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Abstract

Given an untrimmed video and a query sentence, cross-

modal video moment retrieval aims to rank a video moment

from pre-segmented video moment candidates that best

matches the query sentence. Pioneering work typically

learns the representations of the textual and visual content

separately and then obtains the interactions or alignments

between different modalities. However, the task of cross-

modal video moment retrieval is not yet thoroughly ad-

dressed as it needs to further identify the fine-grained

differences of video moment candidates with high repeata-

bility and similarity. Moveover, the relation among objects

in both video and sentence is intuitive and efficient for

understanding semantics but is rarely considered.

Toward this end, we contribute a multi-modal relational

graph to capture the interactions among objects from

the visual and textual content to identify the differences

among similar video moment candidates. Specifically,

we first introduce a visual relational graph and a textual

relational graph to form relation-aware representations

via message propagation. Thereafter, a multi-task pre-

training is designed to capture domain-specific knowledge

about objects and relations, enhancing the structured visual

representation after explicitly defined relation. Finally, the

graph matching and boundary regression are employed to

perform the cross-modal retrieval. We conduct extensive

experiments on two datasets about daily activities and

cooking activities, demonstrating significant improvements

over state-of-the-art solutions.

1. Introduction

Entering the era of information explosion, individuals

spend more time in seeking their desired information and

the video is not an exception. However, traditional video

retrieval methods are specifically designed for whole video

retrieval and are not suitable for more fine-grained video
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Untrimmed�Video

Multi�scale�pre�segmented�video�moment�candidates
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(a) Video moment candidates with high similarity

Query�sentence:�The�person puts a�book�in�a�bag.

(b) Interactions of limited objects

Figure 1: Challenges in cross-modal video moment re-

trieval. Fig.1a reveals the difficulty of retrieving desired

video moment from candidates with high similarity, while

Fig.1b exhibits the difficulty of modeling the spatial-

temporal interactions of objects.

moment retrieval scenario. To alleviate people’s expectation

of quickly retrieving a desired video moment, the task of

cross-modal video moment retrieval [1, 8] is proposed. In

particular, given an untrimmed video and a query sentence,

the task of cross-modal video moment retrieval aims to

extract a video moment from the untrimmed video that best

matches the query.

In fact, a great effort has been made to address the

cross-modal video moment retrieval issue. Existing work

mostly relies on multi-scale pre-segmented video moment

candidates via the sliding window strategy, and then

retrieves a suitable video moment from them [36]. Similar

to the cross-modal retrieval task [2], the cross-modal video

moment retrieval needs to understand and stitch text-video

semantics. The typical method is to extract the global [5]

and local [3, 17] information of the sentence and video first,

then leverage attention mechanism [21, 22, 24] and seman-

tic matching [34] to fuse modalities, and finally rank video

moment candidates based on the learned representation. As
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compared to cross-modal video retrieval, the task of cross-

modal video moment retrieval is more complicated since

it needs to further identify the slight differences of video

moment candidates generated from a same video. As shown

in Fig.1a, video moment candidates are of high similarity

due to the segmentation via the sliding window strategy,

which requires more sophisticated intra-modal recognition

capabilities. Although recent work has emerged to find

the relationship among video moment candidates [38] or

generate some more reasonable candidates instead of pre-

segmented clips [4], they are not specifically designed for

understanding semantics on video frames.

Further observations have found that the background

of video moment candidates changes slightly, while the

sematic differences of generated candidates are determined

by limited objects. As revealed in Fig.1b, for the query

sentence, the essential difference between the expected and

the deviated candidates is whether the moment of “book

enters bag” is covered, which brings the dawn of distin-

guishing video moment candidates with high similarity.

In other words, exploring the interaction pattern among

limited objects (i.e., person, book, and bag) is helpful to

reduce redundant information and highlight key clues to

distinguish video moment candidates. Especially, in the

pattern where an object disappears or two objects no longer

interact, modeling the interaction of objects can be regarded

as a significant signal. Therefore, how to understand the

relation among objects in the video and its query sentence,

and sensitively capture the differences of video moment

candidates with high similarity is of great importance.

