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Figure 1. Our SimPoE framework learns a kinematics-aware video-conditioned policy that controls a character in a physics simulator (Top)

and estimates accurate and physically-plausible human motion (Bottom).

Abstract

Accurate estimation of 3D human motion from monocu-

lar video requires modeling both kinematics (body motion

without physical forces) and dynamics (motion with phys-

ical forces). To demonstrate this, we present SimPoE, a

Simulation-based approach for 3D human Pose Estimation,

which integrates image-based kinematic inference and

physics-based dynamics modeling. SimPoE learns a policy

that takes as input the current-frame pose estimate and the

next image frame to control a physically-simulated charac-

ter to output the next-frame pose estimate. The policy con-

tains a learnable kinematic pose refinement unit that uses

2D keypoints to iteratively refine its kinematic pose estimate

of the next frame. Based on this refined kinematic pose,

the policy learns to compute dynamics-based control (e.g.,

joint torques) of the character to advance the current-frame

pose estimate to the pose estimate of the next frame. This

design couples the kinematic pose refinement unit with the

dynamics-based control generation unit, which are learned

jointly with reinforcement learning to achieve accurate and

physically-plausible pose estimation. Furthermore, we pro-

pose a meta-control mechanism that dynamically adjusts

the character’s dynamics parameters based on the charac-

ter state to attain more accurate pose estimates. Experi-

ments on large-scale motion datasets demonstrate that our

approach establishes the new state of the art in pose accu-

racy while ensuring physical plausibility.

1. Introduction

We aim to show that accurate 3D human pose estimation

from monocular video requires modeling both kinematics

and dynamics. Human dynamics, i.e., body motion model-

ing with physical forces, has gained relatively little atten-

tion in 3D human pose estimation compared to its coun-

terpart, kinematics, which models motion without physical

forces. There are two main reasons for the disparity be-

tween these two equally important approaches. First, kine-

matics is a more direct approach that focuses on the geo-

metric relationships of 3D poses and 2D images; it sidesteps

the challenging problem of modeling the physical forces un-

derlying human motion, which requires significant domain

knowledge about physics and control. Second, compared to

kinematic measurements such as 3D joint positions, phys-

ical forces present unique challenges in their measurement

and annotation, which renders standard supervised learn-

ing paradigms unsuitable. Thus, almost all state-of-the-art

methods [36, 59, 20, 19, 33] for 3D human pose estimation

from monocular video are based only on kinematics. Al-

though these kinematic methods can estimate human mo-

tion with high pose accuracy, they often fail to produce

physically-plausible motion. Without modeling the physics

of human dynamics, kinematic methods have no notion of

force, mass or contact; they also do not have the ability

to impose physical constraints such as joint torque limits

or friction. As a result, kinematic methods often generate
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physically-implausible motions with pronounced artifacts:

body parts (e.g., feet) penetrate the ground; the estimated

poses are jittery and vibrate excessively; the feet slide back

and forth when they should be in static contact with the

ground. All these physical artifacts significantly limit the

application of kinematic pose estimation methods. For in-

stance, jittery motions can be misleading for medical moni-

toring and sports training; physical artifacts also prevent ap-

plications in computer animation and virtual/augmented re-

ality since people are exceptionally good at discerning even

the slightest clue of physical inaccuracy [44, 12].

To improve the physical plausibility of estimated human

motion from video, recent work [22, 45, 47] has started to

adopt the use of dynamics in their formulation. These meth-

ods first estimate kinematic motion and then use physics-

based trajectory optimization to optimize the forces to in-

duce the kinematic motion. Although they can generate

physically-grounded motion, there are several drawbacks of

trajectory optimization-based approaches. First, trajectory

optimization entails solving a highly-complex optimization

problem at test time. This can be computationally inten-

sive and requires the batch processing of a temporal win-

dow or even the entire motion sequence, causing high la-

tency in pose predictions and making it unsuitable for inter-

active real-time applications. Second, trajectory optimiza-

tion requires simple and differentiable physics models to

make optimization tractable, which can lead to high approx-

imation errors compared to advanced and non-differentiable

physics simulators (e.g., MuJoCo [51], Bullet [8]). Fi-

nally and most importantly, the application of physics in

trajectory optimization-based methods is implemented as

a post-processing step that projects a given kinematic mo-

tion to a physically-plausible one. Since it is optimization-

based, there is no learning mechanism in place that tries to

match the optimized motion to the ground truth. As such,

the resulting motion from trajectory optimization can be

physically-plausible but still far from the ground-truth, es-

pecially when the input kinematic motion is inaccurate.

