred
masks on video frames outside our dataset. Note that the in-
ferred mask is not perfect, but it is accurate enough to distin-
guish the foreground and the background.

12039



4.3. Stabilization Network

For a video with T frames, we are able to detect T − 1
groups of feature points Pt and their correspondences in
the next frame Qt+1 using the KLT tracking mentioned in
Sec. 3.1. For each frame, we seek to infer the displacement

of warp nodes Q̂t−Qt so that the overall motion of the video
is minimized. Formally, the loss function for the background
can be written as

Lb =

T−1∑

t=1

∥∥∥W (Pt;Qt, Q̂t)− Q̂t+1

∥∥∥
2

(1)

where W (Pt;Qt, Q̂t) is the MLS warping function as men-
tioned in Sec. 3.2. Note that here we apply the MLS warping
function to a group of feature points, i.e., each column of Pt

are treated as the coordinates of a pixel and warped by all the
warp nodes according to supplementary material Algorithm
1. Since the Pt’s correspondence Qt+1 are the warp nodes
for the next frame, so here we should directly use their new

position Q̂t+1.
Similarly, we can also define the foreground loss function

using the face vertices:

Lf =

T−1∑

t=1

∥∥∥W (Ft;Qt, Q̂t)−W (Ft+1;Qt+1, Q̂t+1)
∥∥∥
2

(2)

In this equation, the difference with Eq. 1 is that the face
vertices in the next frame t+1 are warped by the warp nodes
Qt+1.

We also introduce a value λ to control the weighting of
foreground stabilization and background stabilization. The
complete loss function is defined as:

L = (1− λ)Lb + λLf (3)

In Eq. (3), the value λ ∈ (0, 1) controls the stabilization focus
on foreground versus background. A larger λ means that we
tend to stabilize the face more, and a smaller λ means we tend
to stabilize the background more. Our method uses λ = 0.3
by default and stabilizes the video automatically. The user
can also change the value online during the stabilization. In
the supplementary video, we will show an example of our
network seamlessly changing λ during the stabilization.
Network Structure Our network structure is inspired by the
2D autoencoder network structure. However, our formula-
tion only provides sparse feature points as 1D vectors. The
input dimension does not match the 2D network structure.
Moreover, the vanilla autoencoder structure does not provide
control over the foreground and background stabilization. To
solve these problems, we design our network as a 1D autoen-
coder with two input branches. We demonstrate our network
structure in Fig. 5. For simplicity, we will omit the batch di-
mension in the discussion. For each frame, the feature points
Pt ∈ R

2×512 and Qt ∈ R
2×512 mentioned in Sec. 3.1 are

concatenated in the row dimension, resulting in a frame fea-
ture tensor Xt ∈ R

4×512 as shown in Fig. 5 A©. We con-
catenate the frame feature tensor of T − 1 frames, forming

the feature branch input tensor X ∈ R
4(T−1)×512 shown in

Fig. 5 B©. Similarly, we concatenate the face vertices into

the face branch input tensor Y ∈ R
4(T−1)×512. Tensor X

and Y are encoded separately with 1D convolutional layers

(Figs. 5 C© and D©), which only convolve with the last dimen-
sion of the tensors. The encoded tensor from different down-
sample levels are weighted by λ and concatenated for skip
connection to decoders (Fig 5 E©), so that the stabilization of
foreground and background can be controlled by the user in-
put λ. Note that the order of feature points does not affect the
network, since we train the network with randomly sampled
feature points and face vertices and the encoder downsamples
the input and essentially blends the feature points regardless
their original order. The decoder generates the displacements
of the warp nodes. Note that for a length T video, we do not
warp the first frame and last frame. The reason is that the goal
of video stabilization is to smooth the original motion, not to
eliminate the motion. Our network is effectively inferring the
warp field for the intermediate T − 2 frames and stabilizes
the video instead of aligning all the frames.

Linear Network Design Conventional neural networks con-
tain activation layers to introduce non-linearity. While we
started with this design, we found, perhaps surprisingly, that
better performance could be obtained by removing the non-
linearities(supplementary material Table d). Specifically, our
network does not contain activation layers, which is different
from conventional neural networks. Intuitively, the definition
of the loss function(Eq. 3) requires a linear relationship be-
tween the input and the output of the stabilization network,
i.e. N times larger feature point coordinates require N times
larger output displacement that compensates the motion.

