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Figure 1: Lifelong learning of image-conditioned generation. Encountering a new task, traditional training methods forget

how to perform previous tasks (Figure 1 (a)). Hyper-LifelongGAN is a scalable framework addressing catastrophic forgetting.

It can adapt to the new task with few additional parameters, while preserving the knowledge of previous tasks(Figure 1 (b)).

Abstract

Deep neural networks are susceptible to catastrophic

forgetting: when encountering a new task, they can only

remember the new task and fail to preserve its ability to ac-

complish previously learned tasks. In this paper, we study

the problem of lifelong learning for generative models and

propose a novel and generic continual learning framework

Hyper-LifelongGAN which is more scalable compared with

state-of-the-art approaches. Given a sequence of tasks, the

conventional convolutional filters are factorized into the dy-

namic base filters which are generated using task specific

filter generators, and deterministic weight matrix which lin-

early combines the base filters and is shared across different

tasks. Moreover, the shared weight matrix is multiplied by

task specific coefficients to introduce more flexibility in com-

bining task specific base filters differently for different tasks.

Attributed to the novel architecture, the proposed method

can preserve or even improve the generation quality at a

low cost of parameters. We validate Hyper-LifelongGAN on

diverse image-conditioned generation tasks, extensive ab-

lation studies and comparisons with state-of-the-art models

are carried out to show that the proposed approach can ad-

dress catastrophic forgetting effectively.

1. Introduction

The continuous learning ability is one of the hallmarks

of human intelligence. Humans are lifelong learners, we ac-

quire and accumulate knowledge throughout our lives. The

accumulation of knowledge in turn makes us more and more

knowledgeable, and better and better at learning when en-

countering new problems. In contrast to human learning,

modern deep neural networks are susceptible to catastrophic
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forgetting [26]: when adapted to perform new tasks, they

often fail to generalize and cannot maintain their ability to

accomplish previously learned tasks (see Figure 1 (a)). Re-

cent approaches [35, 41, 40] have been proposed for life-

long learning for generative models, and how generative

models can continually learn a sequence of tasks was ex-

plored in these methods. Though progress has been made

towards lifelong learning for generative models, it remains

a challenging area.

The pioneer work addressing catastrophic forgetting in

the generative setting is memory replay [35], namely gener-

ating data of previous tasks using a trained model and treat-

ing these generated data as part of the training examples

in the new tasks. Although alleviating catastrophic forget-

ting by taking advantage of the generative setting, memory

replay is limited to label-conditioned generation scenarios:

when training data for only the current task is accessible, no

conditional image can be accessed and as a result no images

could be generated for replay. More generic continual learn-

ing frameworks [41, 40] have been proposed enabling life-

long learning of image-conditioned generation tasks. Life-

longGAN [41] continually adapts a single trained model to

later tasks, thus the whole model is shared across all tasks.

However, due to the intrinsic differences among tasks, it is

hard to adapt all parameters of a trained model to a new

task. As a result, LifelongGAN is not able to preserve the

generation quality of previous tasks while learning the new

task well. This performance degradation makes it not scal-

able in general. PiggybackGAN [40] addresses the perfor-

mance degradation problem by sacrificing memory storage.

Though it is more parameter efficient compared with train-

ing separate models for each task, the unconstrained filters

bring millions of additional parameters for each new task.

This storage requirement limits its scalability. Therefore,

a more scalable continual learning framework that can pre-

serve the generation quality with no or little sacrifice of stor-

age is valuable.

In this paper, we introduce a generic continual learning

framework Hyper-LifelongGAN (see Figure 1 (b)) that is

more scalable compared with state-of-the-art approaches.

Hypernetwork [13] and knowledge distillation [15] are em-

ployed to address catastrophic forgetting for generative

tasks. First, all the conventional convolutional and decon-

volutional filters in the generator are factorized into a set of

base filters and a weight matrix that linearly combines the

base filters. And instead of learning deterministic base fil-

ters, we learn to generate dynamic base filters from random

noises using hypernetworks. Given a sequence of tasks, dif-

ferent hypernetworks are trained to generate base filters for

different tasks (referred to as task specific filter generators);

while the weight matrix is deterministic, and shared across

all the tasks. Moreover, the shared weight matrix is multi-

plied by task specific coefficients to introduce more flexibil-

ity in combining task specific filters differently for different

tasks. The memory requirement is low since the base filters

in each layer can be generated with just few thousand pa-

rameters, and the weight matrix is shared across all tasks.