To address aforementioned issues, we propose a multi-

modal relational graph (MMRG) framework to investigate

the cross-modal video moment retrieval task comprehen-

sively. The general framework of MMRG is illustrated in

Fig.2. To be specific, we first construct graphs for visual

and textual objects separately, where the visual objects

are constrained by textual objects instead of modeling all

visible objects. Meanwhile, the relations among objects is

explicitly treat as nodes to solve the problem of ambiguous

relation definition. Moreover, we innovatively propose a

customized multi-task pre-training strategy in the visual

relation understanding, which can highlight objects and

relations, and enhance the performance of visual repre-

sentation with explicitly defined relation. Finally, both

graph matching and boundary regression are introduced to

regularize the cross-modal retrieval.

The main contributions of this work are three-fold:

• To the best of our knowledge, this is the first work

that attempts to perform the cross-modal video moment

retrieval by investigating the interactions among visual

and textual objects, which is able to distinguish video

moment candidates with high intra-modal similarity.

• We propose a graph-based solution, MMRG, to improve

the performance of cross-modal video moment retrieval,

which is well suited for modeling the cross-modal

semantic consistency and interactions among objects.

• Extensive experiments are conducted on two well-known

datasets, which demonstrate the effectiveness of our

method. Meanwhile, we have released the dataset and

implementation to facilitate the research community1.

2. Related Work

2.1. Video Moment Retrieval

As an application of artificial intelligence in the multi-

media field, cross-modal video moment retrieval has drawn

great attention in the research community [6]. Technically,

the majority of prior work devotes to handle the cross-

modal semantic matching via generating video moment

candidates with multi-scale sliding windows. Furthermore,

[11] utilizes reinforcement learning to locate the boundary.

[4] employs adversarial learning to optimize the candidate

generation. Some other work employs an interactive graph

[38] or 2D adjacent temporal relation [40] to extract the

relation among candidate moments. In terms of enhancing

semantic understanding, the attention mechanism is utilized

to promote cross-modal semantic fusion [21, 22, 24].

Further, researchers refine query sentences to word level

[17, 36, 42] and explore visual temporal relations [41].

Among the work mentioned above, few efforts have been

made to explore the interaction among visual and textual

objects, which is more intuitive and crucial to capture

the differences of video moment candidates with high

similarity.

2.2. Visual Relational Reasoning

As computer vision technology continues to be explored,

visual relational reasoning performs outstandingly in im-

age/video understanding, such as image captioning [14, 37],

visual question answering [20], and action recognition [35].

[23] propose a language-guided graph representation to

capture entities and their relations, and develop a cross-

modal graph matching strategy for the multiple-phrase

visual grounding task. [43] design an object relation

graph and a teacher-recommended learning to integrate

the abundant linguistic knowledge into the caption model.

[28] abstract videos as fully-connected spatial-temporal 3D

graphs with object trajectory for video relation detection.

However, modeling object relations via the spatio-temporal

graph [27] is still not thoroughly investigated. In our

work, we construct the connections among objects by

explicitly expressing relation nodes to ease the ambiguity

1https://cvpr-2021.wixsite.com/mmrg
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Figure 2: The graphical representation of our proposed MMRG framework. The input is an untrimmed video and its query

sentence, while the output is the alignment score and location offset.

of visual relation, further digging into object interactions,

and performing the cross-modal fusion of object graphs.

2.3. Graph PreTraining

Despite the pre-training model is of great significance in

computer vision [19] and natural language processing [7],

few studies have applied it to the graph. In fact, apply-

ing pre-training to the graph can capture domain-specific

knowledge at the node/edge level or even graph level since

the graph has a common and transferable structural pattern.

[16] suggest that pre-training at the node level and graph

level can excellently enhance downstream tasks. [39] fuse

pre-training and graph to learn graph representation when

only attention is needed. [29] present graph contrastive

coding to measure the structural similarity. In this paper, we

pioneered to explore an appropriate pre-training scheme in

the cross-modal video moment retrieval scenario to enhance

the heterogeneous representations of objects and relations

after explicitly defined relation.

3. Method

As illustrated in Fig.2, our proposed MMRG framework

consists of three modules: dual-channel relational graph,

graph pre-training, and cross-modal retrieval. Specifically,

the dual-channel relational graph module constructs textual

relational graph and visual relational graph, respectively.

Thereinto, the textual relational graph is utilized to filter

irrelevant objects in the visual relational graph and fur-

ther apply multi-head attention to align object semantics.

Thereafter, the pre-training module customizes two pre-

training tasks, i.e., attribute masking and context prediction,

to enhance the visual relation reasoning after explicitly

defined relation. Finally, the graph matching and boundary

regression are utilized to perform the cross-modal retrieval.