An obvious question to ask here is why training a network
is necessary to represent the linear relationship. In principle,
we could pose the problem as an optimization in two alter-
native ways. First, it can be modeled as a linear problem in
which we solve for a matrix that linearly transforms the vec-
tor of input feature points into the output displacement vector.
However, this approach leads to an underdetermined problem
with too many variables to be solved for in the full matrix.
Second, we can use a non-linear solver to directly optimize
the loss function by solving for the output displacement vec-
tor. However, this solution is prohibitive due to the runtime
performance and result quality.

In the supplementary material, we provide a more thor-
ough analysis of our choice of using a linear network. Briefly,
the linear neural network factorizes or regularizes the full
matrix optimization (first alternative solution) into smaller
sub-problems that are easier to solve with fewer variables.
Specifically, our analysis includes the necessity of using a
network(Sec. B.2), why posing the problem as a non-linear
optimization is prohibitive(Sec. B.3) and the performance
comparison with traditional neural networks(Sec. B.4).

Training Our dataset does not contain ground truth
stable videos. Therefore, our training procedure is un-
supervised. The goal is to learn to minimize the loss
function defined in Eq. 3, i.e. the distances between feature
points/face vertices detected in consecutive frames. Note that
the warping is learned solely from groups of unstructured
feature points/face vertices. To avoid overfitting, we need
sufficient diversity in the spatial distribution of these points
and motion patterns across the frames. Previously discussed
efforts we made to satisfy this requirement include a large
selfie video dataset(Sec. 4.1) and randomly drawn feature
points/face vertices(Sec. 4.3). In addition, we further perturb

12040



Figure 6. Part of the 25 selfie video examples referred to in Sec. 6.
Please find complete video stills and corresponding IDs in the sup-
plementary material. Our example videos are selected to cover a
variety of challenging scenarios in real applications.

the coordinates of feature points/face vertices using a random
affine transformation with rotation between [−10◦, 10◦] and
translation between [−50, 50] except the first frame and the
last frame. We also generate a random λ value between
(0, 1). We use Adam optimizer with a 10−4 learning rate
to minimize the loss (Eq. 3) on length T selfie video clips
randomly drawn from our dataset.

5. Warping Acceleration

As discussed in Sec. 3, using the MLS warping with 512
warp nodes in our case is impractical for real-time applica-
tion. To accelerate the warping speed, for the final rendering
of the frame, we use a grid to approximate the warp field gen-
erated by MLS warping. Denote a grid vertex in frame t by
gj ∈ R

2×1, where j is the index of grid vertices. Each pixel
v can be defined by the bilinear interpolation of the enclosing
four grid vertices, denoted by G ∈ R

2×4: v = GD, where
D ∈ R

4×1 is the vector of bilinear weights.

In the first step of rendering, we warp the grid vertices

with warp nodes Qt and their target coordinates Q̂t: ĝj =

W (gj ;Qt, Q̂t). Since the grid vertices are sparse, warp-
ing with MLS is computationally efficient. We then densely
warp the pixels v using the MLS warped grid coordinates:

v̂ = ĜD, where Ĝ consists of the transformed enclosing
four grid vertices ĝj . This step contains only one matrix op-
eration, which can be computed at a real-time rate. In our
experiment, we find the difference between the results gener-
ated with the dense MLS warping and grid approximation is
negligible. Our method is not sensitive to the selection of the
grid size. In our experiment, we use a grid size 20× 20. We
implemented the grid warping on GPU by parallel sampling
the grid with a pixel-wise dense grid, generating a dense warp
field. We then use the dense warp field to sample the video
frame, generating the warped frame. Our implementation of
this process takes approximately 4ms/frame, compared to the
1s/frame ground truth dense MLS warping.