To keep the memory of previous tasks, knowledge is ex-

tracted from a previously trained model and distilled to the

model trained for the new task, encouraging the new model

to generate the same output as the previous model.

To summarize, our contributions are as follows. First,

we propose a novel and generic continual learning frame-

work Hyper-LifelongGAN that is more scalable. Second, we

propose to factorize conventional convolutional filters into

dynamic task specific base filters and deterministic task in-

dependent weight matrix. This design enables the proposed

model to preserve or even improve the generation quality of

a sequence of tasks at a low cost of parameters. Third, ex-

tensive ablation studies and comparisons with state-of-the-

art models are carried out across diverse data domains, qual-

itative and quantitative results are provided to illustrate the

capability of our framework to learn new generation tasks

without the catastrophic forgetting of previous tasks.

2. Related Work

Lifelong Learning. For discriminative tasks e.g. clas-

sification, recent efforts [29, 8, 3, 4] have achieved great

success towards continual learning of a sequence of tasks.

Regularization-based approaches were proposed addressing

catastrophic forgetting by regularizing the network param-

eters when learning new tasks [21, 39, 7] or regularizing

the discrepancy between the output of the old and new net-

work using a distillation loss [22, 30, 29, 6]. Modular com-

positional approaches [4, 11, 12] continually learn multi-

ple tasks by combining different submodules, and each task

is solved by a corresponding submodule. Memory buffer

based approaches [25, 8] store a subset of training examples

of previous tasks, thus requiring extra memory at training

time.

For generative tasks, on the other hand, relatively less

work is proposed addressing the problem of catastrophic

forgetting and lifelong learning remains an under-explored

area. Memory replay based approaches [35] form a joint

training set by combining images generated from a model

trained on previous tasks with the training images for the

current task. However, memory replay is limited to label-

conditioned image generation and is not applicable for

image-conditioned generation scenarios since without pre-

vious conditional images, no images could be generated for

replay. LifelongGAN [41] is a generic generative lifelong

learning method regularizing the outputs of the model us-

ing knowledge distillation. However, the proposed auxiliary

data generation techniques cannot fully address the conflicts

caused by sharing the whole model across all tasks, result-

ing in degraded performance of either previous tasks or the
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new task. PiggybackGAN [40] constructs filters of the new

task by making use of filters from previously trained model,

which remain freezed during the learning of the new task.

To allow for more flexibility, unconstrained filters are also

introduced for each new task, which largely increased the

memory requirement. These prior work are not scalable due

to either degraded performance or high storage requirement.

Hypernetworks. There has been increasing interest in

generating parameters of neural networks using hypernet-

works [13, 10, 5, 23, 37]. This idea has been applied to

applications in different research fields such as few shot

learning [27, 33], image segmentation [2, 36] and genera-

tive models [28, 18, 16], which is the focus of our paper.

Producing the entire set of weights of a target generative

model through hypernetworks would be computation and

memory extensive. Therefore, most approaches would only

predict the filters of certain layers. For instance, for U-Net

generator [17], only the decoder would be dynamic, param-

eterized as hypernetworks while the encoder remains deter-

ministic [24]; for Resnet generator [19, 42], there would

be a fixed sub-model while only last few layers are parame-

terized as hypernetworks [34]. Oswald, Henning and Sacra-

mento et al. [32] extend hypernetworks to the setting of life-

long learning. However, their approach is not applicable to

image-conditioned generation and has the following draw-

backs. First, their approach stores the previous task embed-

dings to generate different sets of parameters for different

tasks. Second, their approach generates all parameters in a

layer by using chunk embedding and network partitioning.

As a result, compared with Hyper-LifelongGAN, the output

size of their approach increases a hundredfold. Most impor-

tantly, their approach is not applicable to image-conditioned

generation as memory replay is adopted to continually learn

a sequence of generation tasks.

Hyper-LifelongGAN is a generic and scalable genera-

tive lifelong learning framework, enabling various genera-

tion tasks across different data domains. The architecture

designs of the task specific base filter generators, shared

weight matrix and task specific coefficients contribute to

the high generation quality and low memory requirement,

which make a clear difference from prior works.

