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Abstract

Gait is considered an attractive biometric identifier for

its non-invasive and non-cooperative features compared

with other biometric identifiers such as fingerprint and

iris. At present, cross-view gait recognition methods always

establish representations from various deep convolutional

networks for recognition and ignore the potential dynamical

information of the gait sequences. If assuming that pedes-

trians have different walking patterns, gait recognition can

be performed by calculating their dynamical features from

each view. This paper introduces the Koopman operator

theory to gait recognition, which can find an embedding s-

pace for a global linear approximation of a nonlinear dy-

namical system. Furthermore, a novel framework based on

convolutional variational autoencoder and deep Koopman

embedding is proposed to approximate the Koopman op-

erators, which is used as dynamical features from the lin-

earized embedding space for cross-view gait recognition. It

gives solid physical interpretability for a gait recognition

system. Experiments on a large public dataset, OU-MVLP,

prove the effectiveness of the proposed method.

1. Introduction

Gait recognition aims to identify people by recognizing

their body shape and walking patterns. Compared to other

biometrics such as fingerprint or iris, gait requires relatively

low cooperation and can be performed at a longer distance.

Besides, it is also difficult to camouflage. Therefore, gait

recognition can be applied in some special senses such as

criminal investigation [28].

Although the progress is encouraging, gait recognition

still suffers from many external factors such as carrying

condition, varying pace, clothing, and camera viewpoints,

which degrade the performance of gait recognition system-

s. Among all these unfavorable factors, camera viewpoints

could be the most tricky one [43]. Prior arts proved that the
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Figure 1. Previous works focus on feature fusion of gait silhouette

sequences and search for discriminative space where distance is

small for the feature pair with the same identity (a). We calcu-

late dynamical features in the Koopman space where gait images

evolve linearly (b), and then we recognize them from their dynam-

ical features.

performance of a single-view gait recognition system would

drop drastically if the viewpoint is changed [43, 34].

To solve these problems, many deep learning model-

s have been proposed for cross-view gait recognition and

achieved great performances. In general, such approaches

can be grouped into two categories, i.e. appearance-based

approaches and model-based approaches, respectively. The

former [43, 5, 33, 50, 45] is mainstream for gait recognition

in the past few years. These methods extract features from

gait silhouette images and optimize the intra-individual dis-

tance in the feature space by metric learning loss functions

without gait cycle modeling. In addition, temporal fusion

units [6, 9, 44, 5, 8, 23] and part-division units [17, 5, 8, 50]

are proposed to combine features of silhouette sequences

and local parts.

The model-based gait recognition [2, 22, 24] focus on re-

constructing body structures from gait sequences in a math-

ematical manner. A three-dimensional model conveys more

information than a two-dimensional one and can be con-
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structed to represent the gait pattern. Therefore, it can

achieve acceptable performance against viewpoints varia-

tion in theory. This point is also supported by some biome-

chanical gait analysis [14, 15]. However, the performances

of such approaches are vulnerable to the accuracy of pose

estimation and the quality of silhouette sequences, which

limited their development.

In general, appearance-based methods are good at fea-

ture representation but suffer from insufficient data, while

model-based approaches are more robust to view differ-

ences but challenging to construct. Although deep con-

volutional neural networks (ConvNets) can provide a ro-

bust feature extractor and achieve excellent performance in

controlled scenarios, exiting models still cannot deal with

large view differences or variations of clothing and article-

carrying very well. Because, in essence, ConvNet is still a

two-dimensional template, and the human body is a three-

dimensional object. It is not surprising that even having the

exact person’s data, the model still cannot deal with his/her

2D projections that are not included in the training set. This

issue is also known as the ill-posed problem of computer

vision.

Inspired by works on inertial sensor-based gait analy-

sis [29, 4], biomechanical gait analysis [14] and dynamical

analysis of human gait [3], we realize that dynamical fea-

tures are competitive in gait recognition since it models the

essence of human gait, the motion process, rather than pure

human shapes. Therefore, different from most existing deep

learning methods, we explore cross-view gait recognition

from a dynamical system perspective. More specifically,

we introduce the Koopman theory, which is a popular tool

for analyzing nonlinear systems in the literature of fluid me-

chanics [31, 42]. In fact, the Koopman theory has been al-

ready applied to computer vision as video background sepa-

rations [10], image spoofing [37], and motion detection [7].