To address these limitations, we present a new approach,

SimPoE (Simulated Character Control for Human Pose

Estimation), that tightly integrates image-based kinematic

inference and physics-based dynamics modeling into a joint

learning framework. Unlike trajectory optimization, Sim-

PoE is a causal temporal model with an integrated physics

simulator. Specifically, SimPoE learns a policy that takes

the current pose and the next image frame as input, and pro-

duces controls for a proxy character inside the simulator that

outputs the pose estimate for the next frame. To perform

kinematic inference, the policy contains a learnable kine-

matic pose refinement unit that uses image evidence (2D

keypoints) to iteratively refine a kinematic pose estimate.

Concretely, the refinement unit takes as input the gradient

of keypoint reprojection loss, which encodes rich informa-

tion about the geometry of pose and keypoints, and out-

puts the kinematic pose update. Based on this refined kine-

matic pose, the policy then computes a character control ac-

tion, e.g., target joint angles for the character’s proportional-

derivative (PD) controllers, to advance the character state

and obtain the next-frame pose estimate. This policy de-

sign couples the kinematic pose refinement unit with the

dynamics-based control generation unit, which are learned

jointly with reinforcement learning (RL) to ensure both ac-

curate and physically-plausible pose estimation. At each

time step, a reward is assigned based on the similarity be-

tween the estimated motion and the ground truth. To further

improve pose estimation accuracy, SimPoE also includes a

new control mechanism called meta-PD control. PD con-

trollers are widely used in prior work [42, 39, 61] to convert

the action produced by the policy into the joint torques that

control the character. However, the PD controller parame-

ters typically have fixed values that require manual tuning,

which can produce sub-optimal results. Instead, in meta-

PD control, SimPoE’s policy is also trained to dynamically

adjust the PD controller parameters across simulation steps

based on the state of the character to achieve a finer level of

control over the character’s motion.

We validate our approach, SimPoE, on two large-scale

datasets, Human3.6M [14] and an in-house human mo-

tion dataset that also contains detailed finger motion. We

compare SimPoE against state-of-the-art monocular 3D hu-

man pose estimation methods including both kinematic and

physics-based approaches. On both datasets, SimPoE out-

performs previous art in both pose-based and physics-based

metrics, with significant pose accuracy improvement over

prior physics-based methods. We further conduct extensive

ablation studies to investigate the contribution of our pro-

posed components including the kinematic refinement unit,

meta-PD control, as well as other design choices.

The main contributions of this paper are as follows:

(1) We present a joint learning framework that tightly inte-

grates image-based kinematic inference and physics-based

dynamics modeling to achieve accurate and physically-

plausible 3D human pose estimation from monocular video.

(2) Our approach is causal, runs in real-time without batch

trajectory optimization, and addresses several drawbacks of

prior physics-based methods. (3) Our proposed meta-PD

control mechanism eliminates manual dynamics parameter

tuning and enables finer character control to improve pose

accuracy. (4) Our approach outperforms previous art in both

pose accuracy and physical plausibility. (5) We perform ex-

tensive ablations to validate the proposed components to es-

tablish good practices for RL-based human pose estimation.

2. Related Work

Kinematic 3D Human Pose Estimation. Numerous prior

works estimate 3D human joint locations from monoc-
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ular video using either two-stage [9, 43, 38] or end-to-

end [28, 27] frameworks. On the other hand, parametric hu-

man body models [2, 25, 36] are widely used as the human

pose representation since they additionally provide skele-

tal joint angles and a 3D body mesh. Optimization-based

methods have been used to fit the SMPL body model [25]

to 2D keypoints extracted from an image [5, 21]. Alter-

natively, regression-based approaches use deep neural net-

works to directly regress the parameters of the SMPL model

from an image [52, 50, 37, 34, 16, 10], using weak super-

vision from 2D keypoints [52, 50, 16] or body part seg-

mentation [34, 37]. Song et al. [48] propose neural gra-

dient descent to fit the SMPL model using 2D keypoints.

Regression-based [16] and optimization-based [5] methods

have also been combined to produce pseudo ground truth

from weakly-labeled images [20] to facilitate learning. Re-

cent work [3, 13, 17, 49, 19, 26] starts to exploit the tem-

poral structure of human motion to estimate smooth mo-

tion. Kanazawa et al. [17] model human kinematics by

predicting past and future poses. Transformers [53] have

also been used to improve the temporal modeling of hu-

man motion [49]. All the aforementioned methods disre-

gard human dynamics, i.e., the physical forces that generate

human motion. As a result, these methods often produce

physically-implausible motions with pronounced physical

artifacts such as jitter, foot sliding, and ground penetration.

