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Abstract

Unsupervised Domain Adaptation (UDA) transfers pre-

dictive models from a fully-labeled source domain to an

unlabeled target domain. In some applications, however,

it is expensive even to collect labels in the source do-

main, making most previous works impractical. To cope

with this problem, recent work performed instance-wise

cross-domain self-supervised learning, followed by an ad-

ditional fine-tuning stage. However, the instance-wise self-

supervised learning only learns and aligns low-level dis-

criminative features. In this paper, we propose an end-

to-end Prototypical Cross-domain Self-Supervised Learn-

ing (PCS) framework for Few-shot Unsupervised Domain

Adaptation (FUDA)1. PCS not only performs cross-domain

low-level feature alignment, but it also encodes and aligns

semantic structures in the shared embedding space across

domains. Our framework captures category-wise seman-

tic structures of the data by in-domain prototypical con-

trastive learning; and performs feature alignment through

cross-domain prototypical self-supervision. Compared with

state-of-the-art methods, PCS improves the mean classifi-

cation accuracy over different domain pairs on FUDA by

10.5%, 3.5%, 9.0%, and 13.2% on Office, Office-Home,

VisDA-2017, and DomainNet, respectively.

1. Introduction

Deep Learning has achieved remarkable performance in

various computer vision tasks, such as image classifica-

tion [30, 32] and semantic segmentation [43, 77, 8]. De-

spite high accuracy, deep neural networks trained on spe-

cific datasets often fail to generalize to new domains owing

to the domain shift problem [66, 15, 67]. Unsupervised do-

main adaptation (UDA) transfers predictive models from a

fully-labeled source domain to an unlabeled target domain.

Although it is challenging with no label information in the
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Figure 1: We address the task of few-shot unsupervised domain

adaptation. Top: Existing domain-classifier based methods align

source and target distributions but fail to extract discriminative fea-

tures due to lack of labeled data. Bottom: Our method estimates

prototypes for in-domain and cross-domain self-supervised learn-

ing to extract domain-aligned discriminative features.

target domain, many UDA methods [67, 31, 44, 18] could

achieve high accuracy on the target domain using the abun-

dant explicit supervision in source domain, together with

the unlabeled target samples for domain alignment.

In some real-world applications, however, providing

large-scale annotations even in the source domain is often

challenging due to the high cost and difficulty of annotation.

Taking medical imaging for instance, each image of the Di-

abetic Retinopathy dataset [28] is annotated by a panel of

7 or 8 U.S. board-certified ophthalmologists, with a total

group of 54 doctors. Thus practically it is too stringent to

assume the availability of source data with abundant labels.

In this paper, to cope with the labeling costs of the

source domain, we instead consider a few-shot unsuper-

vised domain adaptation (FUDA) setting, where only an ex-

tremely small fraction of source samples are labeled, while
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all the rest source and target samples remain unlabeled.

Most state-of-the-art UDA methods align source and tar-

get features by minimizing some form of distribution dis-

tances [44, 45, 63, 18], and learn the discriminative rep-

resentation by minimizing the supervision loss on fully-

labeled source domain data. In FUDA, however, since we

have a very limited number of labeled source samples, it is

much harder to learn discriminative features in the source

domain, not to mention in the target domain.

Several recent papers [29, 10, 27, 52, 72] on self-

supervised learning (SSL) present promising representation

learning results on images from a single domain and [39]

further extended to perform SSL across two domains for

better domain adaptation performance. Despite the im-

proved performance, the instance-based method in [39] has

some fundamental weaknesses. First, the semantic structure

of the data is not encoded by the learned structure. This is

because the in-domain self-supervision in [39] treats two

instances as negative pairs as long as they are from differ-

ent samples, regardless of the semantic similarity. Conse-

quently, many instances sharing the same semantic are un-

desirably pushed apart in the feature space. Second, the

cross-domain instance-to-instance matching in [39] is very

sensitive to abnormal samples. Imagine a case where the

embeddings of source and target samples are far apart (i.e.

the domain gap is large) and one abnormal source sample

is mapped closer to all target samples than any other source

sample. Then the method in [39] would match all target

samples to the same source sample (cf. Figure 3). For a

given sample, the matched sample in the other domain may

change drastically during the training procedure, making

the optimization harder to converge. Third, the two-stage

pipeline (i.e. SSL followed by domain adaptation) is com-

plicated and experiments show that the optimal DA methods

for different datasets are different. As a result, the training

is rather cumbersome and it is unclear how to choose the op-

timal DA method in the second stage for different datasets.

In this paper, we propose Prototypical Cross-domain

Self-supervised learning, a novel single-stage framework

for FUDA that unifies representation learning and domain

alignment with few-shot labeled source samples. PCS con-

tains three major components to learn both discriminative

and domain-invariant features. First, PCS performs in-

domain prototypical self-supervision to implicitly encode

the semantic structure of data into the embedding space.