As for gait recognition, the most relevant work is by Wang

et al. [39], in which windowed-dynamic mode decomposi-

tion is applied for generating gait energy images. However,

only the static gait feature is investigated in their work.

As shown in Figure 1, the Koopman theory focuses on

the systematic linear representation of nonlinear systems,

which provides a new way of representing the walk cycles

of gait. We propose a novel framework for cross-view gait

recognition by approximating Koopman operator (see Fig-

ure 2). First, aligned silhouettes are fed into a convolutional

variational auto-encoder (VAE) for image-level encoding.

Then, we enforce additional constraints and loss function-

s [26] to identify Koopman operators where the dynamics

evolve linearly following. Finally, a fully-connected net-

work is trained for final gait representation from the Koop-

man matrix.

In summary, we make the following three major contri-

butions.

• We introduce the Koopman theory to dynamic feature

extraction from gait silhouettes. To our knowledge,

this is the first study to apply Koopman analysis.

• We propose a novel framework for cross-view gait

recognition by integrating convolutional variational

autoencoder and deep Koopman embedding.

• We conduct experiments on a widely used large gait

database, OU-MVLP [36]. The results prove the ef-

fectiveness of our method, which makes an essential

contribution to understanding the connections between

gait recognition and human walking dynamics.

2. Related Work

In this section, we will give a brief introduction to recen-

t works on gait recognition. Before the deep learning er-

a, time series analysis methods are applied in some works,

such as Auto-regressive Modeling [38] and Hidden Markov

Mode [25], for dynamics modeling. These models usual-

ly have strong assumptions, while they also cannot fit non-

linear systems well. In the deep learning era, ConvNet-

s [21] has been proved successful in numerous computer

vision tasks, and it has also been adopted for gait recogni-

tion and achieved admirable performance. In general, the

ConvNet based approaches can be grouped into two cate-

gories, appearance-based approaches and model-based ap-

proaches. Meanwhile, according to the type of input data,

the proposed works can also be grouped into template-based

approaches and sequence-based approaches.

Most template-based methods applied ConvNets to ex-

tract gait features from a single gait image, such as the

Gait Energy Images (GEI) [11] or other GEI-like tem-

plate images [1]. Wu et al. [43] proposed three Con-

vNets with different architectures and conducted a series

of experiments that significantly improved cross-view gait

recognition performance. Similar ConvNets can be found

in [32, 48, 49]. Meanwhile, some generative models are al-

so proposed to transform gait images from one view to an-

other, such as auto-encoder [47] and generative adversarial

network [46, 12, 41].

Some works establish the model directly from the gait

silhouette sequence rather than the GEI. They apply tem-

poral models to encode information across time, such as

Feature Map Pooling [6], Long Short Term Memory [9],

and three-dimensional ConvNet [44]. Some latest works on

large gait databases present competitive performance. Chao

et al.[5] presented a novel perspective regarding gait as a

set of silhouettes rather than continuous sequences. They

believe that the silhouette’s appearance contains position in-

formation, which is a replacement of temporal information.

Thus, they apply a simple ConvNet to extract frame-level

gait features from the silhouette and then use a pooling op-

eration to aggregate frame-level features into a single set-
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level feature. Zhang et al. [50] proposed a model combined

with ConvNets for single image feature extraction and LST-

M attention models for attention scores on the frame-level

ConvNet. Fan et al. [8] proposed a novel part-based model

with a micro-motion capture module, which also provides

an approach of temporal modeling.

Recently, some works focus on model-based gait recog-

nition methods [2, 22, 24]. They reconstruct mathematical

structures of the human body from gait image sequences.

Three-dimensional data of human walking can be construct-

ed, and it conveys more information than two-dimensional

data. Therefore, it can solve the cross-view problem with

a three-dimensional model rotation. However, it suffers ex-

cessive details, which degrades the performance of cross-

view gait recognition.

3. The Koopman Operators

In this section, we present the basics of Koopman opera-

tors [31] and extending dynamic mode decomposition [42].