Physics-Based Human Pose Estimation. A number of

works have addressed human dynamics for 3D human pose

estimation. Most prior works [6, 57, 55, 63, 61, 45, 47]

use trajectory optimization to optimize the physical forces

to induce the human motion in a video. As discussed in

Sec. 1, trajectory optimization is a batch procedure which

has high latency and is typically computationally expensive,

making it unsuitable for real-time applications. Further-

more, these methods cannot utilize advanced physics simu-

lators with non-differentiable dynamics. Most importantly,

there is no learning mechanism in trajectory optimization-

based methods that tries to match the optimized motion to

the ground truth. Our approach addresses these drawbacks

with a framework that integrates kinematic inference with

RL-based character control, which runs in real-time, is com-

patible with advanced physics simulators, and has learn-

ing mechanisms that aim to match the output motion to the

ground truth. Although prior work [60, 61, 15] has used RL

to produce simple human locomotions from videos, these

methods only learn policies that coarsely mimic limited

types of motion instead of precisely tracking the motion pre-

sented in the video. In contrast, our approach can achieve

accurate pose estimation by integrating images-based kine-

matic inference and RL-based character control with the

proposed policy design and meta-PD control.

Reinforcement Learning for Character Control. Deep

RL has become the preferred approach for learning char-

acter control policies with manually-designed rewards [23,

24, 39, 41]. GAIL [11] based methods are proposed to

learn character control without reward engineering [31, 56].

To produce long-term behaviors, prior work has used hi-

erarchical RL to control characters to achieve high-level

tasks [30, 29, 40, 32]. Recent work also uses deep RL to

learn user-controllable policies from motion capture data

for character animation [4, 35, 58]. Prior work in this do-

main learns control policies that reproduce training mo-

tions, but the policies do not transfer to unseen test motions,

nor do they estimate motion from video as our method does.

3. Approach

The overview of our SimPoE (Simulated Character

Control for Human Pose Estimation) framework is illus-

trated in Fig. 2. The input to SimPoE is a video I1:T =
(I1, . . . , IT ) of a person with T frames. For each frame It,

we first use an off-the-shelf kinematic pose estimator to esti-

mate an initial kinematic pose q̃t, which consists of the joint

angles and root translation of the person; we also extract

2D keypoints qxt and their confidence ct from It using a

given pose detector (e.g., OpenPose [7])). As the estimated

kinematic motion q̃1:T = (q̃1, . . . , q̃T ) is obtained with-

out modeling human dynamics, it often contains physically-

implausible poses with artifacts like jitter, foot sliding, and

ground penetration. This motivates the main stage of our

method, simulated character control, where we model hu-

man dynamics with a proxy character inside a physics sim-

ulator. The character’s initial pose q1 is set to q̃1. At each

time step t shown in Fig. 2 (b), SimPoE learns a policy that

takes as input the current character pose qt, velocities q̇t, as

well as the next frame’s kinematic pose q̃t+1 and keypoints

(qxt+1, ct+1) to produce an action that controls the character

in the simulator to output the next pose qt+1. By repeating

this causal process, we obtain the physically-grounded esti-

mated motion q1:T = (q1, . . . , qT ) of SimPoE.

3.1. Automated Character Creation

The character we use as a proxy to simulate human mo-

tion is created from skinned human mesh models, e.g., the

SMPL model [25], which can be recovered via SMPL-based

pose estimation methods such as VIBE [19]. These skinned

mesh models provide a skeleton of B bones, a mesh of V
vertices, and a skinning weight matrix W ∈ R

V×B where

each element Wij specifies the influence of the j-th bone’s

transformation on the i-th vertex’s position. We can obtain a

rigid vertex-to-bone association A ∈ R
V by assigning each

vertex i to the bone with the largest skinning weight for it:

Ai = argmaxj Wij . With the vertex-to-bone association

A, we can then create the geometry of each bone by com-

puting the 3D convex hull of all the vertices assigned to the

bone. Assuming constant density, the mass of each bone is

determined by the volume of its geometry. Our character
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Figure 2. Overview of our SimPoE framework. (a) SimPoE is a physics-based causal temporal model. (b) At each frame (30Hz), the

policy network Fθ use the current pose q
t
, velocities q̇

t
, and the next frame’s estimated kinematic pose q̃

t+1 and keypoints (qxt+1, ct+1)
to generate an action at, which controls the character in the physics simulator (450Hz) via PD controllers to produce the next pose q

t+1.