6. Results

In this section, we present the results of our method. Note
that our dataset is cut from a small number of long vlog
videos, therefore the faces are from a limited number of peo-
ple. Some videos in our dataset also do not actually need to be
stabilized (e.g., still camera video). To show the effectiveness
and the ability of generalization of our method, we collect 25
new selfie videos that contain a variety of challenging sce-
narios in real applications, and are completely separate from
our training dataset. Part of the testing examples are shown
in Fig. 6. The complete example video stills with video IDs
will be provided in supplementary Fig. c. The background
scenes vary from indoor (example 16, 18, 19), inside of cars
(example 7, 12), city (example 1, 2, 8, 9, 10, 13, 15, 21, 22,

23), crowd (example 2, 3, 9, 10, 16, 23, 24) and wild (exam-
ple 4, 5, 6, 11, 14, 17, 20, 24, 25). Some of these videos are
selected since their content is technically challenging. These
challenges include lack of background features (example 6,
7, 12, 15), dynamic background (example 2, 3, 9, 10, 16, 23,
24), sunglasses (example 4, 7, 14, 15, 21), large foreground
occlusion (example 13, 16, 20, 22), face cannot be detected
or incomplete face (example 8, 9, 13, 16, 18, 20, 22), multiple
faces (example 6, 14) and intense motions (example 1, 23).
Since the dynamics cannot be shown through video stills, we
recommend readers to watch our supplementary video. In the
supplementary video, we show the example video clips and
our stabilized result side by side. As mentioned in Sec. 2, we
also provide visual and quantitative comparison with the of-
fline selfie video stabilization [24], the real-time selfie video
stabilization Steadiface [19], the real-time general video sta-
bilization MeshFlow [13], the offline general video stabi-
lization bundled camera paths [14] and the state-of-the-art
learning-based methods [4] and [21]. Since our videos do
not contain gyroscope data, we compare with Steadiface [19]
using only the examples provided in their paper. Apart from
the results discussed in this section, we provide more discus-
sion regarding the number of feature points(warp nodes) in
supplementary Sec. C.2, ablation study regarding the FG/BG
mask in supplementary Sec. C.3 and performance with dif-
ferent input resolution in supplementary Sec. C.4.

6.1. Value of λ

In Fig. 7 we show the effect of different values of λ. We
stabilize the same video clip with λ set to 0.3 and 0.9 respec-
tively. To show the steadiness of the result, we average 15
consecutive frames of the stabilized video. The less blurry
the region is, the more stable it is in the result. For λ = 0.9,
the face regions are less blurry as shown in the green inset,
indicating that our network automatically focuses on stabiliz-
ing the face. If we set λ = 0.3, the background regions are
less blurry as shown in the cyan inset meaning that the back-
ground is more stable. In our experiment, we use a default
value of λ = 0.3, meaning that we stabilize both foreground
and background while mainly focusing on the background.

6.2. Visual Comparison

We show sample frames from our examples and the sta-
bilized results in Fig. 8. Our method stabilizes the frames
without introducing visual distortions. The real-time general
video stabilization method [13] and offline general video sta-
bilization method [14] usually produce artifacts on the face,
since they do not distinguish the foreground and the back-
ground. Selfie videos are also challenging for the optical flow
estimation in MeshFlow [13], since the motion within a mesh
cell can be significantly different due to the foreground oc-
clusion. The learning based method [21] generally does not
produce local distortions, but tends to generate unstable out-
put video. Due to the accuracy issue in optical flow and frame
interpolation, the other learning based method [4] generates
artifacts, especially near the occlusion boundaries like face
boundaries. These artifacts are more obvious when observed
dynamically in videos. We recommend the readers to watch
the supplementary video for better visual comparison. We
also achieve the same quality visual results as the previous
optimization based selfie video stabilization [24]. However,

12041



Figure 7. The visual comparison of different values of λ in our method and the state-of-the-art real-time face stabilizaiton method Steadi-
face [19] using the example videos provided in their work. The images shown are the average of 15 consecutive frames. The face regions and
the background regions of the input, the corresponding regions of Steadiface [19] and our method are shown in the insets on the right.

Figure 8. The visual comparison of bundled camera paths [14], selfie video stabilization [24], MeshFlow [13], deep online video stabiliza-
tion [21], deep iterative frame interpolation [4] and our method. The details of the face regions are shown in the insets on the right. We
recommend readers to zoom in and observe the details in the images.