The Koopman operator is a linear but infinite-dimensional

operator, approximate by a data-driven method. For a non-

linear dynamical system, the Koopman observation func-

tions map the original state space to an embedding space

where the dynamics would evolve universally linearly. Ex-

tended dynamic mode decomposition (EDMD) is a method

that approximates the Koopman eigenvalue, eigenfunction,

and mode tuples. The EDMD procedure requires two pre-

requisites: a data set of snapshots and a dictionary of obser-

vation functions.

Given a discrete-time dynamical system, xt ∈ M at the

time step t, described by:

xt+1 = F (xt) (1)

where F represents the dynamics that map the state of the

system forward in time. Koopman theory provides an alter-

native description of dynamical systems in terms of the evo-

lution of functions, that is Koopman operator K, which is an

infinite-dimensional linear operator. Denote eigenfunction-

s as ϕp : M → F and eigenvalues λp of the Koopman

operator K, we have

Kϕp(xt) = λpϕp(xt), p = 1, 2, . . . (2)

Consider a vector-valued function g : M → F . K maps

g into a new function Kg, satisfying:

Kg(xt) = g(F (xt)) (3)

If g lies within the span of the eigenfunctions ϕp, g can

be expanded in terms of eigenfunctions as

g(xt) =

∞∑

p=1

ϕp(xt)vp (4)

Then we have

g(F (xt)) = Kg(xt)

=
∞∑

p=1

Kϕp(xt)vp

=

∞∑

p=1

λpϕp(xt)vp

(5)

Therefore, the dynamic of the system is linear if we re-

gard λp as coefficients:

g(F (xt)) = Kg(xt) (6)

where the Koopman operator K will yield a matrix K to

the subspace spanned by ϕp. Conventionally, observation

functions g can be determined by hand-designed methods

from the knowledge of underlying physics. Then, the sys-

tem identification problem can be transformed into finding

the Koopman matrix K, which can be solved by linear re-

gression given collected numerical data. In summary, the

Koopman operator theory focuses on the linear representa-

tion of a nonlinear system, capturing the full information of

the original nonlinear system.

4. Proposed Approach

4.1. Problem Formulation

Given a sequence of gait silhouettes, it can be regarded

as time sequence data {xt}, where t ∈ [1, 2, ...,M ], and M

is the number of frames in this gait sequence. The Koopman

theory indicates that by representing a nonlinear dynamic-

s system in linear space with Koopman operator, predic-

tion for linear systems can be used for system state analy-

sis. Suppose we regard human walking as dynamic systems

by assuming pedestrians have unique walking patterns. In

that case, we can calculate different Koopman matrix Ki for

subject i from their gait silhouette sequences {xi,t}:

g(xi,t+1) = Kig(xi,t) (7)

Once Ki can be estimated from {xi,t} via the least-

squares solution, we can recognize the identities of pedes-

trians after comparing the similarity of estimated walking

patterns K̂i as:

K̂T
i = LS(Φ({xi,t})) (8)

where Φ is a convolutional neural network representing the

observation functions g, and LS stands for the least-squares

solution. Therefore, we formulate the gait recognition task

as follows:

feati = Ψ(LS(Φ({xi,t}))) (9)
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Figure 2. The framework of our proposed method. In training step one, the OFA and the KMM module are trained. In training step two,

only parameters in the DFE module are trained with parameters in OFA frozen.

where Ψ is a fully connected network that transforms the

estimated Koopman matrix K̂i into a new feature in a dis-

criminative space for individual identification.

Besides, the estimated Koopman matrix K̂i can also be

used to predict the future since it contains the original sys-

tem’s information. In our model, the future images of a

pedestrian {˜̂xi,t} can be predicted as:

˜̂xi,t+T = K̂T
i Φ(xi,t) (10)

4.2. Model Architecture

Our model consists of three key components, including

the Observation Function Approximating module (OFA),

the Koopman Matrix Memory (KMM), and the Discrimi-

native Feature Extractor module (DFE).

In the OFA module, a variational auto-encoder

(VAE) [20] with convolutional layers is applied to leverage

the power of deep learning to represent eigenfunctions of

the Koopman operator. The KMM module contains learn-

able parameters Ki for each individual in the training set,

which can be trained via backpropagation. In the DFE mod-

ule, a simple fully-connected network is used to transform

the estimated Koopman matrices into a discriminative space

for cross-view recognition. The model is illustrated in Fig-

ure 2.