(c) The policy network Fθ outputs the mean action at , (ut,ηt
,λ

p

t ,λ
d

t ). The kinematic refinement unit iteratively refines a kinematic

pose estimate by learning pose updates. The refined pose q̃
(n)
t+1 is used by the control generation unit to produce the mean action at.

creation process is fully automatic, is compatible with pop-

ular body mesh models (e.g., SMPL), and ensures proper

body geometry and mass assignment.

3.2. Simulated Character Control

The task of controlling a character agent in physics simu-

lation to generate desired human motions can be formulated

as a Markov decision process (MDP), which is defined by a

tuple M = (S,A, T , R, γ) of states, actions, transition dy-

namics, a reward function, and a discount factor. The char-

acter agent interacts with the physics simulator according to

a policy π(at|st), which models the conditional distribution

of choosing an action at ∈ A given the current state st ∈ S
of the agent. Starting from some initial state s1, the char-

acter agent iteratively samples an action at from the policy

π and the simulation environment with transition dynamics

T (st+1|st,at) generates the next state st+1 and gives the

agent a reward rt. The reward is assigned based on how well

the character’s motion aligns with the ground-truth human

motion. The goal of our character control learning process

is to learn an optimal policy π∗ that maximizes the expected

return J(π) = Eπ [
∑

t γ
trt] which translates to imitating

the ground-truth motion as closely as possible. We apply

a standard reinforcement learning algorithm (PPO [46]) to

solve for the optimal policy. In the following, we provide a

detailed description of the states, actions and rewards of our

control learning process. We then use a dedicated Sec. 3.3

to elaborate on our policy design.

States. The character state st , (qt, q̇t, q̃t+1, qxt+1, ct+1)
consists of the character’s current pose qt, joint velocities

(time derivative of the pose) q̇t, as well as the estimated

kinematic pose q̃t+1, 2D keypoints qxt+1 and keypoint con-

fidence ct+1 of the next frame. The state includes informa-

tion of both the current frame (qt, q̇t) and next frame (q̃t+1,

qxt+1,ct+1), so that the agent learns to take the right action

at to transition from the current pose qt to a desired next

pose qt+1, i.e., pose close to the ground truth.

Actions. The policy π(at|st) runs at 30Hz, the input

video’s frame rate, while our physics simulator runs at

450Hz to ensure stable simulation. This means one policy

step corresponds to 15 simulation steps. One common de-

sign of the policy’s action at is to directly output the torques

τ t to be applied at each joint (except the root), which are

used repeatedly by the simulator during the 15 simulation

steps. However, finer control can be achieved by adjusting

the torques at each step based on the state of the character.

Thus, we follow prior work [42, 61] and use proportional-

derivative (PD) controllers at each non-root joint to produce

torques. With this design, the action at includes the target

joint angles ut of the PD controllers. At the j-th of the

15 simulation (PD controller) steps, the joint torques τ t are

computed as

τ t = kp ◦ (ut − qnrt )− kd ◦ q̇
nr
t , (1)

where kp and kd are the parameters of the PD controllers,

qnrt and q̇nrt denote the joint angles and velocities of non-

root joints at the start of the simulation step, and ◦ denotes

element-wise multiplication. The PD controllers act like

damped springs that drive joints to target angles ut, where

kp and kd are the stiffness and damping of the springs. In

Sec. 3.4, we will introduce a new control mechanism, meta-

PD control, that allows kp and kd to be dynamically ad-

justed by the policy to achieve an even finer level of char-

acter control. With Meta-PD control, the action at includes

elements λp
t and λd

t for adjusting kp and kd respectively.

As observed in prior work [62], allowing the policy to apply

external residual forces to the root greatly improves the ro-
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bustness of character control. Thus, we also add the residual

forces and torques ηt of the root into the action at. Overall,

the action is defined as at , (ut,ηt,λ
p
t ,λ

d
t ).

Rewards. In order to learn the policy, we need to define a

reward function that encourages the motion q1:T generated

by the policy to match the ground-truth motion q̂1:T . Note

that we use ·̂ to denote ground-truth quantities. The reward

rt at each time step is defined as the multiplication of four

sub-rewards:

rt = rpt · rvt · rjt · rkt . (2)

The pose reward rpt measures the difference between the

local joint orientations o
j
t and the ground truth ô

j
t :

rpt = exp


−αp




J∑

j=1

‖oj
t ⊖ ô

j
t‖

2




 , (3)

where J is the total number of joints, ⊖ denotes the relative

rotation between two rotations, and ‖ · ‖ computes the rota-

tion angle. The velocity reward rvt measures the mismatch

between joint velocities q̇t and the ground truth ̂̇qt:

rvt = exp
[
−αv‖q̇t − ̂̇qt‖

2
]
. (4)

The joint position reward rjt encourages the 3D world joint

positions X
j
t to match the ground truth X̂

j

t :

rjt = exp


−αj




J∑

j=1

‖Xj
t − X̂

j

t‖
2




 . (5)

Finally, the keypoint reward rkt pushes the 2D image pro-

jection x
j
t of the joints to match the ground truth x̂

j
t :

rkt = exp


−αk




J∑

j=1

‖xj
t − x̂

j
t‖

2




 . (6)

Note that the orientations o
j
t , 3D joint positions X

j
t and 2D

image projections x
j
t are functions of the pose qt. The joint

velocities q̇t are computed via finite difference. There are

also weighting factors αp, αv, αj, αk inside each reward.