Figure 9. Quantitative comparison of bundled camera paths [14],
selfie video stabilization [24], MeshFlow [13], deep online video
stabilization [21], deep iterative frame interpolation [4] and our
method. In these metrics, a larger value indicates a better result.
The average values over all the example videos are listed. The com-
plete comparison on individual videos are provided in the supple-
mentary material Fig. b.

our method is learning-based and runs at the real-time speed,
which is orders of magnitude faster compared to their method
as we will discuss in Sec. 6.4.

We also test our method on the examples in Steadi-
face [19], which is the state-of-the-art real-time face stabi-
lization method. The images shown on the left of Fig. 7 are
the average consecutive 15 frames of their results. If we set
λ = 0.9 in our method (mainly stabilize the face), we are able
to achieve better face alignment. In addition, we can alterna-
tively set λ = 0.3 in the stabilization network. The back-
ground becomes significantly more stable than the Steadi-
face [19] results and our λ = 0.9 results in the averaged
frames, indicating that our method is capable of stabilizing
the background. Figure 7 also indicates that stabilizing the
background (λ = 0.3) leads to a slight sacrifice of face sta-
bility, since the motion of the foreground and background is
different. In our supplementary video, we will show that this
loss of face stability is visually unnoticeable.

6.3. Quantitative comparison

We use the three quantitative metrics proposed in [14] to
evaluate the frame size preservation (Cropping), visual dis-
tortion (Distortion) and steadiness (Stability) of the stabiliza-
tion result. Note that since Steadiface [19] require gyroscope
information to stabilize the video, the quantitative compar-
ison with their method is conducted using their videos and
will be discussed in Fig. 10 B©.

In the left column of Fig. 9, we show the cropping metric
comparison. A larger value represents a larger frame size of
the stabilized result. Although [24] uses second order deriva-
tive objective, their frame size is limited by the motion of the
entire video. Our sliding window only warps the frames with
respect to the temporally local motion, so we are still able to
achieve similar cropping value while directly using the ex-
plicit motion loss in Eq. (3). The frame size of our result is
also significantly greater than [13], [21] and [14], since the
artifacts in their results often cause over-cropping in the final
video. Since [4] is based on frame interpolation, their crop-
ping score is by default equal to 1. However, [4] is essentially
an offline method requiring multiple iterations over the entire
video. In the following discussions, we will show that their
distortion and stability score is much worse than ours.

In the middle column of Fig. 9, we show the distortion
metric. This metric measures the anisotropic scaling of the
stabilized frame. A larger value indicates that the visual
appearance of the result is more similar to the input video.
Since we warp the frame with grid approximated moving
least squares, minimal anisotropic scale was introduced to
the result. The MeshFlow method [13] and bundled cam-

12042



Figure 10. Quantitative comparison with A© selfie video stabiliza-
tion [24] and B© Steadiface [19] using their datasets respectively.
The average values over the entire datasets are plotted. In all the
three metrics, a larger value indicates a better result.

era paths [14] introduces unexpected local distortion to the
frame, which leads to the negative impact on the distortion
value. The learning based methods [21] and [4] cannot gen-
eralize to selfie videos. They also produce visual artifacts that
lead to even worse distortion values comparing to optimiza-
tion based methods [13, 14].

The right column of Fig. 9 shows the stability metric com-
parison. A larger stability metric indicates a more stable re-
sult. This is the most important metric for video stabilization.
Comparing with the input (the yellow bar on the left of each
example), our method significantly increases the stability in
the result. Our method achieves a comparable result with the
optimization based method [24] with orders of magnitude im-
provement in stabilization speed. We also achieve better sta-
bility than [4, 13, 14, 21], which is expected since their visual
result is not satisfactory as shown in Fig. 8.

To further verify the performance of our method, we also
test our method on the selfie videos provided in [24] and [19].
Figure 10 shows the average values of the three metrics above
on the selfie video dataset proposed by A© [24] and B© [19].
Again, our result has a quantitative performance comparable
with [24]. Our method also performs better than [19] without
using the gyroscope information.