3. Method

The goal of lifelong learning is to learn a model perform-

ing a sequence of generation tasks while assuming that the

model is restricted to the training data for only the current

task. We proposed Hyper-LifelongGAN addressing catas-

trophic forgetting for generative models. The overall archi-

tecture is illustrated in Figure 2. Given a sequence of tasks,

Hyper-LifelongGAN decomposes the conventional convo-

lutional and deconvolutional filters into dynamic base fil-

ters, which are generated by task specific filter generators,

and deterministic weight matrix, which is shared across dif-

ferent tasks and linearly combines the generated base filters.

To allow for more flexibility, the shared weight matrix is

multiplied by task specific coefficients to combine the task

specific filters in different ways for different tasks. The pro-

posed Hyper-LifelongGAN is trained using knowledge dis-

tillation: knowledge is extracted from a previously trained

model and distilled to the model trained for the new task,

encouraging the new model to generate the same output as

the previous model.

3.1. Hyper­LifelongGAN

When the tth task Tt comes, the goal is to train a model

Mt that could perform all tasks from task T1 till task Tt

while model Mt is restricted to the training data of the cur-

rent task Tt. A naive approach to continually learn a se-

quence of tasks would be training a separate model for each

task. However this approach is not scalable in general since

the memory requirement increases drastically as new tasks

are added. LifelongGAN [41], on the other hand, learns

a sequence of tasks by sharing the whole model across all

tasks. Due to the intrinsic differences among tasks, it is hard

to adapt all parameters of a trained model to a new task, re-

sulting in degraded performance in either previous tasks or

the new task. Therefore, we propose to factorize the con-

ventional convolutional and deconvolutional filters into a set

of base filters and a weight matrix that linearly combines the

base filters. And as new task comes, new set of base filters

are learned while the weight matrix is not task conditional

and is shared across all tasks. In this way, certain flexibility

is granted to each task and at the meantime, extra parame-

ters introduced for each task are largely reduced. Now we

introduce the details of the filter factorization.

Convolutional filter factorization. Let the generator

and discriminator be Gt and D in the model Mt. As-

sume the generator Gt consists of L layers of filters {F ℓ
t ∈

R
sℓ
w
×sℓ

h
×cℓ

in
×cℓ

out}Lℓ=1 where ℓ denotes the index of layers,

sℓw is the the kernel width, sℓh is the the kernel height, cℓin
is the number of input channels, and cℓout is the number of

output channels. For simplicity, notation ℓ is dropped, we

denote the filters using notation Ft. Then Ft is factorized

into a set of base filters Bt ∈ R
(sw×sh)×K and a weight

matrix Wt ∈ R
K×(cin×cout). As a result,

Ft = R(Bt ∗ Wt), (1)

where R is the reshaping operation that reshapes the output

to 4D tensor.

To allow for greater flexibility in learning each task, Mt

maintains different sets of base filters {Bi
t}

t
i=1 for tasks

from task T1 till task Tt. And to make the model param-

eter efficient, weight matrix Wt is shared across all tasks

from task T1 till task Tt. By multiplying base filters by the
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Figure 2: Hyper-LifelongGAN. Our method factorizes conventional convolutional filters into dynamic base filters, which are

generated by task specific filter generators, and deterministic weight matrix, which is shared across all tasks. Moreover, task

specific coefficients are adopted to introduce more flexibility in combining base filters differently for each task. To prevent

the model from catastrophic forgetting, knowledge distillation is adopted to encourage the two networks to produce similar

outputs.

shared weight matrix, Mt would have different sets of filters

{F i
t }

t
i=1 for different tasks, namely

F i
t = R(Bi

t ∗ Wt). (2)

Task specific filter generator. The above mentioned fil-

ter factorization though grants greater flexibility in learning

different tasks, largely reduces the number filters learned

without constraints (K filters and K is often very small to

reduce the number of parameters). To address this problem,

we propose to generate base filters {Bi
t}

t
i=1 from random

noise z using task specific filter generators {Hi
t}

t
i=1 for all

tasks from T1 till task Tt, and Hi
t is the base filter generator

of model Mt for the task Ti. Specifically,

Bi
t = Hi

t(z). (3)