3.1. Problem Formulation

Let v and q denote a long untrimmed video and a query

sentence, respectively. The query sentence q is affiliated

with a temporal annotation locq = [ls, le] on the video v,

where ls and le are the start and end points of the target

video moment. Given the video v and its query sentence

q, the goal of cross-modal video moment retrieval is to

identify the desired video moment with the boundary of

loco = [os, oe] to be close to the ground truth locq .

3.2. DuelChannel Relational Graph

To capture the interaction pattern among objects from

both visual and textual content, we design a duel-channel

relational graph, which define the explicit relations and

apply message propagation.

3.2.1 Textual Relational Graph.

The textual relational graph is constructed by extracting

phrase relations. Specifically, the sentence parser2 is

employed to identify the phrase nouns Hp and the relations

r
p
ij ∈ Rp between the nouns h

p
i , h

p
j ∈ Hp from the query

sentence q. Due to the objects are not born with relational

structures, simply treating nouns as nodes and ignoring

relational phrase [14, 44] will lose and cannot understand

the semantic information of the relation explicitly.

To this end, we explicitly define relations Rp as nodes

to construct graphs Gp. It means that noun objects will

be associated by relational phrases in graph Gp. Formally,

the textual relational graph is denoted as Gp = {Hp ∪
Rp, Ep,Xp}, where Ep are the edges connecting nodes and

X
p = {Xp

H ∪ X
p
R} are the phrase (noun and relation)

embedding vectors extracted by word2vec3. Meanwhile,

the noun similarity is performed as post-processing strategy

on the Flickr30K Entities dataset4 , which ensures isolated

nodes are not existed in the textual relational graph Gp.

Two message propagation operators are then leveraged

to get higher-level representation of node features X
p
H and

X
p
R. Primarily, we optimize the expression of the relation

node Xr
p

ij
, which is determined by two nouns (subject Xh

p

i

and object Xh
p

j
) and its own feature. Then we update the

2https://github.com/vacancy/SceneGraphParser
3https://code.google.com/archive/p/word2vec
4http : / / shannon . cs . illinois . edu /

DenotationGraph/
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relation node by aggregation, as,

X
′
r
p

ij
= Xr

p

ij
+ fr

p ([Xh
p

i
,Xh

p

j
,Xr

p

ij
]), (1)

where fr
p is feature mapping function with the implementa-

tion of fully connected layers (FC).

Different from the relation node which is the connection

of two nouns, the noun node has indefinite neighbors.

Therefore, we aggregate neighbor object nodes and their

relations via the attention mechanism [33]:

X
′
h
p

i
= Xh

p

i
+

∑

h
p

j
∈N (hp

i
)

wr
p

ij
fh
p ([Xh

p

j
,X′

r
p

ij
]), (2)

wr
p

ij
= softmax

h
p

j
∈N (hp

i
)

(fh
p ([Xh

p

i
,X′

r
p

ij
])T fh

p ([Xh
p

j
,X′

r
p

ij
])),

(3)

where fh
p is FC, the attention weight wr

p

ij
of the neighbor-

hood N (hp
i ) and updated relation node X

′
r
p

ij

is determined

by the distance of their mapping features.

3.2.2 Visual Relational Graph.

Like the textual relational graph, we also strive to capture

the relations among visual objects by constructing a visual

relational graph Gv . To maintain the consistency of the

phrase object and the visual object in frame, we resort to

the phrase object Hp to filter the proposals from Faster

R-CNN5 [31]. Specifically, only top-1 proposals with the

highest similarity of phrases is applied as the nodes Hv of

the visual relational graph Gv , and the node vectors Xv
H are

extracted through RoI-Align [12]. It is worth noting that if

the similarity between the word2vec feature of the proposal

label and the phrase is less than 0.5, we assume that there is

no corresponding visual object in the moment. Meanwhile,

if the similarity of multiple proposal regions is larger than

0.9, these regions will be merged, and their joint region is

regarded as the visual object.

Interaction relation modeling. To capture the relations

Rv among visual objects, especially the interaction pattern

in spatial (frame), we combine some regional features as

the explicit representation of relations. To simplify the

definition of the formula, the default frame time is t.