Observation Functions Approximating

In the Observation Functions Approximating module,

the input data is an aligned gait silhouette sequence. An im-

age xi,t with identity i at time step t is fed into an encoder

Φ,

zi,t = Φ(xi,t) (11)

The encoder Φ contains six convolutional layers and t-

wo fully-connected layers, shown in Table 1. After fully-

connected layers, the network gives a mean vector µ and

a standard deviation vectors σ. Both of them are D-

dimensional. Then we get the code of xi,t sampled from

the distribution N(µ, σ2). The encoder Φ aims to transform

original input data xi,t ∈ R
n into Koopman space zi,t ∈ F

with the help of non-linear transformation of deep network

instead of original observation functions. The output size
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Table 1. The architecture of the encoder Φ, the decoder Φ−1 and

the fully connected network Ψ. Activation function ReLUs are

skipped after each convolutional and fully-connected layer except

FC 2 and FC 7. Batch normalization layers after FC 5 and FC 6 are

also skipped. The strings following each convolutional layer are

formatted as the filters’ size, the dimensions of the feature maps.

Conv stands for convolution operator, and Deconv stands for 2D

transposed convolution operator, while outpadding stands for the

additional size added to one side of the output shape.

Layers Architecture

Conv 1 5× 5, 8, padding 2

Conv 2 3× 3, 8, stride 2, padding 1

Conv 3 3× 3, 16, padding 1

Conv 4 3× 3, 16, stride 2, padding 1

Conv 5 3× 3, 32, padding 1

Conv 6 3× 3, 32, stride 2, padding 1

FC 1 32× 8× 8 to 1024

FC 2 1024 to 2D

FC 3 D to 1024

FC 4 1024 to 32× 8× 8
Deconv 1 3× 3, 32, stride 2, padding 1, outpadding 1

Deconv 2 3× 3, 32, padding 1

Deconv 3 3× 3, 16, stride 2, padding 1, outpadding 1

Deconv 4 3× 3, 16, padding 1

Deconv 5 3× 3, 8, stride 2, padding 1, outpadding 1

Deconv 6 5× 5, 8, padding 2

FC 5 2*D to 4096

FC 6 4096 to 2048

FC 7 2048 to 512

for Φ is D, which means that in this work, we set F = R
D.

D is a hyperparameter of this model, which can be decided

experimentally. In this work, we set D = 128. We hold the

idea that a 128-dimensional space is enough to approximate

the Koopman matrix for recognition because the gait cycle

is a relatively simple dynamical system.

A decoder Φ−1 is applied to ensure that the code zi,t in

the Koopman space keeps most of the useful information in

original images, rather than converging on outliers such as

zeros, while the architecture is also shown in Table 1,

x̃i,t = Φ−1(zi,t) (12)

This encoder-decoder module extracts human walking

patterns by transforming original gait sequences into the

Koopman space. Instead of hand-designed observation

functions, an encoder-decoder structure is capable of repre-

senting any arbitrary function, including desired Koopman

eigenfunctions [26]. Therefore, our model can accurately fit

human walking dynamics without hand-designed functions.

Koopman Matrix Memory

We assume that individuals have unique walking pattern-

s. Therefore, their Koopman matrices should be the same

while walking at an even pace. To achieve this assump-

tion in the training phase, a Koopman Matrix Memory K is

constructed for the training dataset. K = [Ki] is a learn-

able parameter matrix, trained via backpropagation from

predicting the next frame in the same gait sequence. Each

individual in the training set has one unique Ki, which is a

D ×D matrix and initialized randomly. After an input gait

sequence X = [xi,t] is encoded into Z = [zi,t], Ki is used

to predict the state for the next snapshot in the Koopman

space by

[ẑi,2, ẑi,3, ..., ẑi,t+1] = Ki[zi,1, zi,2, ..., zi,t] (13)

Ki is directly loaded from Koopman Matrix Memory K.

In this way, it is ensured that input gait sequences with dif-

ferent view angles can be encoded into the same space. It

should be noticed that the Koopman Matrix Memory K is

only used for training the OFA module. After parameters

in the OFA module are frozen, this KMM module will be

removed from the model and not be used.