This is motivated by [41], but we further leverage the known

semantic information of the task and learn better seman-

tic structure in each domain. Second, PCS performs cross-

domain instance-to-prototype matching to transfer knowl-

edge from source to the target in a more robust manner. In-

stead of instance-to-instance matching, matching a sample

to a prototype (i.e. representative embedding for a group

of instances that are semantically similar) is more robust

to abnormal instances in the other domain and makes the

optimization converge faster and more smoothly. Third,

PCS unifies prototype learning with cosine classifier and

update cosine classifier adaptively with source and target

prototypes. transfers from source prototypes to target proto-

types for better performance on the target domain. In order

to further mitigate the effect of cross-domain mismatching,

we perform entropy maximization to obtain a more diversi-

fied output. We show that together with entropy minimiza-

tion, this is equivalent to maximizing the mutual informa-

tion (MI) between input image and the network prediction.

To summarize, our contributions are three-fold:

• We propose a novel Prototypical Cross-domain Self-

supervised learning framework (PCS) for few-shot un-

supervised Domain Adaptation.

• We propose to leverage prototypes to perform bet-

ter semantic structure learning, discriminative feature

learning, and cross-domain alignment in a unified, un-

supervised and adaptive manner.

• While it is hard to choose the optimal domain adapta-

tion method in the complex two-stage framework [39],

PCS can be easily trained in an end-to-end matter,

and outperforms all state-of-the-art methods by a large

margin across multiple benchmark datasets.

2. Related Work

Domain Adaptation. Unsupervised Domain Adaptation

(UDA) [24] addresses the problem of transferring knowl-

edge from a fully-labeled source domain to an unlabeled

target domain. Most UDA methods have focused on

feature distribution alignment. Discrepancy-based meth-

ods explicitly compute the Maximum Mean Discrepancy

(MMD) [26] between the source and the target to align

the two domains [44, 68, 46]. Long et al. [47] proposed

to align the joint distributions using the Joint MMD cri-

terion. Sun et al. [63] and Zhuo et al. [79] further pro-

posed to align second-order statistics of source and target

features. With the development of Generative Adversarial

Networks [23], additional papers proposed to perform do-

main alignment in the feature space with adversarial learn-

ing [17, 67, 31, 73, 45, 61]. Recently, image translation

methods, e.g. [78, 42] have been adopted to further im-

prove domain adaptation by performing pixel-level align-

ment [31, 5, 57, 50, 75, 60, 62]. Instead of explicit feature

alignment, Saito et al. [59] proposed minimax entropy for

adaptation. While these methods have full supervision on

the source domain, similar to [39], we focus on a new adap-

tation setting with few source labels.

Self-supervised Learning. Self-supervised learning (SSL)

is a subset of unsupervised learning methods where super-

vision is automatically generated from the data [36, 13,

76, 51, 22, 70]. One of the most common strategies for
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Figure 2: An overview of the PCS framework. In-domain and cross-domain self-supervision are performed between normalized feature

vectors f and prototypes µ computed by clustering vectors v in memory banks. Features with confident predictions (p) are used to

adaptively update classifier vectors w. MI maximization and classification loss are further used to extract discriminative features.

SSL is handcrafting auxiliary pretext tasks predicting fu-

ture, missing or contextual information. In particular, im-

age colorization [76, 40], patch location prediction [13, 14],

image jigsaw puzzle [51], image inpainting [53] and ge-

ometric transformations [22, 16] have been shown to be

helpful. Currently, contrastive learning [3, 29, 52, 65, 49]

has achieved state-of-the-art performance on representation

learning [27, 10, 12, 11]. Most contrastive methods are

instance-wise, aiming to learn an embedding space where

samples from the same instance are pulled closer and sam-

ples from different instances are pushed apart [72, 10]. Re-

cently, contrastive learning based on prototypes has shown

promising results in representation learning [41, 2, 7, 19].

Self-supervised Learning for Domain Adaptation. Self-

supervision-based methods incorporate SSL losses into the

original task network [20, 21]. Reconstruction was first uti-

lized as self-supervised task in some early works [20, 21],

in which source and target share the same encoder to extract

domain-invariant features. To capture both domain-specific

and shared properties, Bousmalis et al. [5] explicitly ex-

tracts image representations into two spaces, one private for

each domain and one shared across domains. In [6], solv-

ing jigsaw puzzle [51] was leveraged as a self-supervision

task to solve domain adaptation and generalization. Sun et

al. [64] further proposed to perform adaptation by jointly

learning multiple self-supervision tasks. The feature en-

coder is shared by both source and target images, and the ex-

tracted features are then fed into different self-supervision

task heads. Recently, based on instance discrimination [72],

Kim et al. [39] proposed a cross-domain SSL approach for

adaptation with few source labels. SSL has also been in-

corporated for adaptation in other fields, including point

cloud recognition [1], medical imaging [33], action seg-

mentation [9], robotics [34], facial tracking [74], etc.