By using filter generators, the number of base filters are

no longer fixed and confined to K. Many more sets of

base filters could be sampled from the vast parameter space

by sampling different z from some pre-defined distribution,

e.g. N (0, 1).
Since the weight matrix Wt is shared across all tasks,

different base filters of different tasks are combined in the

same way. It is more desirable to combine the base filters

of each task differently. However, different from base fil-

ters, having a separate weight matrix for each task would

be memory extensive. The reason is that the base filters

in each layer could be generated with just a few thousand

of parameters, while extra millions of parameters are need

for each task to maintain task specific weight matrices.

Therefore, we introduce the deterministic task specific co-

efficients {Ci
t ∈ R

K×K}ti=1, multiplying with the shared

weight matrix to allow for different combinations of base

filters for different tasks. Specifically,

Wi
t = Ci

t ∗ Wt

F i
t = R(Bi

t ∗ Wi
t).

(4)

As a result, Gt can be viewed as a generator consisting of

t sub-generators {Gi
t}

t
i=1, where the sub-generator Gi

t gen-

erates image for task Ti at the tth time step.

3.2. Learning Hyper­LifelongGAN

In this paper, we explore two conditional generation sce-

narios: (1) Paired image generation, in which the training

set for task Tt is St = {(Ai,t,Bi,t)|Ai,t ∈ At,Bi,t ∈

Bt}
Nt

i=1 where Nt is the number of training instances in the
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training set, and At and Bt denote the domain of condi-

tional images and ground truth images respectively. For

each conditional image Ai,t, its corresponding ground-

truth image Bi,t is provided. (2) Unpaired image gen-

eration, in which the training set for task Tt is St =

{({Ai,t}
Na

t

i=1, {Bi,t}
Nb

t

i=1)|Ai,t ∈ At,Bi,t ∈ Bt}. Differ-

ent from paired image generation, the correspondence be-

tween Ai,t and Bi,t does not exist. For simplicity, notations

At,Bt are used referring to an instance from the respective

domain.

Let Mt−1 be the model trained for task Tt−1. Given the

new task Tt, to prevent the current model Mt from forget-

ting previous tasks, the data of current task St is inputted

to both Mt and Mt−1, and knowledge distillation loss is

adopted to distill knowledge from Mt−1 to Mt, encourag-

ing the outputs of Mt−1 and Mt to be the same. First, the

outputs of the sub-generators of model Mt−1 are computed

as:

B̃
1
t−1 = G1

t−1(At, z), ..., B̃
i
t−1 = Gi

t−1(At, z),

..., B̃t−1
t−1 = Gt−1

t−1(At, z).
(5)

And the corresponding t − 1 outputs of the sub-

generators of model Mt are computed as:

B̃
1
t = G1

t (At, z), ..., B̃
i
t = Gi

t(At, z),

..., B̃t−1
t = Gt−1

t (At, z).
(6)

Given these outputs, the knowledge distillation loss is

defined as:

Lt
distill =

t−1∑

i=1

||B̃i
t−1 − B̃

i
t||1. (7)

Moreover, St is also inputted to Mt to minimize the loss

Ltask
1 related with current task Tt, namely

B̃
t
t = Gt

t(At, z),

Lt
task = Ltask(At, B

t
t, B̃

t
t).

(8)

And the total loss of Hyper-LifelongGAN at the tth time

step is defined as:

Lt
total = Lt

task + βLt
distill, (9)

where β is the loss weight for knowledge distillation.

Data for Knowledge Distillation. There are conflicts

in Equation 9: given the same input (At, z), there are two

1For example, if the tth task is conditional image generation based on

Pix2Pix [17], Lt

task
= LcGAN(Gt

t
, D) + αLL1(G

t
t
), which is the exact

loss used in Pix2Pix.

training goals Lt
task and Lt

distill. Lt
task would encourage

the model to produce an output belonging to domain Bt,

while Lt
distill encourages the model to produce an output

belonging to previous domains, e.g. Bt−1. Though the

task specific base filters could alleviate the conflicts, it still

would be beneficial to use different inputs for the two losses.