Discriminative Feature Extractor

Finally, a simple fully connected network Ψ transforms

the estimated Koopman matrix K̂i into a new feature in a

discriminative space:

feati = Ψ(K̂i) (14)

where Euclidean distance can be applied to measure the

similarity of two features. It should also be noticed that

the input data K̂i is calculated via the least-squares estima-

tion shown in Equation 8, rather than Ki from the Koopman

Matrix Memory. The architecture of Ψ is listed in Table 1.

4.3. Loss Functions

The reconstruction accuracy of the autoencoder in the

OFA module is achieved to reduce the spatial information

lost. LΦ refers to the difference between the original gait

silhouette sequences and the recovered gait silhouette se-

quences from linear space, following:

LΦ = ‖xi,t − Φ−1(Φ(xi,t))‖ (15)

Meanwhile, an additional loss Lµ,σ is applied to enhance

the model generation ability [20], which tries to push the

distributions as close as possible to unit Gaussian,

Lµ,σ2 = KL(N(µ, σ2)‖N(0, 1)) (16)

where KL stands for Kullback-Leibler divergence.
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According to the Koopman theory [31, 42], we learn the

linear dynamics Ki to ensure linear dynamics: Φ(xi,t+1) =
KiΦ(xi,t). More generally, we enforce linear prediction

over S time steps with the loss:

Llinear = ‖Φ(xi,t+S)−KS
i Φ(xi,t)‖ (17)

In addition, future gait images are also need to be pre-

dicted with Lfurure over S time steps:

Lfurure = ‖xi,t+S − Φ−1(KS
i Φ(xt))‖ (18)

In these losses, norm ‖ · ‖ is a mean-squared error, and

they are all averaged in a training batch.

As for the DFE module, a triplet loss with hard min-

ing [13] Ltriplet and a Softmax loss Lsoftmax are both em-

ployed for identity recognition. In a training batch, p × k

gait silhouette sequences randomly selected from the train-

ing set, where p denotes the number of selected subjects

and k for the number of different views. For each data in a

training batch as an anchor, the hardest positive data and the

hardest negative data are selected for Ltriplet. Meanwhile,

an additional classifier is applied for Lsoftmax, which takes

yi as input and is omitted in Figure 2.

4.4. Implementation Details

During the training, the whole model is trained within

two steps. We train the OFA and the KMM module to-

gether, without the DFE module in training step one. Then

we freeze the OFA module’s parameters and train the DFE

module alone without the KMM module in training step t-

wo. The reason is that the least-squares solution is applied

to calculated Koopman matrices K̂i. If we train this mod-

el entirety, it requires back-propagating the loss through

the Eigendecomposition step in the least-squares solution,

which is unstable [40]. Besides, if the Koopman space can-

not be established correctly, the Koopman matrices K̂i are

all irrational. Therefore, a two-step training strategy is em-

ployed.

In training step one, the OFA and the KMM module are

trained together with loss function:

Lstep1 = αLΦ + βLµ,σ2 + γLlinear + λLfurure (19)

In training step two, the DFE module is trained with loss

function:

Lstep2 = ξLtriplet + Lsoftmax (20)

We randomly select 32 continuous frames in both train-

ing steps in a gait silhouette sequence as one training sample

for training. In the testing phase, we calculated one Koop-

man matrix for every 32 frames. Therefore, we get more

than one Koopman matrix because there are always more

than 32 frames in a gait sequence. The final distance be-

tween a probe sample and the gallery samples will be the

average distance of all the calculated Koopman matrices of

this probe sequence.

5. Experiments

5.1. Dataset

The OU-ISIR Gait Dataset, Multi-View Large Popula-

tion Dataset (OU-MVLP) [36] is the largest public gait

database. It contains 10,307 subjects with 14 views

(0◦, 15◦, ..., 90◦, 180◦, 195◦, ..., 270◦) per subject and 2 se-

quences per view. The gait sequences have been divided

into two sets, including 5,153 subjects in the training set

and 5,154 subjects in the testing set. For evaluation, one

sequence is kept in the gallery, and the other one acts as

a probe. Silhouette sequences are released with the origi-

nal image size and background removed. We conduct size-

normalization following [5] with 64×64 pixels in each gait

silhouette.