Therefore, the initial relations expression Xrv
ij

∈ X
v
R of

the visual object relation rvij ∈ Rv is represented as:

Xrv
ij
= [Xunij

,Xmuij
,Xposi ,Xposj ], (4)

where Xunij
is the visual feature extracted from the union

box region of two objects, which is the minimum box region

covering both objects. The mutual feature Xmuij
indicates

whether two objects are overlapped, and are expressed

5https://github.com/rbgirshick/py-faster-rcnn

by the mutual position between the two objects. Let

[xi, yi, wi, hi] and [xj , yj , wj , hj ] denote the coordinates of

the object hv
i , h

v
j ∈ Hv in time t respectively, where (x, y)

indicates the position of top left corner, and w, h are the

width and height of the box. Xmuij
is formally defined as:

Xmuij
= [

xi − xj

wj

,
yi − yj

hj

, log
wi

wj

, log
hi

hj

]. (5)

Moreover, the location representation based on union region

Xposi = [ xi

Wuij

, yi

Huij

, xi+wi

Wuij

, yi+hi

Huij

, Si

Suij

] of the object

itself is also important, where uij is the union region

between the objects hv
i , h

v
j ∈ Hv .

Spatial Propagation. Since visual nodes have both

spatial interactivity and temporal continuity, we perform

message propagation in spatial and temporal respectively.

Similar to the textual relational graph Gp, the visual

relational graph Gv is defined as Gv = {Hv ∪Rv, Ev,Xv},

where Ev is the edge connecting the nodes and X
v =

{Xv
H ∪ X

v
R}. Then the explicit relation features are

optimized via message propagation. There are only two

object nodes connecting to a relation node rvij , so the

representation of rvij is updated as:

X
′
rv
ij
= X

v
rij

+ fr
v ([Xhv

i
,Xhv

j
,Xrv

ij
]), (6)

where fr
v is FC. We then aggregate neighbor object nodes

and their relations via the attention mechanism similar to

the textual relational graph:

X
′
hv
i
= Xhv

i
+

∑

hv
j
∈N (hv

i
)

wrv
ij
fh
v ([Xhv

j
,X′

rv
ij
]), (7)

wrv
ij
= softmax

hv
j
∈N (hv

i
)

(fh
v ([Xhv

i
,X′

rv
ij
])T fh

v ([Xhv
j
,X′

rv
ij
])),

(8)

where fh
v is FC, the attention weight wrv

ij
of the neigh-

borhood N (hv
i ) and the updated relation node X

′
rv
ij

are

determined by the distance of their mapping features.

Cross-modal temporal propagation. Under the cross-

modal paradigm, the expression of the visual object node

X
v
H should be consistent with the phrase object node X

p
H .

Therefore, X
v
H should perform information aggregation

under the constraint of the phrase. In other words, the visual

object node’s neighbors N (hv
i ) also include corresponding

cross-modal phrase object. To this end, we present

cross-modal graph attention over neighbors to learn which

neighbors are more relevant and weigh their contributions

accordingly.

X
′
hv
i
= σ(

∑

j∈N (hv
i
)

softmax(evij)WijhXhv
j
)), (9)

evij = a
T [WijhXhv

i
,WijhXhj

], j ∈ N (hv
i ), (10)
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where Wijh is a learnable linear transformation matrix,

σ(·) is the LeakyReLU, and a
T is a learnable shared vector.

We then extend attention to multi-head strategy [32] by

repeating K times so that the training process is more

stable, which is formally formulated as:

X
′
hv
i
=

K

||
k=1

σ(
∑

j∈N (hv
i
)

softmax(evij)WijhXhv
j
)), (11)

where || represents the concatenation and σ(·) is the

sigmoid function. The learned embeddings are connected

as the semantic-specific graph embedding.

3.3. PreTraining in Graph

Recently, there are rarely pre-training discussions in

the graph, at least not in the video domain. The main

difficulty is that the ambiguous connection definition of

visual relation among two pixel areas (objects) easily lead

to failures in semantic understanding. In the previous

section, we have presented multi-modal relational graph

with explicit relation to enhance the semantic expression,

but its understanding of nodes is still incomplete. Es-

pecially, after explicitly defined relation, the solution is

required to deal with two issues, the heterogeneity of

nodes in the graph, and the semantic gap across modalities.

Therefore, we pioneered the introduction of task-adaptive

pre-training (TAPT) strategy [9, 16] in visual relation

understanding. Consequently, two types of practical self-

supervised pre-training tasks at the node level and graph

level are considered.