Therefore, we propose to use real image Bt as input for

knowledge distillation Lt
distill, while the input remains At

for learning the new task Lt
task. In other words, the con-

ditional and real images are swapped for the two training

losses (see Figure 2):

Lt
total = Ltask(At, B

t
t, G

t
t(At, z))

+ β

t−1∑

i=1

||Gi
t−1(Bt, z)−Gi

t(Bt, z)||1.
(10)

4. Experiments

We evaluate Hyper-LifelongGAN under two settings: (1)

paired image generation, and (2) unpaired image genera-

tion. First, ablation studies on the number of base filters

K, different types of input data for knowledge distillation

and model components are conducted. Then we compare

our model with 5 baselines, including the state-of-the-art

approaches LifelongGAN [41] and PiggybackGAN [40].

Training Details. All the generative models are trained on

images of size 128×128. We use the Tensorflow [1] frame-

work with Adam optimizer [20]. The loss weight for knowl-

edge distillation β is set to 100.0 for all experiments. For

Hyper-LifelongGAN and all baseline methods, we use the

Resnet generator [19, 42] with 6 residual blocks. The length

of random noise z is set to 64, the task specific filter genera-

tor is a MLP with hidden layer of size 64 in all experiments.

Baseline Models. We compare Hyper-LifelongGAN to the

following baseline models: (a) Hyper-Full: The model is

trained on single task, the generator is decomposed into the

base filter generator and the weight matrix. (b) Full: The

model is trained on single task, and the generator consists

of conventional convolutional filters. (c) Sequential Fine-

tuning (SFT): The model is fine-tuned in a sequential man-

ner, with parameters initialized from the model trained/fine-

tuned on the previous task. (d) PiggybackGAN: We trained

PiggybackGAN [40] with λ = 0.5 in all experiments.

(d) LifelongGAN++: We propose an improved Lifelong-

GAN [41] baseline, using task-conditional instance normal-

ization as Hyper-LifelongGAN for more fair comparisons.

Quantitative Metrics. Two metrics Acc and Frchet Incep-

tion Distance (FID) [14] are used to evaluate the generation

quality. Acc is the classification accuracy of the classifier

trained on real images and evaluated on generated images

(higher Acc indicates better generation results). FID is an

extensively used metric to compare the statistics of gener-
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ated images to the ground-truth images (lower FID indicates

higher generation quality).

4.1. Paired Image­conditioned Generation

We first demonstrate the effectiveness of Hyper-

LifelongGAN on a sequence of 4 paired image generation

tasks on challenging datasets with large variations across

different modalities [9, 17, 31, 38]. The first task is segmen-

tations → street photos, the second task is maps → aerial

photos, the third task is semantic labels → facades, and the

fourth task is edges → handbag photos.

Ablation study on the base filter size K. First we con-

duct an ablation study on the choice of different values of

K, which determines the number of additional parameters

needed for each subsequent task. As observed from the

quantitative result in Table 1, the model performs best when

K = 7. Therefore, K is set to 7 in all later experiments.

K=3 K=5 K=7

Acc 66.00 76.60 75.40

FID 72.96 72.25 57.58

Table 1: Ablation study on K. Different models are trained

and evaluated on the initial tasks cityscapes, and corre-

sponding Acc and FID are reported.

Ablation study on the data for knowledge distillation.

We explored three types of inputs for computing the knowl-

edge distillation loss Lt
distill, which are listed below.

(1) Unswap. Conditional image At is inputted to the

model for computing both the distillation loss Lt
distill and

the current task loss Lt
task.

(2) Swap. When computing the losses Lt
distill and Lt

task,

conditional image and real image are swapped. Namely real

image Bt is used as input for computing the distillation loss

Lt
distill and conditional image At is used as input for com-

puting the current task loss Lt
task.

(3) Random noise. Random noise is sampled and in-

putted to the model for computing the distillation loss

Lt
distill, and conditional image At is used as input for com-

puting the current task loss Lt
task.

It is observed from Table 2 that swapping conditional im-

age and real image for computing the two losses Lt
distill and

Lt
task provides best results as it avoids the conflicting train-

ing objectives. And unlike random noise, it provides inputs

with variations across different modalities, which could be

beneficial for lifelong learning. In all later experiments, we

adopt the swapping strategy.