3. Approach

In few-shot unsupervised domain adaptation, we are

given a very limited number of labeled source images

Ds = {(xs
i , y

s
i )}

Ns

i=1, as well as unlabeled source images

Dsu = {(xsu
i )}

Nsu

i=1 . In the target domain, we are only given

unlabeled target images Dtu = {(xtu
i )}

Ntu

i=1 . The goal is to

train a model on Ds,Dsu, and Dtu; and evaluate on Dtu.

The base model consists of a feature encoder F , a ℓ2 nor-

malization layer, which outputs a normalized feature vector

f ∈ R
d and a cosine similarity-based classifier C.

3.1. Indomain Prototypical Contrastive Learning

We learn a shared feature encoder F that extracts dis-

criminative features in both domains. Instance Discrimina-

tion [72] is employed in [39] to learn discriminative fea-

tures. As an instance-wise contrastive learning method, it

results in an embedding space where all instances are well

separated. Despite promising results, instance discrimina-

tion has a fundamental weakness: the semantic structure of

the data is not encoded by the learned representations. This

is because two instances are treated as negative pairs as long

as they are from different samples, regardless of their se-

mantics. For a single domain, ProtoNCE [41] is proposed

to learn semantic structure of the data by performing iter-

ative clustering and representation learning. The goal is to

drive features within the same cluster to become more ag-

gregated and features in different clusters further apart.

However, naively applying ProtoNCE toDs∪Dsu∪Dtu

in our domain adaptation setting would cause potential

problems. Primarily due to the domain shift, images of

different classes from different domains can be incorrectly

aggregated into the same cluster, and images of the same

class from different domains can be mapped into clusters
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that are far apart. To mitigate these problems, we propose

to perform prototypical contrastive learning separately in

Ds ∪ Dsu and in Dtu. This aims to prevent the incorrect

clustering of images across domains and indiscriminative

feature learning.

Specifically, two memory banks V
s and V

t are main-

tained for source and target respectively:

V
s = [vs

1, · · · ,v
s
(Ns+Nsu)

], V
t = [vt

1, · · · ,v
t
Ntu

], (1)

where vi is the stored feature vector of xi, initialized with

fi and updated with a momentum m after each batch:

vi ← mvi + (1−m)fi. (2)

In order for in-domain prototypical contrastive learning, k-

means clustering is performed on V
s and V

t to get source

clusters C
s = {C

(s)
1 , C

(s)
2 , . . . , C

(s)
k } and similarly C

t

with normalized source prototypes {µs
j}

k
j=1 and normalized

target prototypes {µt
j}

k
j=1. Specifically, µs

j =
u

s
j

‖us
j
‖ , where

us
j = 1

|C
(s)
j

|

∑

v
s
i
∈C

(s)
j

vs
i . We explain only on the source

domain for succinct notation, all operations are performed

on target similarly.

During training, with the feature encoder F , we com-

pute a feature vector fsi = F (xs
i ). To perform in-domain

prototypical contrastive learning, we compute the similar-

ity distribution vector between fsi and {µs
j}

k
j=1 as P s

i =
[P s

i,1, P
s
i,2, . . . , P

s
i,k], with

P s
i,j =

exp(µs
j · f

s
i /φ)

∑k

r=1 exp(µ
s
r · f

s
i /φ)

, (3)

where φ is a temperature value determining the level of con-

centration. Then the in-domain prototypical contrastive loss

can be written as:

LPC =

Ns+Nsu
∑

i=1

LCE(P
s
i , cs(i))+

Ntu
∑

i=1

LCE(P
t
i , ct(i)) (4)

where cs(·) and ct(·) return the cluster index of the instance.

Due to the randomness in clustering, we perform k-means

on the samples M times with different number of clusters

{km}
M
m=1. Moreover, in the FUDA setting, since the num-

ber of classes nc is known, we set km = nc for most m.

The overall loss for in-domain self-supervision is:

LInSelf =
1

M

M
∑

m=1

L
(m)
PC (5)

3.2. Crossdomain InstancePrototype SSL

In order to explicitly enforce learning domain-aligned

and more discriminative features in both source and target

Problem with

Instance-Instance Matching

Instance-Prototype Matching

(Ours)

Figure 3: Comparison of cross-domain instance-instance (I-I)

matching [39] (left) and our cross-domain instance-prototype (I-P)

matching (right). Left: I-I incorrectly matches all orange samples

to the same blue sample. Right: I-P robustly matches samples to

the correct prototypes.

domains, we perform cross-domain instance-prototype self-

supervised learning.

Many previous works focus on domain alignment via

discrepancy minimization or adversarial learning. However,

these methods provide inferior performance or have unsta-

ble training. Moreover, most of them focus on distribution

matching, without considering semantic similarity match-

ing across domains. Instance-instance matching [39] is pro-

posed to match an instance i to another instance j in the

other domain with the most similar representation. How-

ever, due to the domain gap, instances can be easily mapped

to instances of different classes in the other domain. In

some cases, if an outlier in one domain is extremely close

to the other domain, it will be matched to all the instances

in the other domain, as illustrated in Figure 3.