5.2. Hyper­Parameters Details

We initialize the weights of ConvNet, the weights and

bias of fully connected layers by normal initialization with

standard deviation equaling to 0.01. In optimization, the

Adam algorithm [19] was implemented. In triplet loss, we

set the margin as 2.0. The batch size is set to p = 32, k =
16 for the whole training phase. In training step one, the

learning rate is set to 1e−3 for the first 20,000 iterations

with S = 8 in Equation 17 and 18. Then the learning rate is

changed to 1e−4 for the rest 80,000 iterations with S = 16.

This setting is used to stabilize the training process. Other

hyper-parameters in Equation 19 and 20 are set as: α =
0.001, β = 0.002, γ = 1, λ = 0.01, and ξ = 10. In training

step two, we train the model with learning rate 1e−4 for

50,000 iterations, and 1e−5 for the next 20,000 iterations.

5.3. Visualization

We visualize the original gait silhouette sequences {xi,t}

and the predicted ones {˜̂xi,t+1} to prove the effectiveness of

the Koopman theory on gait, as shown in Figure 4. The pre-

dicted gait silhouette sequences {˜̂xi,t+1} are calculated as

Equation 10. The predicted gait silhouette sequences hold

the same walking characteristics as original ones, including

crookback and arm swing.

Furthermore, we exchange the calculated Koopman ma-

trices of the first two identities in Figure 4, and predict the

gait silhouette sequences again, shown in Figure 3. We find

that the gait phases are the same in both figures, while their

walking features are exchanged. For example, from identi-

ty A in Figure 3, the amplitude of arm swing get larger and

the person becomes crookback, which is similar to identity

B in Figure 4. This visualization proves that the estimated

Koopman matrix K̂i can represent the whole gait sequence.

Given an initial gait phase xi,t=1, we can predict the next
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A
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Figure 3. Visualization of predicted silhouette sequences of the

first two identities A and B in Figure 4 with their Koopman ma-

trices exchanged. The predicted silhouette sequence of the A is

calculated with the Koopman matrices of B, and vice versa.

several gait silhouettes with K̂i easily by matrix multipli-

cation. These findings may help us understand the strong

physical interpretability of the proposed gait dynamical fea-

ture in a gait recognition system.

5.4. Comparison and Discussion

Table 2, 3 and 4 show the comparison with previous

works on OU-MVLP dataset. In Table 2 and 3, we compare

our performance with some non-deep learning methods and

template-based methods. Our model presents better per-

formance than all of the previous template-based methods.

These results indicate that the dynamical gait feature is dis-

criminative and competitive on the cross-view gait recogni-

tion task.

In Table 4, we compare our model with the state-of-

the-art sequence-based approaches, including GaitSet [33],

GaitPart [8], and ACL+local+temporal (ACL+) [50]. Un-

like template-based methods, these sequence-based ap-

proaches extract deep features for each gait silhouette and

concatenate them together for recognition. Therefore, these

approaches outperform the template-based methods great-

ly. It is rather disappointing that there are still gaps between

our performance and theirs.

A possible explanation might be that the two tasks, dy-

namical analysis, and identity recognition, are not integrat-

ed perfectly. In other words, the whole framework is not

an end-to-end model. Since it is the first work to introduce

the Koopman theory with the deep learning model into the

gait recognition system, firstly, we construct the Koopman

space to check its effectiveness on gait images. After that,

we optimize the remaining parameters for recognition with

the Koopman space fixed. That is the reason that our final

performance is degraded compared with the deep end-to-

end models.

Another possible explanation is that we do not apply the

part-based modules in our model. Part-based modules, e.g.

Horizontal Pyramid Mapping [33], Horizontal Pooling [8],

Table 2. Averaged rank-1 identification rates in four key

view pairs on OU-MVLP dataset, compared with GEINet [32],

Siamese [48], CNN-LB [43], MGANs [12], Attention [18], and

DiGGAN [16]. The data of the first four methods are from [16].

Gallery 90◦

Probe 0◦ 30◦ 60◦ 90◦

GEINet 3.4 21.5 50.2 90.7

Siamese 7.9 26.5 36.5 82.1

CNN-LB 2.2 14.0 41.2 91.7

MGANs 2.1 12.0 22.0 85.9

Attention 23.7 36.1 57.2 89.1

DiGGAN 44.6 58.9 66.0 90.0

Ours 44.9 80.5 88.3 95.4

Table 3. Averaged rank-1 identification rates in four angu-

lar difference on OU-MVLP dataset, compared with LDA[30],

VTM[27], GEINet [32], CNN-LB [43], 3in+2diff[35], Atten-

tion [18], PST-2LB*+PST-4in (PST+) [45], ACL+local+temporal

(ACL+) [50]. The data of the first four methods are from [35].