Ablation study on the model components. We also

conduct an ablation study on the model components as

shown in Table 3, to test whether each component of

our model is necessary. Task specific base filters denotes

random

noise

unswap

(At)

swap

(Bt)

Acc 91.92 91.27 92.55

FID 110.84 118.98 101.43

Table 2: Ablation study on the data for knowledge distilla-

tion. Different models are trained and evaluated on all tasks,

average Acc and FID score over all 4 tasks are reported.

whether there is a separate set of base filters for each task.

Dynamic base filters denotes whether the base filters are

dynamic (generated by filter generators). Coeff denotes

whether task specific coefficients are used. For instance, the

first row in Table 3 refers to the baseline that the base filters

are generated using hypernetworks and are shared across all

tasks, and coefficients are not adopted.

dynamic

base filters

task specific

base filters
coeff Acc FID

✗ ✗ ✗ 89.58 137.99

✓ ✗ ✗ 89.60 114.73

✓ ✓ ✗ 91.77 105.42

✓ ✓ ✓ 92.55 101.43

Table 3: Ablation study on model components. Different

models are trained and evaluated on all tasks, average Acc

and FID score over all 4 tasks are reported.

Comparison with SOTA methods and baselines. We

compare Hyper-LifelongGAN with two most recent state-

of-the-art approaches PiggybackGAN [40] and an improved

version of LifelongGAN [41], and three baselines Hyper-

Full, Full, and Sequential Fine-tuning (SFT). Baseline Full

is provided since it serves as the “upper bound” approach

for LifelongGAN++ and PiggybackGAN, both of which

are built on the conventional convolutional filters as in

Pix2Pix [17] as the Full model.

The visualization of images generated from all ap-

proaches are shown in Figure 3 and the quantitative eval-

uations of all approaches are summarized in Table 4. It

is observed that the sequentially fine-tuned model suffers

catastrophic forgetting: after the final task is learned, it

completely forgets all previous tasks and can only generate

images with edges2handbags-like patterns. Both Lifelong-

GAN++ and PiggybackGAN can remember previous tasks

while learning the new task. However, LifelongGAN++

cannot learn the new task well while preserving the per-

formance of previous tasks, and the performance of previ-

ous tasks may degrade while adapting the model to the new

task. Though PiggybackGAN achieves a performance on

par with the Full model, it introduces millions of additional

parameters for each new task. While Hyper-LifelongGAN
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Figure 3: Visualizations of images generated from different approaches for paired image-conditioned generation. Sequential

Fine-tuning suffers from catastrophic forgetting: when we add new tasks, the network forgets how to perform previous

tasks. Hyper-LifelongGAN generates high quality images for both previous tasks and the new task. It can well preserve the

knowledge from previous tasks while learning the current task well at a low memory requirement.

Hyper

Full

Hyper

LifelongGAN
SFT

Acc 90.30 92.55 25.46

FID 100.53 101.43 250.37

Full LifelongGAN++ PiggybackGAN

Acc 89.42 89.58 88.53

FID 126.01 137.99 128.23

Table 4: Quantitative evaluation among different ap-

proaches for continual learning of paired image-conditioned

generation tasks. Different models are trained and evaluated

on all tasks, average Acc and FID score over all 4 tasks are

reported.

can better preserve or even increase the generation quality

of given tasks (e.g. cityscapes and maps) at a low memory

requirement: for most layers in Hyper-LifelongGAN (be-

sides the first and the last layer), ∼8k parameters are intro-

duced for each new task.

4.2. Unpaired Image­conditioned Generation

We also apply Hyper-LifelongGAN to another challeng-

ing scenario: unpaired image-conditioned generation, trans-

lating images from domain A to domain B and the corre-

spondence between domain A and domain B does not exist.

We explored a special situation where two tasks in a

given sequence share the same input domain but have dif-

ferent output domains, e.g. T1 is Photo → Monet Paintings

and T2 is Photo → Ukiyo-e Paintings. The training goals of

the two tasks completely conflicts each other: the inputs are

exactly the same while output are different. The goal is to

verify whether Hyper-LifelongGAN is generic and power-

ful enough to handle this special case well.

Comparison with SOTA methods and baselines.