6.4. Stabilization Speed

Our code is written in Python and runs on a desktop com-
puter with an NVIDIA 2080Ti graphics card. On average, our
method uses 38ms to stabilize a frame of resolution 832x448,
which is equivalent to 26fps. The break down of runtime is
3ms for foreground mask detection, 7ms for the feature detec-
tor, 3ms for KLT tracking, 16ms for face mesh detection, 5ms
for stabilization network inference, less than 1ms for MLS
grid approximation and 4ms for frame warping. For other
video resolutions, we rescale the feature points to match our
frame size of 832x448. The only operation impacted is the
grid warping. However, since the warping is implemented on
the GPU, the difference is subtle, e.g. 4ms for HD(1280x720)
and 6ms for FHD(1920x1080). The overall speed is around
40ms/frame for HD and 42ms/frame for FHD. With frame
size 832x448, the average stabilization time of the compar-
ison methods(per frame) are: 4720ms for selfie video sta-
bilization [24], 392ms for bundled camera paths[14], 8ms
for Steadiface[19], 20ms for MeshFlow[13], 28ms for deep
online video stabilization[21], 67ms for deep iterative frame
interpolation[4]. Our method is nearly two orders of magni-
tude faster than the previous selfie video stabilization [24],
and nearly an order of magnitude faster than the traditional
optimization based general video stabilization [14]. Our
method is also nearly two times faster than the frame interpo-
lation method [4], since their network involves 2D convolu-
tions. Also note that [4] is an offline method requiring future

frames and multiple iterations through the entire video.

Although our method is slightly slower than Mesh-
Flow [13] and deep multi-grid warping [21], we have shown
in Sec. 6.2, Sec. 6.3 and supplementary video that our method
produces significantly better results than theirs. Our method
is also slower than Steadiface [19]. However, our method is
a purely software video stabilization and requires no gyro-
scope information, which is not available on some devices,
e.g., action cameras. In addition, since gyroscope informa-
tion does not provide direct image domain motion, our ap-
proach usually yields visually more stable results as we will
show in our supplementary video. As we discussed earlier
in Sec. 2, our method essentially more accurately models the
frame motion than Steadiface [19]. Therefore their method
does not generate comparable quality as our method. Also
note that our method also runs at a real-time speed without
any attempt to optimize the implementation. We believe that
the speed of our pipeline can be further improved by using
the GPU memory sharing between feature detection/tracking
and neural network operations to avoid repetitive data trans-
ferring between CPU and GPU.

6.5. Limitation

Our method fails if very few feature points are detected
in the background, since our method requires a reasonable
number of warp nodes to warp the frame. These cases in-
clude very dark environments, pure white walls and blue sky.
This is a common limitation for feature tracking based meth-
ods [5, 6, 10, 11, 14]. In our method, this can be solved by
replacing the feature tracking with the optical flow algorithm
with appropriate accuracy and real-time performance.

7. Conclusions and Future Work

In this paper, we proposed a real-time learning based selfie
video stabilization method that stabilizes the foreground and
background at the same time. Our method uses the face mesh
vertices to represent the motion of the foreground and the 2D
feature points as the means of background motion detection
and the warp nodes of the MLS warping. We designed a two
branch 1D linear convolutional neural network that directly
infers the warp nodes displacement from the feature points
and face vertices. We also propose a grid approximation to
the dense moving least squares that enables our method to
run at a real-time rate. Our method generates both visually
and quantitatively better results than previous real-time gen-
eral video stabilization methods and comparable results to the
previous selfie video stabilization method with a speed im-
provement of orders of magnitude.

Our work opens up the door to high-quality real-time sta-
bilization of selfie videos on mobile devices. Moreover, we
believe that our selfie video dataset will inspire and provide a
platform for a variety of graphics and vision research related
to face modeling and video processing. In the future, we
would explore the possibility of learning based selfie video
frame completion using our proposed selfie video dataset.

Acknowledgements. This work was funded by a Qualcomm
FMA Fellowship. We also acknowledge support from the
Ronald L. Graham chair and the UC San Diego Center for
Visual Computing.

12043



References

[1] Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Apos-
tol (Paul) Natsev, George Toderici, Balakrishnan Varadarajan,
and Sudheendra Vijayanarasimhan. Youtube-8m: A large-
scale video classification benchmark. In arXiv:1609.08675,
2016.

[2] P. Chao, C. Kao, Y. Ruan, C. Huang, and Y. Lin. Hardnet: A
low memory traffic network. In IEEE International Confer-
ence on Computer Vision (ICCV), 2019.