These sub-rewards complement each other by matching dif-

ferent features of the generated motion to the ground-truth:

joint angles, velocities, as well as 3D and 2D joint posi-

tions. Our reward design is multiplicative, which eases pol-

icy learning as noticed by prior work [58]. The multipli-

cation of the sub-rewards ensures that none of them can be

overlooked in order to achieve a high reward.

3.3. Kinematics­Aware Policy

As the action at is continuous, we adopt a parametrized

Gaussian policy πθ(at|st) = N (at,Σ) where the mean

at , (ut,ηt,λ
p

t ,λ
d

t ) is output by a neural network Fθ with

parameters θ, and Σ is a fixed diagonal covariance matrix

whose elements are treated as hyperparameters. The noise

inside the Gaussian policy governed by Σ allows the agent

to explore different actions around the mean action at and

use these explorations to improve the policy during training.

At test time, the noise is removed and the character agent

always takes the mean action at to improve performance.

Now let us focus on the design of the policy network Fθ

that maps the state st to the mean action at. Based on the

design of st, the mapping can be written as

at = Fθ

(
qt, q̇t, q̃t+1, qxt+1, ct+1

)
. (7)

Recall that q̃t+1 is the kinematic pose, qxt+1 and ct+1 are

the detected 2D keypoints and their confidence, and that

they are all information about the next frame. The over-

all architecture of our policy network Fθ is illustrated in

Fig. 2 (c). The components (ut,ηt,λ
p

t ,λ
d

t ) of the mean ac-

tion at are computed as follows:

q̃
(n)
t+1 = Rθ

(
q̃t+1, qxt+1, ct+1

)
, (8)

(δut,ηt,λ
p

t ,λ
d

t ) = Gθ

(
q̃
(n)
t+1, qt, q̇t

)
, (9)

ut = q̃
(n)
t+1 + δut . (10)

In Eq. (8), Rθ is a kinematic refinement unit that iteratively

refines the kinematic pose q̃t+1 using the 2D keypoints

qxt+1 and confidence ct+1, and q̃
(n)
t+1 is the refined pose af-

ter n iterations of refinement. Eq. (9) and (10) describe a

control generation unit Gθ that maps the refined pose q̃
(n)
t+1,

current pose qt and velocities q̇t to the components of the

mean action at. Specifically, the control generation unit Gθ

includes a hand-crafted feature extraction layer, a normal-

ization layer (based on running estimates of mean and vari-

ance) and another MLP Vθ, as illustrated in Fig. 2 (c). As

described in Eq. (10), an important design of Gθ is a resid-

ual connection that produces the mean PD controller target

angles ut using the refined kinematic pose q̃
(n)
t+1, where we

ignore the root angles and positions in q̃
(n)
t+1 for ease of nota-

tion. This design builds in proper inductive bias since q̃
(n)
t+1

provides a good guess for the desired next pose qt+1 and

thus a good base value for ut. It is important to note that

the PD controller target angles ut do not translate to the

same next pose qt+1 of the character, i.e., qt+1 6= ut. The

reason is that the character is subject to gravity and contact

forces, and under these external forces the joint angles qt+1

will not be ut when the PD controllers reach their equilib-

rium. As an analogy, since PD controllers act like springs,

a spring will reach a different equilibrium position when

you apply external forces to it. Despite this, the next pose

qt+1 generally will not be far away from ut and learning

the residual δut to q̃
(n)
t+1 is easier than learning from scratch

as we will demonstrate in the experiments. This design also

synergizes the kinematics of the character with its dynam-

ics as the kinematic pose q̃
(n)
t+1 is now tightly coupled with
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the input of the character’s PD controllers that control the

character in the physics simulator.