Method
Angular Difference

Mean
0◦ 30◦ 60◦ 90◦

LDA 81.6 10.1 0.8 0.1 24.4

VTM 77.4 2.7 0.6 0.2 20.5

GEINET 85.7 40.3 13.8 5.4 40.7

CNN-LB 89.9 42.2 15.2 4.5 42.6

3in+2diff 89.5 55.0 30.0 17.3 52.7

Attention 89.1 57.2 36.1 23.7 55.7

PST+ 93.9 69.2 41.9 25.9 63.1

ACL+ 99.5 95.8 77.1 66.3 88.3

Ours 92.4 83.5 65.1 46.0 71.8

and Local Feature Extraction Module [50], employ partial

features of the human body and have been proved to be ben-

eficial to recognition. We focus on linear representation on

a full-body moving system in this work and do not design

a local features extraction module. Therefore, we can not

achieve the state-of-the-art performance as theirs.

Notwithstanding these limitations, the study suggests

that dynamical features can provide solid physical inter-

pretability for a gait recognition system and achieve accept-

able performance on a cross-view gait recognition task in

such a large gait database. Considering the two explana-

tions above, we believe that there are still opportunities for

further enhancements.

6. Conclusion

In this paper, we formulate a cross-view gait recogni-

tion task from a dynamic system perspective. We assume

that people have different walking patterns, which can be
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(a) (b) (c)

A

B

C

D

Figure 4. Visualization of the original gait images and the predicted images of four identities with two views: A and B are 90◦; C and

D are 45◦. Each row represents the same identity with different gait images: (a) gait energy images, (b) original silhouette sequences

{xi,t|t ∈ [1, 16]}, (c) predicted silhouette sequences {˜̂xi,t+1|t ∈ [1, 16]}from the first frames of their original silhouette sequences xi,t=1

and the estimated Koopman matrix K̂i. The four identities are from the first four samples from gallery testing set of the OU-MVLP dataset.

Table 4. Averaged rank-1 identification rates on OU-

MVLP dataset, excluding identical-view cases, compared with

GEINet [32], GaitSet [33], GaitPart [8], and ACL+local+temporal

(ACL+) [50].

Probe GEINet GaitSet GaitPart ACL+ Ours

0◦ 11.4 79.5 82.6 74.0 56.2

15◦ 29.1 87.9 88.9 88.3 73.7

30◦ 41.5 89.9 90.8 94.6 81.4

45◦ 45.5 90.2 91.0 95.4 82.0

60◦ 39.5 88.1 89.7 88.0 78.4

75◦ 41.8 88.7 89.9 91.3 78.0

90◦ 38.9 87.8 89.5 90.0 76.5

180◦ 14.9 81.7 85.2 76.7 60.2

195◦ 33.1 86.7 88.1 89.5 72.0

210◦ 43.2 89.0 90.0 95.0 79.8

225◦ 45.6 89.3 90.1 94.9 80.2

240◦ 39.4 87.2 89.0 88.0 76.7

255◦ 40.5 87.8 89.1 90.8 76.3

270◦ 36.3 86.2 88.2 89.8 73.9

Mean 35.8 87.1 88.7 89.0 74.7

used for recognition against view changing. Then, to ex-

tract walking patterns from human silhouette sequences, the

Koopman theory is applied for system linearization. We

propose a framework based on convolutional variational

auto-encoder and deep Koopman embedding, where gait

systems are linearized. Therefore, the coefficient can be

easily calculated to approximate the Koopman operator as

walking patterns for recognition.

Finally, we conduct some experiments on a widely used

gait database, OU-MVLP. The visualization and identifi-

cation results prove that extracted gait dynamical features

can represent human walking well, and it can also achieve

an acceptable identification performance on cross-view gait

recognition. Meanwhile, it provides physical interpretabili-

ty for a gait recognition system. Overall, this study strength-

ens the idea that dynamical information contributes to gait

recognition, which provides a new perspective and ap-

proach to gait recognition.
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