Instead, our method discovers positive matching as well

as negative matchings between instance and cluster proto-

types in different domains. To find a matching for an in-

stance i, we perform entropy minimization on the similarity

distribution vector between its representation, e.g. fsi and

the centroids of the other domain, e.g. {µt
j}

k
j=1.

Specifically, given feature vector fsi in the source do-

main, and centroids {µt
j}

k
j=1 in the target domain, we

first compute the similarity distribution vector P s ✮t
i =

[P s ✮t
i,1 , . . . , P s ✮t

i,k ], in which

P s ✮t
i,j =

exp(µt
j · f

s
i /τ)

∑k

r=1 exp(µ
t
r · f

s
i /τ)

. (6)

Then we minimize the entropy of P s ✮t
i , which is:

H(P s ✮t
i ) = −

k
∑

j=1

P s ✮t
i,j logP s ✮t

i,j . (7)

Similarly, we can compute H(P t ✮s
i ), and the final loss for

cross-domain instance-prototype SSL is:

LCrossSelf =

Ns+Nsu
∑

i=1

H(P s ✮t
i ) +

Ntu
∑

i=1

H(P t ✮s
i ) (8)
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3.3. Adaptive Prototypical Classifier Learning

The goal of this section is to learn a better domain-

aligned, discriminative feature encoder F and more impor-

tantly, a cosine classifier C that could achieve high accuracy

on the target domain.

The cosine classifier C consists of weight vectors W =
[w1,w2, . . . ,wnc

], where nc denotes the total number of

classes, and a temperature T . The output of C, 1
T
WTf is

fed into a softmax layer σ to obtain the final probabilistic

output p(x) = σ( 1
T
WTf). With the availability of the la-

beled set Ds, it is straightforward to train F and C with a

standard cross-entropy loss for classification:

Lcls = E(x,y)∈Ds
LCE(p(x), y) (9)

However, since Ds is quite small under FUDA setting, only

training with Lcls is hard to get a C with high performance

on the target.

Adaptive Prototype-Classifier Update (APCU) Note

that for C to classify samples correctly, the direction of a

weight vector wi needs to be representative of features of

the corresponding class i. This indicates that the meaning

of wi coincide with the ideal cluster prototype of class i.
We propose to use an estimate of the ideal cluster proto-

types to update W. Yet the computed {µs
j} and {µt

j} can-

not be naively used for this purpose, not only because the

correspondence between {wi} and {µj} is unknown, but

also the k-means result may contain very impure clusters,

leading to non-representative prototypes.

We use the few-shot labeled data as well as samples

with high-confident predictions to estimate the prototype

for each class. Formally, we define D
(i)
s = {x|(x, y) ∈

Ds, y = i} and denote by D
(i)
su and D

(i)
tu the set of sam-

ples with high-confident label i in source and target, respec-

tively. With p(x) = [p(x)1, . . . ,p(x)nc
], D

(i)
su = {x|x ∈

Dsu,p(x)i > t}, where t is a confidence threshold; and

similarly forD
(i)
tu . Then the estimate of wi from source and

target domain can be computed as:

ŵs
i =

1

|D
(i)
s+
|

∑

x∈D
(i)

s+

V
s(x); ŵt

i =
1

|D
(i)
tu |

∑

x∈D
(i)
tu

V
t(x)

(10)

where D
(i)
s+

= D
(i)
s ∪D

(i)
su and V (x) returns the representa-

tion in memory bank corresponding to x.

With only few labeled samples in source, it is hard to

learn a representative prototype shared across domains. In-

stead of directly employing a global prototype for a class

i, we further propose to update wi in an domain adaptive

manner, with ŵs
i during early training stage and with ŵt

i

at later stage. This is because that ŵs
i is more robust in

early training stage due to the few labeled source samples,

while ŵt
i would be more representative later for target do-

main to get better adaptation performance. Specifically, we

use |D
(i)
tu | to determine whether ŵt

i is robust to use:

wi =

{

unit(ŵs
i ) if |D

(i)
tu | < tw

unit(ŵt
i) otherwise

(11)

where unit(·) normalizes the input vector and tw is a

threshold hyper-parameter.

Mutual Information Maximization In order for the

above unified prototype-classifier learning paradigm to

work well, the network is desired to have enough confi-

dent predictions, e.g. |D(i)| > tw, for all classes to get

robust ŵs
i and ŵt

i for i = 1, . . . , nc. First, to promote

the network to have diversified outputs over the dataset,

we maximize the entropy of expected network prediction

H(Ex∈D[p(y|x; θ)]), where θ denotes learnable parameters

in both F and C, andD = Ds∪Dsu∪Dtu. Second, in order

to get high-confident prediction for each sample, we lever-

age entropy minimization on the network output which has

shown efficacy in label-scarce scenarios [25, 4]. These two

desired behaviors turn out to be equivalent to maximizing

the mutual information between input and output:

I(y;x) = H(p0)− Ex[H(p(y|x; θ))], (12)

where the prior distribution p0 is given by Ex[p(y|x; θ)],
and the detailed derivation is presented in the supplemen-

tary material. We can get the objective as:

LMIM = −I(y;x) (13)

3.4. PCS Learning for FUDA

The PCS learning framework performs in-domain

prototypical contrastive learning, cross-domain instance-

prototype self-supervised learning, and unified adaptive

prototype-classifier learning. Together with APCU in Eq.