Attribute Masking. This pre-training task is designed

to optimize the heterogeneous feature of relation/object

nodes under the explicit expression. The premise of

capturing domain–specific knowledge is that our model

can distinguish these two types of nodes with different

meanings. Specifically, we label 20% of the objects and

relation nodes of visual relational graph Gv , 80% of which

are replaced with [MASK] labels, and the remaining parts

are kept the original attributes. Consequently, this attribute

masking task can force our model to predict these attributes

based on neighboring nodes. Further, the objects and

relations can be better distinguished at the node level, and

more neighborhood knowledge and clearer relation can be

captured, which significantly helps the learning of explicit

relation features.

Context Prediction. To ensure the vector representa-

tions of nodes can capture the global information of graph

structure under the cross-modal paradigm, the cross-modal

context prediction is also used as a pre-training task. Hence,

the visual relational graph structure is reconstructed from

the neighbor subgraphs of nodes under textual semantic

constraints, so that nodes appearing in the context of

similar structures can be mapped to similar embeddings.

Specifically, the subgraph structure of negative sampling

is employed to randomly sample the context that is not

adjacent to the current object. Finally, the reconstruction

is optimized by the pairwise loss. Through this task, the

model can learn structural information at the graph level to

alleviate semantic gap across modalities.

3.4. CrossModal Retrieval

Based on previous efforts, each node feature captures

interactions about objects. In this section, these relation-

aware representations are merged with global information

for cross-modal video moment retrieval. Following the

popular methods [8, 21], we retrieve the most suitable

video moment from pre-segmented candidates with high

similarity. This involves two related downstream tasks,

namely, graph matching and boundary regression. Graph

matching determines whether the semantics of the visual

relational graph Gv and textual relational graph Gp are

related, while boundary regression to further adjust the

boundary.

Graph Matching. Since graph embedding and graph

pooling either employ subgraph sampling [26] or aggregate

node information [10], which still lost the structure infor-

mation of the graph, we introduce cross-graph matching

to calculate the similarity sz(qn, vm) between graphs as

follows:

fs
h([X

′
h
p

i
, O(

∑

t∈T

X
′
hv

it
)]) + fs

r ([X
′
r
p

ij
, O(

∑

t∈T

X
′
rv
ijt

)]),

(12)

where O refers to the max pooling, fs
h and fs

r are two-layer

FC utilized. We divide the moment-query pairs into two

groups, P are treated as the positive matched pairs, while

N are considered as the negative mismatched pairs. Finally,

the matching loss of our model is constructed as follows:

Lmah =
∑

(qn,vm)∈P

log(1 + exp(−sz(qn, vm)))

+
∑

(qn,vm)∈N

λ1log(1 + exp(sz(qn, vm))),
(13)

where λ1 is a hyper parameter balancing the weights

between the positive and negative pairs.

Boundary Regression. As the multi-scale sliding

window is adopted to segment videos, fixed duration

of the moment candidate needs more flexible boundary

offset supplement. Here we adopt the moment boundary

adjustment strategy and denote the offset values locz =
[ls′ , le′ ], where ls′ , le′ are offset of the start and end points.

The boundary offset regression is obtained through a FC f l:

locz = f l([X̃qn , X̃vm ]), (14)

where X̃qn and X̃vm concatenate the node features, relation

features and global features (extracted from complete video
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or sentence). After predicting the boundary, the final output

loco = [os, oe] of the model is:

os = τs + ls′ , oe = τe + le′ . (15)

The boundary regression loss Lreg is defined as the IoU

(Intersection over Union) value of ground truth locqn and

loco:

Lreg =
∑

(qn,vm)∈P

|IoU(locqn , loco)|, (16)

IoU(locqn , loco) =
min(le, oe)−max(ls, os)

max(le, oe)−min(ls, os)
. (17)

In the training phase, the boundary regression loss is

only performed on positive samples, while in the testing

scenario, the candidate with the highest matching score is

added an offset value to relocate the boundary. Eventually,

the overall loss is formulated as:

L = Lmah + λ2Lreg, (18)

where λ2 is a hyper parameter balancing the weights of

graph matching and boundary regression.

4. Experiments

In this section, we conduct extensive experiments on two

datasets to answer the following three research questions:

RQ1 How does our proposed MMRG framework perform

as compared to other state-of-the-art competitors?

RQ2 How do different components in MMRG framework

contribute to its performance?

RQ3 Can we visualize the retrieval performance of various

methods and interaction pattern among objects?