Kinematic Refinement Unit. The kinematic refinement

unit Rθ is formed by an MLP Uθ that maps a feature vector

z (specific form will be described later) to a pose update:

δq̃
(i)
t+1 = Uθ (z) , (11)

q̃
(i+1)
t+1 = q̃

(i)
t+1 + δq̃

(i)
t+1 , (12)

where i denotes the i-th refinement iteration and q̃
(0)
t+1 =

q̃t+1. To fully leverage the 2D keypoints and kinematic

pose at hand, we design the feature z to be the gradient

of the keypoint reprojection loss with respect to current 3D

joint positions, inspired by recent work [48] on kinematic

body fitting. The purpose of using the gradient is not to

minimize the reprojection loss, but to use it as an informa-

tive kinematic feature to learn a pose update that eventually

results in stable and accurate control of the character; there

is no explicit minimization of the reprojection loss in our

formulation. Specifically, we first obtain the 3D joint posi-

tions X̃t+1 = FK(q̃
(i)
t+1) through forward kinematics and

then compute the reprojection loss as

L(X̃t+1) =

J∑

j=1

∥∥∥Π
(
X̃

j

t+1

)
− qx

j
t+1

∥∥∥
2

· cjt+1 , (13)

where X̃
j

t+1 denotes the j-th joint position in X̃t+1, Π(·)

denotes the perspective camera projection, and (qx
j
t+1, c

j
t+1)

are the j-th detected keypoint and its confidence. The gra-

dient feature z , ∂L/∂X̃t+1 is informative about the kine-

matic pose q̃
(i)
t+1 as it tells us how each joint should move

to match the 2D keypoints qx
j
t+1. It also accounts for key-

point uncertainty by weighting the loss with the keypoint

confidence cjt+1. Note that z is converted to the character’s

root coordinate to be invariant of the character’s orientation.

The refinement unit integrates kinematics and dynamics as

it utilizes a kinematics-based feature z to learn the update of

a kinematic pose, which is used to produce dynamics-based

control of the character. The joint learning of the kinematic

refinement unit Rθ and the control generation unit Gθ en-

sures accurate and physically-plausible pose estimation.

Feature Extraction Layer. After refinement, the control

generation unit Gθ needs to extract informative features

from its input to output an action that advances the char-

acter from the current pose qt to the next pose qt+1. To this

end, the feature extraction layer uses information from both

the current frame and next frame. Specifically, the extracted

feature includes qt, q̇t, the current 3D joint positions Xt,

the pose difference vector between qt and the refined kine-

matic pose q̃
(n)
t+1, and the difference vector between Xt and

the next-frame joint position X̃t+1 computed from q̃
(n)
t+1.

All features are converted to the character’s root coordinate

to be orientation-invariant and encourage robustness against

variations in absolute pose encountered at test time.

3.4. Meta­PD control

PD controllers are essential in our approach as they relate

the kinematics and dynamics of the character by converting

target joint angles in pose space to joint torques. However,

an undesirable aspect of PD controllers is the need to spec-

ify the parameters kp and kd for computing the joint torques

τ t as described in Eq. (1). It is undesirable because (i) man-

ual parameter tuning requires significant domain knowledge

and (ii) even carefully designed parameters can be subopti-

mal. The difficulty, here, lies in balancing the ratio between

kp and kd. Large ratios can lead to unstable and jittery

motion while small values can result in motion that is too

smooth and lags behind ground truth.

Motivated by this problem, we propose meta-PD con-

trol, a method that allows the policy to dynamically adjust

kp and kd based on the state of the character. Specifically,

given some initial values k′

p and k′

d, the policy outputs λp
and λd as additional elements of the action at that act to

scale k′

p and k′

d. Moreover, we take this idea one step

further and let the policy output two sequences of scales

λp
t = (λpt1, . . . , λ

p
tm) and λd

t = (λdt1, . . . , λ
d
tm) where

m = 15 corresponds to the number of PD controller (simu-

lation) steps during a policy step. The PD controller param-

eters kp and kd at the j-th step of the 15 PD controller steps

are then computed as follows:

kp = λptjk
′

p, kd = λdtjk
′

d . (14)

Instead of using fixed kp and kd, meta-PD control allows

the policy to plan the scaling of kp and kd through the 15

PD controller steps to have more granular control over the

torques produced by the PD controllers, which in turn en-

ables a finer level of character control. With meta-PD con-

trol, the action at is now defined as at , (ut,ηt,λ
p
t ,λ

d
t ).

4. Experiments

Datasets. We perform experiments on two large-scale hu-

man motion datasets. The first dataset is Human3.6M [14],

which includes 7 annotated subjects captured at 50Hz and

a total of 1.5 million training images. Following prior

work [20, 19, 33], we train our model on 5 subjects (S1, S5,

S6, S7, S8) and test on the other 2 subjects (S9, S11). We

subsample the dataset to 25Hz for both training and testing.