11, the overall learning objective is:

LPCS = Lcls + λin · LInSelf

+ λcross · LCrossSelf + λmim · LMIM

(14)

4. Experiments

4.1. Experimental Setting

Datasets. We evaluate our approach on four public

datasets and choose labeled images in source domain based

on previous work [39]. Office [58] is a real-world dataset

for domain adaptation tasks. It contains 3 domains (Ama-

zon, DSLR, Webcam) with 31 classes. Experiments are

conducted with 1-shot and 3-shots source labels per class

in this dataset. Office-Home [69] is a more difficult dataset
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Table 1: Adaptation accuracy (%) comparison on 1-shot and 3-shots per class on the Office dataset.

Method
Office: Target Acc. on 1-shot / 3-shots

A→D A→W D→A D→W W→A W→D Avg

SO 27.5 / 49.2 28.7 / 46.3 40.9 / 55.3 65.2 / 85.5 41.1 / 53.8 62.0 / 86.1 44.2 / 62.7

MME [59] 21.5 / 51.0 12.2 / 54.6 23.1 / 60.2 60.9 / 89.7 14.0 / 52.3 62.4 / 91.4 32.3 / 66.5

CDAN [45] 11.2 / 43.7 6.2 / 50.1 9.1 / 65.1 54.8 / 91.6 10.4 / 57.0 41.6 / 89.8 22.2 / 66.2

SPL [71] 12.0 / 77.1 7.7 / 80.3 7.3 / 74.2 7.2 / 93.5 7.2 / 64.4 10.2 / 91.6 8.6 / 80.1

CAN [38] 25.3 / 48.6 26.4 / 45.3 23.9 / 41.2 69.4 / 78.2 21.2 / 39.3 67.3 / 82.3 38.9 / 55.8

MDDIA [35] 45.0 / 62.9 54.5 / 65.4 55.6 / 67.9 84.4 / 93.3 53.4 / 70.3 79.5 / 93.2 62.1 / 75.5

CDS [39] 33.3 / 57.0 35.2 / 58.6 52.0 / 67.6 59.0 / 86.0 46.5 / 65.7 57.4 / 81.3 47.2 / 69.3

DANN + ENT [18] 32.5 / 57.6 37.2 / 54.1 36.9 / 54.1 70.1 / 87.4 43.0 / 51.4 58.8 / 89.4 46.4 / 65.7

MME + ENT 37.6 / 69.5 42.5 / 68.3 48.6 / 66.7 73.5 / 89.8 47.2 / 63.2 62.4 / 95.4 52.0 / 74.1

CDAN + ENT 31.5 / 68.3 26.4 / 71.8 39.1 / 57.3 70.4 / 88.2 37.5 / 61.5 61.9 / 93.8 44.5 / 73.5

CDS + ENT 40.4 / 61.2 44.7 / 66.7 66.4 / 73.1 71.6 / 90.6 58.6 / 71.8 69.3 / 86.1 58.5 / 74.9

CDS + MME + ENT 39.4 / 61.6 43.6 / 66.3 66.0 / 74.5 75.7 / 92.1 53.1 / 73.0 70.9 / 90.6 58.5 / 76.3

CDS + CDAN + ENT 52.6 / 65.1 55.2 / 68.8 65.7 / 71.2 76.6 / 88.1 59.7 / 71.0 73.3 / 87.3 63.9 / 75.3

CDS / MME + ENT† 55.4 / 75.7 57.2 / 77.2 62.8 / 69.7 84.9 / 92.1 62.6 / 69.9 77.7 / 95.4 65.3 / 80.0

CDS / CDAN + ENT† 53.8 / 78.1 65.6 / 79.8 59.5 / 70.7 83.0 / 93.2 57.4 / 64.5 77.1 / 97.4 66.1 / 80.6

PCS (Ours) 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0

Improvement +4.8 / +0.1 +4.2 / +3.1 +9.7 / +1.9 +5.7 / +0.9 +8.6 / +3.3 +14.1 / -1.4 +10.5 / +3.4

† Two-stage training results reported in [39].

Table 2: Performance contribution of each part in PCS framework on Office.