4.1. Datasets and Evaluation Metric

We experimented with two publicly accessible datasets:

Charades-STA [8] and TACoS [30], one is related to daily

activities at home6 and the other one is cooking activities in

lab kitchen7. We downloaded original datasets and further

constructed the moment candidates with different unit sizes

of [64, 128, 256, 512] via 80% overlap. In summary, we

ultimately obtained 12, 541 and 7, 463 video moment-query

sentence pairs for Charades-STA and TACoS, respectively.

The experimental datasets are divided into training, ver-

ification and testing according to 70%, 10%, and 20%. To

evaluate the performance of MMRG and other baselines, we

adopted “R@n, IoU=m” proposed by [15] as the evaluation

metric, which calculates the IoU between the top-n retrieved

video moments and the ground truth. In the rest of this

article, we use R(n,m) to mean “R@n, IoU=m”, which is

the percentage of IoU greater than m.

6https://allenai.org/plato/charades
7http : / / www . coli . uni - saarland . de / projects /

smile/tacos

4.2. Implementation Details

In the feature representation, visual object feature is

a 1, 024-dimensional vector extracted by RoI-Align [12],

while textual object/relation feature is 1, 024-dimensional

vector obtained by employing word2vec [25]. In addition,

global features of query and video are 4, 800-dimension and

4, 096-dimension extracted by Sentence2vec [18] and C3D

[13], respectively. For the dimensions of the FC layer, the

input of fr
p , fh

p , fr
v and fh

v is the concatenated dimension

and the output is 1, 024. To initialize the hidden layers

in our method, we randomly set their parameters with a

gaussian distribution (a mean of 0 and a stand deviation of

0.1). The number of multi-head K is set as 6, and balance

parameters λ1 and λ2 are set as 0.8 and 0.7, respectively.

4.3. Overall Performance Comparison (RQ1)

To demonstrate the effectiveness of our proposed

method, we compared it with several state-of-the-art ap-

proaches: 1) CTRL [8]; 2) MCN [1]; 3)ROLE [22]; 4)

ACRN [21]; 5) READ [11]; 6) MAN [38]; 7) CMIN

[42]; 8) ORG [43]; and 9) STVC [27]. CTRL and MCN

employ sliding window strategy to generate video moment

candidates, ROLE and ACRN are algorithms that apply

attention mechanism to align local semantics, MAN and

CMIN are models based on the graph technique, and ORG

and STVC are frameworks for applying graph to understand

relation. It worth to mention that READ is a reinforcement

learning-based method, which is designed for boundary

localization and only returns a boundary value. Therefore,

its performance is only compared on R(1,m).

Experimental results are shown in Table 1, we have

the following observations: 1) Both attention-based meth-

ods, ROLE and ACRN, and reinforcement learning-based

algorithm READ have better performance than that of

CTRL and MCN, which indicates that it is necessary to

understand and integrate local features. 2) The two graph-

based methods, MAN and CMIN beats other baselines on

a great margin, which verifies that it is critical to capture

the structural information. Meanwhile, the performance of

the two relation-based frameworks, ORG and STVC are

not as excellent as expected, which may be due to the

visual indirect relation is too vague to get a higher level

of understanding. 3) Our approach MMRG outperforms

prior methods on both Charades-STA and TACoS. This

manifests that the multi-modal relational graph with pre-

training strategy is effective, which helps to improve the

performance of feature representation to further identify

the differences of video moment candidates with high

repeatability and similarity.

4.4. Ablation Study (RQ2)

To better understand the contribution of different compo-

nents in our framework, we conduct ablation studies on the
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Table 1: Overall performance comparison among various methods on Charades-STA and TACoS datasets.