The second dataset we use is an in-house human motion

dataset that also contains detailed finger motion. It consists

of 3 subjects captured at 30Hz performing various actions

from free body motions to natural conversations. There are

around 335k training frames and 87k test frames. Our in-

house dataset has complex skeletons with twice more joints

than the SMPL model, including fingers. The body shape

variation among subjects is also greater than that of SMPL,

which further evaluates the robustness of our approach.
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Figure 3. Visualization of estimated poses in the camera view and an alternative view. SimPoE estimates more accurate poses and foot

contact. Pose mismatch and ground penetration are highlighted with boxes. Please see the supplementary video for more comparisons.

Metrics. We use both pose-based and physics-based met-

rics for evaluation. To assess pose accuracy, we report mean

per joint position error (MPJPE) and Procrustes-aligned

mean per joint position error (PA-MPJPE). We also use

three physics-based metrics that measure jitter, foot sliding,

and ground penetration, respectively. For jitter, we compute

the difference in acceleration (Accel) between the predicted

3D joint and the ground-truth. For foot sliding (FS), we find

body mesh vertices that contact the ground in two adjacent

frames and compute their average displacement within the

frames. For ground penetration (GP), we compute the av-

erage distance to the ground for mesh vertices below the

ground. The units for these metrics are millimeters (mm)

except for Accel (mm/frame2). MPJPE, PA-MPJPE and

Accel are computed in the root-centered coordinate.

4.1. Implementation Details.

Character Models. We use MuJoCo [51] as the physics

simulator. For the character creation process in Sec. 3.1,

we use VIBE [19] to recover an SMPL model for each sub-

ject in Human3.6M. Each MuJoCo character created from

the SMPL model has 25 bones and 76 degrees of free-

dom (DoFs). For our in-house motion dataset, we use non-

rigid ICP [1] and linear blend skinning [18] to reconstruct a

skinned human mesh model for each subject. Each of these

models has fingers and includes 63 bones and 114 DoFs.

Initialization. For Human3.6M, we use VIBE to provide

the initial kinematic motion q̃1:T . For our in-house motion

dataset, since our skinned human models have more com-

plex skeletons and meshes than the SMPL model, we de-

velop our own kinematic pose estimator, which is detailed

Human3.6M

Method Physics MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

VIBE [19] ✗ 61.3 43.1 15.2 15.1 12.6

NeurGD* [48] ✗ 57.3 42.2 14.2 16.7 24.4

PhysCap [47] ✓ 113.0 68.9 - - -

EgoPose [61] ✓ 130.3 79.2 31.3 5.9 3.5

SimPoE (Ours) ✓ 56.7 41.6 6.7 3.4 1.6

In-House Motion Dataset

Method Physics MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

KinPose ✗ 49.7 40.4 12.8 6.4 3.9

NeurGD* [48] ✗ 36.7 30.9 16.2 7.7 3.6

EgoPose [61] ✓ 202.2 131.4 32.6 2.2 0.5

SimPoE (Ours) ✓ 26.6 21.2 8.4 0.5 0.1

Table 1. Results of pose-based (MPJPE, PA-MPJPE) and physics-

based (Accel, FS, GP) metrics on Human3.6M and our in-house

motion dataset. Symbol “-” means results are not available and “*”

means self-implementation (better results than the original paper).

in the supplementary materials. To recover the global root

position of the person, we assume the camera intrinsic pa-

rameters are calibrated and optimize the root position by

minimizing the reprojection loss of 2D keypoints, similar to

the kinematic initialization in [47].

Other Details. The kinematic refinement unit in the pol-

icy network refines the kinematic pose n = 5 times. To

facilitate learning, we first pretrain the refinement unit with

supervised learning using an MSE loss on the refined kine-

matic pose. The normalization layer in the policy computes

the running average of the mean and variance of the input

feature during training, and uses it to produce a normalized

feature. Our learned policy runs at 38 FPS on a standard

PC with an Intel Core i9 Processor. More implementation
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Method
Human3.6M In-House Motion Dataset

MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓ MPJPE ↓ PA-MPJPE ↓ Accel ↓ FS ↓ GP ↓

w/o Meta-PD 59.9 44.7 5.9 2.2 1.4 39.8 31.7 7.1 0.4 0.1

w/o Refine 61.2 43.5 8.0 3.4 2.0 47.9 38.9 9.6 0.6 0.1

w/o ResAngle 68.7 51.0 6.4 4.1 2.1 193.4 147.6 6.5 0.9 0.3

w/o ResForce 115.2 65.1 23.5 6.1 3.2 48.4 31.3 12.5 0.9 0.3

w/o FeatLayer 81.4 47.6 9.3 5.0 1.8 36.9 27.5 9.5 0.6 0.1

SimPoE (Ours) 56.7 41.6 6.7 3.4 1.6 26.6 21.2 8.4 0.5 0.1

Table 2. Ablation studies on Human3.6M and our in-house motion dataset.