[3] Bao Xin Chen and John K Tsotsos. Fast visual object tracking
with rotated bounding boxes. In arXiv:1907.03892, 2019.

[4] Jinsoo Choi and In So Kweon. Deep iterative frame interpo-
lation for full-frame video stabilization. ACM Trans. Graph.,
39(1), Jan. 2020.

[5] Amit Goldstein and Raanan Fattal. Video stabilization using
epipolar geometry. ACM Trans. Graph., 31(5), Sept. 2012.

[6] Matthias Grundmann, Vivek Kwatra, and Irfan Essa. Auto-
directed video stabilization with robust l1 optimal camera
paths. In The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2011.

[7] Davis E. King. Dlib-ml: A machine learning toolkit. Journal
of Machine Learning Research, 10:1755–1758, 2009.

[8] V. Lempitsky, A. Vedaldi, and D. Ulyanov. Deep image prior.
In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[9] Yiming Lin, Shiyang Cheng, Jie Shen, and Maja Pantic. Mob-
iface: A novel dataset for mobile face tracking in the wild.
In The IEEE International Conference on Automatic Face and
Gesture Recognition (FG), 2019.

[10] Feng Liu, Michael Gleicher, Hailin Jin, and Aseem Agarwala.
Content-preserving warps for 3D video stabilization. ACM
Trans. Graph., 28(3), July 2009.

[11] Feng Liu, Michael Gleicher, Jue Wang, Hailin Jin, and Aseem
Agarwala. Subspace video stabilization. ACM Trans. Graph.,
30(1), Feb. 2011.

[12] S. Liu, M. Li, S. Zhu, and B. Zeng. Codingflow: Enable video
coding for video stabilization. IEEE Transactions on Image
Processing, 26(7):3291–3302, 2017.

[13] Shuaicheng Liu, Ping Tan, Lu Yuan, Jian Sun, and Bing Zeng.
Meshflow: Minimum latency online video stabilization. In
European Conference on Computer Vision (ECCV), 2016.

[14] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Bundled
camera paths for video stabilization. ACM Trans. Graph.,
32(4), July 2013.

[15] Shuaicheng Liu, Lu Yuan, Ping Tan, and Jian Sun. Steadyflow:
Spatially smooth optical flow for video stabilization. In The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2014.

[16] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional
networks for semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015.

[17] V. Nekrasov, Chunhua Shen, and I. Reid. Light-weight re-
finenet for real-time semantic segmentation. In The British
Machine Vision Conference (BMVC), 2018.

[18] Scott Schaefer, Travis McPhail, and Joe Warren. Image de-
formation using moving least squares. ACM Trans. Graph.,
25(3), July 2006.

[19] Fuhao Shi, Sung-Fang Tsai, Youyou Wang, and Chia-Kai
Liang. Steadiface: Real-time face-centric stabilization on mo-
bile phones. In IEEE International Conference on Image Pro-
cessing (ICIP), 2019.

[20] Jianbo Shi and Carlo Tomasi. Good features to track. In The
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 1994.

[21] M. Wang, G. Yang, J. Lin, S. Zhang, A. Shamir, S. Lu, and S.
Hu. Deep online video stabilization with multi-grid warping
transformation learning. IEEE Transactions on Image Pro-
cessing, 28(5):2283–2292, 2019.

[22] Yu-Shuen Wang, Feng Liu, Pu-Sheng Hsu, and Tong-Yee Lee.
Spatially and temporally optimized video stabilization. IEEE
Trans. Visual. and Comput. Graph., 19(8), Aug 2013.

[23] Sen-Zhe Xu, Jun Hu, Miao Wang, Tai-Jiang Mu, and Shi-Min
Hu. Deep Video Stabilization Using Adversarial Networks.
Computer Graphics Forum, 2018.

[24] Jiyang Yu and Ravi Ramamoorthi. Selfie video stabilization.
In European Conference on Computer Vision (ECCV), 2018.

[25] Jiyang Yu and Ravi Ramamoorthi. Robust video stabilization
by optimization in cnn weight space. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[26] Xiangyu Zhu, Xiaoming Liu, Zhen Lei, and Stan Z Li. Face
alignment in full pose range: A 3d total solution. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 41(1),
2019.

12044