Charades-STA TACoS

Method
R@1

IoU=0.1

R@1

IoU=0.3

R@1

IoU=0.5

R@5

IoU=0.1

R@5

IoU=0.3

R@5

IoU=0.5

R@1

IoU=0.1

R@1

IoU=0.3

R@1

IoU=0.5

R@5

IoU=0.1

R@5

IoU=0.3

R@5

IoU=0.5

CTRL 80.67% 64.88% 37.54% 88.53% 73.81% 53.50% 76.01% 50.52% 34.02% 81.57% 70.55% 49.39%

MCN 79.11% 66.45% 39.72% 88.75% 75.26% 55.11% 77.85% 49.45% 35.21% 80.72% 71.25% 50.08%

ROLE 84.75% 67.56% 41.08% 90.01% 76.38% 57.38% 79.22% 55.20% 37.42% 81.80% 74.30% 53.27%

ACRN 84.57% 68.25% 40.85% 90.41% 76.92% 57.44% 81.34% 54.24% 36.25% 80.73% 74.76% 53.02%

READ 87.00% 70.24% 42.06% - - - 83.03% 57.53% 38.04% - - -

MAN 86.82% 70.11% 42.35% 91.06% 76.77% 58.01% 83.11% 55.86% 37.82% 82.39% 75.96% 53.96%

CMIN 87.36% 70.55% 42.67% 91.58% 77.39% 58.37% 83.80% 56.26% 37.42% 82.64% 76.29% 54.35%

ORG 87.02% 70.43% 42.73% 91.67% 77.55% 58.58% 83.40% 56.31% 37.37% 82.77% 76.41% 54.58%

STVC 86.25% 69.72% 41.35% 90.68% 76.44% 57.46% 82.66% 55.30% 36.58% 81.54% 75.51% 53.70%

MMRG 88.27% 71.60% 44.25% 92.35% 78.67% 60.22% 85.34% 57.83% 39.28% 84.37% 78.38% 56.34%

Table 2: Performance comparison of MMRG and its variants on Charades-STA and TACoS datasets.

Charades-STA TACoS

Method
R@1

IoU=0.1

R@1

IoU=0.3

R@1

IoU=0.5

R@5

IoU=0.1

R@5

IoU=0.3

R@5

IoU=0.5

R@1

IoU=0.1

R@1

IoU=0.3

R@1

IoU=0.5

R@5

IoU=0.1

R@5

IoU=0.3

R@5

IoU=0.5

Backbone 80.80% 64.38% 37.27% 88.72% 73.27% 53.28% 76.17% 50.28% 34.82% 81.81% 70.33% 49.55%

+GCN 80.34% 64.37% 37.13% 88.35% 73.42% 53.11% 75.42% 50.01% 34.98% 81.55% 70.49% 49.29%

+GAT 82.27% 66.72% 40.22% 90.45% 76.68% 57.24% 78.38% 53.36% 36.72% 82.36% 72.36% 51.30%

+Cross 81.88% 66.35% 39.72% 89.72% 75.39% 56.72% 78.05% 53.11% 36.22% 81.97% 72.32% 51.08%

+STG 83.21% 67.73% 41.72% 89.27% 76.20% 57.09% 80.23% 54.09% 37.44% 81.88% 72.07% 52.11%

+RSTG 84.77% 68.27% 42.07% 90.86% 77.23% 58.37% 82.48% 55.68% 38.57% 82.78% 73.99% 53.56%

+PreAM 87.04% 70.08% 43.73% 91.05% 77.28% 59.38% 83.82% 56.75% 38.27% 83.45% 74.83% 55.18%

+PreCP 86.72% 69.73% 43.58% 91.33% 77.65% 59.86% 84.53% 57.01% 38.88% 83.05% 75.28% 55.86%

MMRG 88.27% 71.60% 44.25% 92.35% 78.67% 60.22% 85.34% 57.83% 39.28% 84.37% 78.38% 56.34%

graph-based visual representation learning and pre-training

tasks. Specifically, we compared our model to its variants:

1) Backbone is a model similar to CTRL, which combines

global and local objects information. The following variants

are all extended based on this method. 2) +GCN and

+GAT are variants of utilizing GCN or GAT to optimize

features for visual graph. 3) +Cross implements cross-

graph attention on visual graph and textual graph. 4) +STG

is the spatio-temporal graph introduced in this paper and

+RSTG designs interaction relation attributes. 5) +PreAM

and +PreCP are two pre-training tasks of attribute masking

and context prediction respectively, and their training is

based on +RSTG.

The performance of MMRG and its variants is shown

in Table 2. We have the following observations: 1)

The variant +GCN has little improvement as compared

to Backbone, which shows that using GCN to capture a

complete visual graph is less effective. 2) The performance

of +GAT is better than that of +GCN, which implies that the

attention mechanism is effective for connecting temporal

and spatial nodes. However, +Cross, which introduces

cross-attention to visual graph and textual graph, performs

worse as compared to +GAT. We suspect that the two graphs

interfere with each other due to the indistinguishability

among spatio-temporal nodes. 3) The performance of

+STG is outstanding, indicating that carefully handling

spatio-temporal nodes is helpful for visual understanding.