0 1 2 3 4 5
Number of Refinement Iterations

57

58

59

60

61

M
PJ

PE

Human3.6M

Figure 4. Effect of refinement unit.

details such as training procedures and hyperparameter set-

tings can be found in the supplementary materials.

4.2. Comparison to state­of­the­art methods

We compare SimPoE against state-of-the-art monocu-

lar 3D human pose estimation methods, including both

kinematics-based (VIBE [19], NeurGD [48]) and physics-

based (PhysCap [47], EgoPose [61]) approaches. The re-

sults of VIBE and EgoPose are obtained using their pub-

licly released code and models. As PhysCap and NeurGD

have not released their code, we directly use the reported

results on Human3.6M from the PhysCap paper and im-

plement our own version of NeurGD. Table 1 summarizes

the quantitative results on Human3.6M and the in-house

motion dataset. On Human3.6M, we can observe that our

method, SimPoE, outperforms previous methods in pose ac-

curacy as indicated by the smaller MPJPE and PA-MPJPE.

In particular, SimPoE shows large pose accuracy improve-

ments over state-of-the-art physics-based approaches (Ego-

Pose [61] and PhysCap [47]), reducing the MPJPE almost

by half. For physics-based metrics (Accel, FS and GP),

SimPoE also outperforms prior methods by large margins.

It means that SimPoE significantly reduces the physical ar-

tifacts – jitter (Accel), foot sliding (FS), and ground pen-

etration (GP), which particularly deteriorate the results of

kinematic methods (VIBE [19] and NeurGD [48]). On the

in-house motion dataset, SimPoE again outperforms previ-

ous methods in terms of both pose-based and physics-based

metrics. In the table, KinPose denotes our own kinematic

pose estimator used by SimPoE. We note that the large ac-

celeration error (Accel) of EgoPose is due to the frequent

falling of the character, which is a common problem in

physics-based methods since the character can lose balance

when performing agile motions. The learned policy of Sim-

PoE is robust enough to stably control the character without

falling, which prevents irregular accelerations.

We also provide qualitative comparisons in Fig. 3, where

we show the estimated poses in the camera view and the

same poses rendered from an alternative view. The alterna-

tive view shows that SimPoE can estimate foot contact with

the ground more accurately and without penetration. As the

quality and physical plausibility of the estimated motions

are best seen in videos, please refer to the supplementary

video for additional qualitative results and comparisons.

4.3. Ablation Studies

To further validate our proposed approach, we conduct

extensive ablation studies to investigate the contribution of

each proposed component to the performance. Table 2 sum-

marizes the results where we train different variants of Sim-

PoE by removing a single component each time. First, we

can observe that both meta-PD control and the kinematic re-

finement unit contribute to better pose accuracy as indicated

by the corresponding ablations (w/o Meta-PD and w/o Re-

fine). Second, the ablation (w/o ResAngle) shows that it

is important to have the residual connection in the policy

network for producing the mean PD controller target angles

ut. Next, the residual forces ηt we use in action at are also

indispensable as demonstrated by the drop in performance

of the variant (w/o ResForce). Without the residual forces,

the policy is not robust and the character often falls down as

indicated by the large acceleration error (Accel). Finally, it

is evident from the ablation (w/o FeatLayer) that our feature

extraction layer in the policy is also instrumental, because it

extracts informative features of both the current frame and

next frame to learn control that advances the character to the

next pose. We also perform ablations to investigate how the

number of refinement iterations in the policy affects pose

accuracy. As shown in Fig. 4, the performance gain satu-

rates around 5 refinement iterations.

5. Discussion and Future Work

In this work, we demonstrate that modeling both kine-

matics and dynamics improves the accuracy and physical

plausibility of 3D human pose estimation from monocular

video. Our approach, SimPoE, unifies kinematics and dy-

namics by integrating image-based kinematic inference and

physics-based character control into a joint reinforcement

learning framework. It runs in real-time, is compatible with

advanced physics simulators, and addresses several draw-

backs of prior physics-based approaches.

However, due to its physics-based formulation, SimPoE

depends on 3D scene modeling to enforce contact con-

straints during motion estimation. This hinders direct eval-

uation on in-the-wild datasets, such as 3DPW [54], which

includes motions such as climbing stairs or even trees. Fu-

ture work may include integration of video-based 3D scene

reconstruction to address this limitation.
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