Method
Office: Target Acc. on 1-shot / 3-shots

A→D A→W D→A D→W W→A W→D Avg

Lcls 27.5 / 49.2 28.7 / 46.3 40.9 / 55.3 65.2 / 85.5 41.1 / 53.8 62.0 / 86.1 44.2 / 62.7

+LInSelf 39.0 / 55.6 38.6 / 55.1 47.2 / 68.5 71.7 / 89.4 50.9 / 68.4 65.1 / 90.6 52.1 / 71.3

+LCrossSelf 47.2 / 71.1 52.7 / 70.6 59.0 / 75.5 76.4 / 90.3 58.5 / 74.1 66.9 / 91.8 60.1 / 78.9

+LMIM 52.8 / 73.5 57.5 / 71.2 67.2 / 76.3 78.9 / 91.4 64.2 / 74.3 68.7 / 92.2 64.9 / 79.8

+APCU (PCS) 60.2 / 78.2 69.8 / 82.9 76.1 / 76.4 90.6 / 94.1 71.2 / 76.3 91.8 / 96.0 76.6 / 84.0

PCS w/o MIM 59.0 / 75.9 58.6 / 76.5 76.2 / 76.4 87.8 / 93.2 68.7 / 74.7 89.8 / 95.0 73.5 / 82.0

than Office, which consists of 4 domains (Art, Clipart, Prod-

uct, Real) in 65 classes. Following [39], we look into the

settings with 3% and 6% labeled source images per class,

which means each class has 2 to 4 labeled images on av-

erage. VisDA-2017 [55] is a challenging simulation-to-real

dataset containing over 280K images across 12 classes. We

validate our model on settings with 0.1% and 1% labeled

source images per class as suggested in [39]. Domain-

Net [54] is a large-scale domain adaptation benchmark.

Since some domains and classes are noisy, we follow [59]

and use a subset containing four domains (Clipart, Real,

Painting, Sketch) with 126 classes. We show results on set-

tings with 1-shot and 3-shots source labels on this dataset.

Implementation Details. We use ResNet-101 [30] (for

DomainNet) and ResNet-50 (for other datasets) pre-trained

on ImageNet [56] as our backbones. To enable a fair com-

parison with [39], we replaced the last FC layer with a 512-

D randomly initialized linear layer. L2-normalizing are per-

formed on the output features. We use k-means GPU imple-

mentation in faiss [37] for efficient clustering. We use SGD

with momentum of 0.9, a learning rate of 0.01, a batch size

of 64. More implementation details can be found in the sup-

plementary material.

4.2. Results on FUDA

Baselines. SO is a model only trained using the labeled

source images. CDAN [45] and MDDIA [35] are both

state-of-the-art methods in UDA with a domain classifier

to perform domain alignment. MME [59] minimizes the

conditional entropy of unlabeled target data with respect to

the feature extractor and maximizes it with respect to the

classifier. CAN [38] uses clustering information to con-

trast discrepancy of source and target domain. CDS [39] is

a instance-based cross-domain self-supervised pre-training,

which can be used for other domain adaptation methods and

form two-stage methods, such as CDS / CDAN and CDS

/ MME. We re-implement CDS into an end-to-end version

by adding losses in two stage together and tuning the weight

for different losses. We also investigate the one-stage ver-

sion of the methods above (CDS + CDAN, CDS + MME).

Following [39], entropy minimization (ENT) on source is

13839



Table 3: Adaptation accuracy (%) comparison on 3% and 6% labeled samples per class on the Office-Home dataset.

Method
Office-Home: Target Acc. (%)

Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

3% labeled source

SO 24.4 38.3 43.1 26.4 34.7 33.7 27.5 26.5 42.6 41.2 29.0 52.3 35.0

MME [59] 4.5 15.4 25.0 28.7 34.1 37.0 25.6 25.4 44.9 39.3 29.0 52.0 30.1

CDAN [45] 5.0 8.4 11.8 20.6 26.1 27.5 26.6 27.0 40.3 38.7 25.5 44.9 25.2

MDDIA [35] 21.7 37.3 42.8 29.4 43.9 44.2 37.7 29.5 51.0 47.1 29.2 56.4 39.1

CAN [38] 17.1 30.5 33.2 22.5 34.5 36.0 18.5 19.4 41.3 28.7 18.6 43.2 28.6

CDS [39] 33.5 41.1 41.9 45.9 46.0 49.3 44.7 37.8 51.0 51.6 35.7 53.8 44.4

DANN + ENT [18] 19.5 30.2 38.1 18.1 21.8 24.2 31.6 23.5 48.1 40.7 28.1 50.2 31.2

MME + ENT 31.2 35.2 40.2 37.3 39.5 37.4 48.7 42.9 60.9 59.3 46.4 58.6 44.8

CDAN + ENT 20.6 31.4 41.2 20.6 24.9 30.6 33.5 26.5 56.7 46.9 29.5 48.4 34.2

CDS + ENT 39.2 46.1 47.8 49.9 50.7 54.1 48.0 43.5 59.3 58.6 44.3 59.3 50.1

CDS + MME + ENT 39.4 48.0 52.1 50.0 52.3 56.4 47.8 44.2 60.6 61.1 45.3 62.1 51.6

CDS + CDAN + ENT 43.8 55.5 60.2 51.5 56.4 59.6 51.3 46.4 64.5 62.2 52.4 70.2 56.2

CDS / MME + ENT† 41.7 49.4 57.8 51.8 52.3 55.9 54.3 46.2 69.0 65.6 52.2 68.2 55.4

CDS / CDAN + ENT† 37.7 49.2 56.5 49.8 51.9 55.9 50.0 42.3 68.1 63.1 48.7 67.5 53.4

PCS (Ours) 42.1 61.5 63.9 52.3 61.5 61.4 58.0 47.6 73.9 66.0 52.5 75.6 59.7

Improvement -1.7 +6.0 +6.1 +3.7 +5.1 +1.8 +3.7 +1.2 +4.9 +0.4 +0.1 +5.4 +3.5

6% labeled source

SO 28.7 45.7 51.2 31.9 39.8 44.1 37.6 30.8 54.6 49.9 36.0 61.8 42.7

MME [59] 27.6 43.2 49.5 41.1 46.6 49.5 43.7 30.5 61.3 54.9 37.3 66.8 46.0

CDAN [45] 26.2 33.7 44.5 34.8 42.9 44.7 42.9 36.0 59.3 54.9 40.1 63.6 43.6

MDDIA [35] 25.1 44.5 51.9 35.6 46.7 50.3 48.3 37.1 64.5 58.2 36.9 68.4 50.3

CAN [38] 20.4 34.7 44.7 29.0 40.4 38.6 33.3 21.1 53.4 36.8 19.1 58.0 35.8

CDS [39] 38.8 51.7 54.8 53.2 53.3 57.0 53.4 44.2 65.2 63.7 45.3 68.6 54.1

DANN + ENT [18] 22.4 32.9 43.5 23.2 30.9 33.3 33.2 26.9 54.6 46.8 32.7 55.1 36.3

MME + ENT 37.2 42.4 50.9 46.1 46.6 49.1 53.5 45.6 67.2 63.4 48.1 71.2 51.8

CDAN + ENT 23.1 35.5 49.2 26.1 39.2 43.8 44.7 33.8 61.7 55.1 34.7 67.9 42.9

CDS + ENT 42.9 55.5 59.5 55.2 55.1 59.1 54.3 46.9 68.1 65.7 50.6 71.5 57.0

CDS + MME + ENT 41.7 58.1 61.7 55.7 56.2 61.3 54.6 47.3 68.6 66.4 50.3 72.1 57.8

CDS + CDAN + ENT 45.4 60.4 65.5 54.9 59.2 63.8 55.4 49.0 71.6 66.6 54.1 75.4 60.1

CDS / MME + ENT† 44.1 51.6 63.3 53.9 55.2 62.0 56.5 46.6 70.9 67.7 54.7 74.7 58.4

CDS / CDAN + ENT† 39.0 51.3 63.1 51.0 55.0 63.6 57.8 45.9 72.8 65.8 50.4 73.5 57.4

PCS (Ours) 46.1 65.7 69.2 57.1 64.7 66.2 61.4 47.9 75.2 67.0 53.9 76.6 62.6

Improvement +0.7 +5.3 +3.7 +2.2 +5.5 +2.4 +3.6 -1.1 +2.4 -0.7 -0.8 +1.2 +2.5

† Two-stage training results reported in [39].

Table 4: Adaptation accuracy (%) comparison on 0.1% and 1%

labeled samples per class on the VisDA-2017 dataset.

Method
VisDA: Target Acc. (%)

0.1% Labeled 1% Labeled

SO 47.9 51.4

MME [59] 55.6 69.4

CDAN [45] 58.0 61.5

MDDIA [35] 68.9 71.3

CAN [38] 51.3 57.2

CDS [39] 34.2 67.5

DANN + ENT [18] 44.5 50.2

MME + ENT 54.0 66.1

CDAN + ENT 57.7 58.1

CDS + ENT 49.8 75.3

CDS + ENT + MME 60.0 78.3

CDS / MME + ENT† 62.5 69.4

CDS / CDAN + ENT† 69.0 69.1

PCS (Ours) 78.0 79.0

Improvement +9.0 +0.7

† Two-stage training results reported in [39].

added to previous DA methods to obtain better baseline per-

formance.

We compare the proposed PCS with state-of-the-art

methods on FUDA (adaptation with few source labels). Ex-

Table 5: Adaptation accuracy (%) comparison on 1-shot and 3-

shots per class on the DomainNet dataset.