Meanwhile, the +RSTG has been further improved due to

being strengthened by the explicit relation, which shows

the richness of the relation information. 4) The two pre-

training tasks +PreAM and +PreCP have better performance

than that of +RSTG, which proves that the customized

pre-training methods are effective for the learning of node

features. Meanwhile, MMRG employs two pre-training

methods and achieves the best performance, which verifies

that two pre-training tasks designed at the node level and

graph level are able to highlight objects and relations and

promote the representation learning performance.

4.5. Qualitative Analysis (RQ3)

The understanding of video and sentence only involves

limited objects, which are closely connected. To gain deep

insight into the impact of objects on retrieval performance,

we exploited micro-level case studies on video moment

candidates with high similarity. Specifically, we randomly

selected two video-language pairs accompanied with the

ground truth of video moment from two datasets. In the

above instance of Fig.3, the given query sentence is “the

person puts a book in a bag”. It is easy to observe that

when the book (i.e., the red bounding box) is completely

putted in the bag, the object “book” is disappeared. In the

bottom instance of Fig.3, the query sentence is “the person

puts down a bag”. When the girl puts down the bag, there is

no interaction between “person” and “bag”.

As revealed in Fig.3, we visualized the performance

of Backbone, +RSTG, and MMRG to analyze the impact
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The�person put�a book in a�bag

17.0 35.7

16.2 29.8

22.3 29.1

Backbone

+RSTG

Ours

Ground True

20.6 28.9

The�person puts�down�a bag

4.3 16.1

6.5 12.3

4.4 9.2

Backbone

+RSTG

Ours

Ground True

4.0 9.9

Figure 3: The performance of Backbone, +RSTG and

MMRG on two instances. Black bars represent retrieved

video moments, while green bars represent the ground truth.

of object relations and pre-training strategies. Accord-

ingly, we have the following observations: 1)+RSTG and

MMRG have obtained better matching video moments

than Backbone, mainly because +RSTG and MMRG can

sensitively perceive dynamic changes in objects and inter-

action patterns. This advantage allows these two models to

optimize the boundary more precisely, which manifests the

significance of capturing objects and their interactions. 2)

The performance of +RSTG is better than that of Backbone.

This is largely because +RSTG narrows down the boundary

to be relevant to the limited objects. 3) MMRG integrates

pre-training tasks into +RSTG to improves the retrieval

performance. This proves the superiority of MMRG in

objects and semantics understanding by employing pre-

training tasks.

To further analyze the interaction pattern among objects,

we zoom in on the moment when the action “put” occurs,

and then calculate the mutual similarity among objects via

learned representation. The visualization is shown in Fig.4,

the whole moment is roughly divided into three stages:

before (1-7), during (8-20) and after (21-30). For each

object before the action is performed, MMRG considers

“people” is closely related to “bag” and “book”, but there

is no strong relation between “book” and “bag”. When

the action occurs, “book” and “bag” have the violent

interaction, and the relevance of them also increases signif-

icantly. Eventually, when the action is completed, “book”

disappears, leaving “person” and “bag” in the scene. It is

worth noting that the disappearance of “book” is appeared

around the 20th step, and the extension of the relevance

curve is smooth. It is probably caused by the introduction

of multi-modal relational graph spreading to multiple hops.

In summary, MMRG has demonstrated its great ability

to capture the interaction pattern among objects, which

improves the discrimination of video moment candidates

Q Th h b k i b

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Relevance of person

Query��sentence The�person put�the�book in a�bag

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

book bag

50

100
Relevance of book

0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

person bag

100
Relevance of bag

0

50

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

person book

Figure 4: The visualization of relevance among objects.

The x-axis represents the timestamp of frame and the y-axis

is the normalized probability of relevance.

with high intra-modal similarity.

5. Conclusions and Future Work

In this paper, we address the cross-modal video moment

retrieval issue by employing a multi-modal relational graph

to identify the differences of video moment candidates

generated from a same video with high intra-modal similar-

ity. Specifically, we first introduce dual-channel relational

graph to form relation-aware representations via message

propagation. Thereafter, customized pre-training tasks are

designed to enhance the visual representation. Finally,

graph matching and boundary regression are employed to

perform the cross-modal retrieval. Extensive experiments

have verified the effectiveness of our proposed solution.

In the future, we are interested in realizing the video

moment retrieval in a personalized manner. As such, the

retrieved results are relevant to the personal interests of

users. Along this line, the personal query history can be

treated as the user-item interactions to better capture a user’s

preference towards video moments.
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