Same as paired image-conditioned generation, we compare

Hyper-LifelongGAN with two most recent state-of-the-art

approaches PiggybackGAN [40] and an improved version

of LifelongGAN [41], and three baselines Hyper-Full, Full,

and Sequential Fine-tuning (SFT). Baseline Full is provided

since it serves as the “upper bound” approach for Lifelong-

GAN++ and PiggybackGAN, both of which are built on the

conventional convolutional filters as in CycleGAN [42] as

the Full model.

The visualization of images generated from all ap-

proaches are shown in Figure 4 and the quantitative eval-

uations of all approaches are summarized in Table 6. Since

the two tasks share the same input space, though SFT can

generate realistic images depicting the correct contents, it

can only generate images with Ukiyoe style and completely

forgets the Monet style learned in the initial task. Both

LifelongGAN++ and PiggybackGAN can generating im-

ages with Monet and Ukiyoe styles. However, the smaller

gap between Hyper-LifelongGAN and Hyper-Full indicates

that Hyper-LifelongGAN can better preserve knowledge ac-
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Hyper-Full
Hyper-

LifelongGAN
Full

Lifelong-

GAN++

Piggyback-

GAN
SFT

Task 1 6.27M 6.27M 7.84M 7.84M 7.84M 6.27M

Task 2 12.54M 6.46M 15.68M 7.85M 12.22M 6.27M

Additional 6.27M 0.19M 7.84M 0.01M 4.38M 0M

Table 5: The number of parameters of each model. This table shows the size of the generator for unpaired generation.

Additional parameters needed for each subsequent task of each model are shown in the last row.

Hyper Full Full SFTGround-truth
domain B generated images generated images generated images

T
a
s
k
1

T
a
s
k
2

domain A
Hyper-LifelongGAN
generated images

LifelongGAN++
generated images

PiggybackGAN
generated images

Figure 4: Visualizations of images generated from different approaches for unpaired image-conditioned generation. Sequen-

tial Fine-tuning suffers from catastrophic forgetting: when learning the Ukiyoe style, it forgets the Monet style. Hyper-

LifelongGAN generates high quality images depicting correct styles for both tasks. It can well preserve the knowledge from

previous tasks while learning the current task well at a low memory requirement.

Hyper

Full

Hyper

LifelongGAN
SFT

Acc 72.90 73.30 50.00

FID 98.95 96.79 139.03

Full LifelongGAN++ PiggybackGAN

Acc 72.30 70.17 70.51

FID 102.95 110.60 104.51

Table 6: Quantitative evaluation among different ap-

proaches for continual learning of unpaired image-

conditioned generation tasks. Different models are trained

and evaluated on all tasks, average Acc and FID score over

all 2 tasks are reported.

quired from previous tasks and learn the current task well.

With a freezed weights of previous task, PiggybackGAN is

able to maintain the exact performance for previous tasks.

However, as observed from Table 6, it is possible for Hyper-

LifelongGAN to improve the generation quality compared

with separate models trained for each task.

Parameter efficiency. The parameter efficiency of dif-

ferent models for unpaired generation are shown in Table 5.

Hyper-LifelongGAN requires additional 0.19M parameters

for each new task. When computing distillation loss, restor-

ing previous model also requires additional 0.19M param-

eters. However, once the model is learned, previous model

can be discarded. Hyper-LifelongGAN is more scalable

since it can best maintain the generation quality at a low

cost of parameters.

5. Conclusion

A generic and scalable lifelong learning algorithm

Hyper-LifelongGAN for generative models is proposed in

this paper. It decomposes the conventional convolutional

filters into the dynamic task specific base filters and a de-

terministic generic weight matrix. Attributed to the novel

architecture, fine details in each task can be well captured

and learned, and information in previous tasks can be well

preserved. Moreover, since the weight matrix is shared

across all tasks and dynamic base filters in each layer can

be generated with just few thousand parameters, the mem-

ory requirement of Hyper-LifelongGAN is low. As a re-

sult, compared with previous state-of-the-art approaches,

Hyper-LifelongGAN is more scalable as it can generate

high quality images for all tasks at a low cost of parame-

ters. The proposed approach is validated on various image-

conditioned generation tasks across different domains, and

the qualitative and quantitative results are provided to show

that Hyper-LifelongGAN addresses catastrophic forgetting

effectively and efficiently.
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