Method
DomainNet: Target Acc. (%)

R✮C R✮P R✮S P✮C P✮R C✮S S✮P Avg

1-shot labeled source

SO 18.4 30.6 16.7 16.2 28.9 12.7 10.5 19.1

MME [59] 13.8 29.2 9.7 16.0 26.0 13.4 14.4 17.5

CDAN [45] 16.0 25.7 12.9 12.6 19.5 7.2 8.0 14.6

MDDIA [35] 18.0 30.6 15.9 15.4 27.4 9.3 10.2 18.1

CAN [38] 18.3 22.1 16.7 13.2 23.9 11.1 12.1 16.8

CDS [39] 16.7 24.4 11.1 14.1 15.9 13.4 19.0 16.4

CDS + ENT 21.7 30.1 18.2 17.4 20.5 18.6 22.7 21.5

CDS + MME + ENT 21.2 28.8 15.5 15.8 17.6 19.0 20.7 19.8

PCS (Ours) 39.0 51.7 39.8 26.4 38.8 23.7 23.6 34.7

Improvement +17.3 +21.1 +21.6 +9.0 +9.9 +4.7 +0.9 +13.2

3-shots labeled source

SO 30.2 44.2 25.7 24.6 49.8 24.2 23.2 31.7

MME [59] 22.8 46.5 14.5 25.1 50.0 20.1 24.9 29.1

CDAN [45] 30.0 40.1 21.7 21.4 40.8 17.1 19.7 27.3

MDDIA [35] 41.4 50.7 37.4 31.4 52.9 23.1 24.1 37.3

CAN [38] 28.1 33.5 25 24.7 46.9 23.3 20.1 28.8

CDS [39] 35.0 43.8 36.7 34.1 36.8 31.1 34.5 36.0

CDS + ENT 44.5 52.2 40.9 40.0 47.2 33.0 40.1 42.5

CDS + MME + ENT 43.8 54.9 41.1 38.9 45.9 32.8 38.7 42.3

PCS (Ours) 45.2 59.1 41.9 41.0 66.6 31.9 37.4 46.1

Improvement +0.7 +6.9 +0.8 +1.0 +13.7 -0.9 -2.7 +3.6

tensive experiments are conducted on Office, Office-Home,

VisDA-2017 and DomainNet, with the results presented in
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PCS (Ours)CDSImageNet Pre-trained PCS (Ours)CDSImageNet Pre-trained

Figure 4: t-SNE visualization of ours and baselines on Office (left) and Office-Home (right). Top row: Coloring represents the class of

each sample. Features with PCS are more discriminative than the ones with other methods. Bottom row: Cyan represents source features

and Red represents target features. Feature from PCS are better-aligned between domains compared to other methods.

Table 1, 3, 4, and 5, respectively. We can see that PCS

outperforms the best state-of-the-arts in all the benchmarks,

with large improvements: 10.5% and 3.4% on Office, 4.3%

and 4.2% on Office-Home, 9.0% and 0.7% on VisDA,

13.2% and 3.6% on DomainNet. If we look at the result of

each domain pair in each dataset (e.g. D → A in Office),

PCS outperforms previous best in 47 out of 52 settings.

Finally, as the number of labeled samples decreases, PCS

shows larger performance improvements against the pre-

vious best methods, which demonstrates PCS is extremely

beneficial in label-scarce adaptation scenarios.

4.3. Ablation Study and Analysis

Next, we investigate the effectiveness of each component

in PCS on Office. Table 2 shows that adding each compo-

nent contributes to the final results without any performance

degradation. Comparing the last row in Table 2 and Table 1,

we can see even without MIM, PCS still outperforms all

previous methods.

We plot the learned features with t-SNE [48] on the

DSLR-to-Amazon setting in Office, and Real-to-Clipart in

Office-Home respectively in left and right of Figure 4. In

the top row, the color represents the class of each sample;

while in the bottom row, cyan represents source samples

and red represents target samples. Compared to ImageNet

pre-training and CDS, it qualitatively shows that PCS well

clusters samples with the same class in the feature space;

thus, PCS favors more discriminative features. Also, the

features from PCS are more closely aggregated than Ima-

geNet pre-training and CDS, which demonstrates that PCS

learns a better semantic structure of the datasets.

4.4. Sample Efficiency

We compare our method with other state-of-the-art

methods on Office dataset (DSLR as source and Amazon

as target) with a varying number of source labels. From

Figure 5, we can see that PCS outperforms all SOTA meth-

ods in all settings with different number of labeled samples.

Moreover, our method is very label-efficient: a) For 1-shot
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Figure 5: Sample efficiency comparison from DSLR to Amazon

in Office dataset.

image per class (31 labeled source images in total), PCS

can achieve 76.1% accuracy. b) For the fully-labeled set-

ting (498 labeled source images in total), PCS can achieve

77.4% accuracy. c) With 94% less labeled source images,

the performance degradation of our method is only 1.3%.

In short, with less labeled source data, PCS outperforms

other works by a larger margin.

5. Conclusion

In this paper, we investigated Few-shot Unsupervised

Domain Adaptation where only few labeled samples are

available in the source domain, and no labeled samples in

the target domain. We proposed a novel Prototypical Cross-

domain Self-supervised learning (PCS) framework that per-

forms both in-domain and cross-domain prototypical self-

supervised learning, as well as adaptive prototpe-classifier

learning. We perform extensive experiments on multiple

benchmark datasets, which demonstrates the superiority of

PCS over previous best methods. PCS sets a new state of

the art for Few-shot Unsupervised Domain Adaptation.
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