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Figure 1: DATASETGAN synthesizes image-annotation pairs, and can produce large high-quality datasets with detailed pixel-wise labels. Figure illus-

trates the 4 steps. (1 & 2). Leverage StyleGAN and annotate only a handful of synthesized images. Train a highly effective branch to generate labels. (3).

Generate a huge synthetic dataset of annotated images authomatically. (4). Train your favorite approach with the synthetic dataset and test on real images.

Abstract

We introduce DatasetGAN: an automatic procedure to

generate massive datasets of high-quality semantically seg-

mented images requiring minimal human effort. Current

deep networks are extremely data-hungry, benefiting from

training on large-scale datasets, which are time consuming

to annotate. Our method relies on the power of recent GANs

to generate realistic images. We show how the GAN latent

code can be decoded to produce a semantic segmentation

of the image. Training the decoder only needs a few labeled

examples to generalize to the rest of the latent space, result-

ing in an infinite annotated dataset generator! These gen-

erated datasets can then be used for training any computer

vision architecture just as real datasets are. As only a few

images need to be manually segmented, it becomes possible

to annotate images in extreme detail and generate datasets

with rich object and part segmentations. To showcase the

power of our approach, we generated datasets for 7 image

segmentation tasks which include pixel-level labels for 34

human face parts, and 32 car parts. Our approach outper-

forms all semi-supervised baselines significantly and is on

par with fully supervised methods, which in some cases re-

quire as much as 100x more annotated data as our method.

1. Introduction
Curating image datasets with pixel-wise labels such as

semantic or instance segmentation is very laborious (and

expensive). Labeling a complex scene with 50 objects can

take anywhere between 30 to 90 minutes – clearly a bottle-

neck in achieving the scale of a dataset that we might desire.

In this paper, we aim to synthesize large high quality labeled

datasets by needing to label only a handful of examples.

Semi-supervised learning has been a popular approach

in the quest of reducing the need for labeled data, by lever-

aging an additional large unlabeled dataset. The dominant

approach trains a model on a labeled dataset using ground

truth annotations while utilizing pseudo-labels [3, 46] and

consistency regularization [46, 48] on the unlabeled ex-

amples. While most methods were showcased on clas-

sification tasks, recent work also showed success for the

task of semantic segmentation [40]. On the other hand,

contrastive learning aims to train feature extractors us-

ing contrastive (unsupervised) losses on sampled image

pairs [42, 49, 8, 39], or image patches [23]. Once a powerful

image representation is trained using unsupervised losses

alone, only a small subset of labeled images is typically re-

quired to train accurate predictors. In our work, we show

that the latest state-of-the-art generative models of images

learn extremely powerful latent representations that can be

leveraged for complex pixel-wise tasks.

We introduce DatasetGAN which generates massive

datasets of high-quality semantically segmented images re-

quiring minimal human effort. Key to our approach is an

observation that GANs trained to synthesize images must

acquire rich semantic knowledge in their ability to render
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diverse and realistic examples of objects. We exploit the

feature space of a trained GAN and train a shallow decoder

to produce a pixel-level labeling. Our key insight is that

only a few labeled images are needed to train a success-

ful decoder, leading to an infinite annotated dataset genera-

tor. These generated datasets can then be used for training

any computer vision architecture just as real datasets are.

Since we only need to label a few examples, we annotate

images in extreme detail and generate datasets with rich ob-

ject and part segmentations. We generated datasets for 7

image segmentation tasks which include pixel-level labels

for 34 human face parts, and 32 car parts. Our approach

outperforms all semi-supervised baselines significantly and

is on par with fully supervised methods, while in some cases

requiring two orders of magnitude less annotated data.

The ability of training successful computer vision mod-

els with as little as 16 labeled examples opens the door to

exciting downstream applications. In our work, we show-

case 3D reconstruction of animatable objects where we ex-

ploit the detailed part labels our method produces.

2. Related Work

Generative Models of Labeled Data: Prior work on

dataset synthesis has mainly focused on generative mod-

els of 3D scene graphs, utilizing graphics to render images

and their labels [24, 12, 30]. In our work, we focus on

Generative Adversarial Networks (GANs) [16, 26, 25, 4]

which synthesize high-quality images after training on a

large dataset using adversarial objectives. Previous work

utilized GANs to create synthetic datasets. In domain adap-

tation [41, 57, 51, 10], several works aimed at translating a

labeled image dataset into another domain, in which image

annotation is either expensive or missing entirely, by lever-

aging image-to-image translation techniques. A supervised

computer vision model can then be trained on the translated

dataset. These methods assume the existence of a large la-

beled domain that can be leveraged for the new domain. In

our work, we require only a handful of human-annotated

images, and synthesize a much larger set.

Recently, [54] used StyleGAN [26] as a multi-view im-

age dataset generator for training an inverse graphics net-

work to predict 3D shapes. The authors exploited the dis-

entanglement between viewpoint and object identity in the

StyleGAN’s latent code. We go one step further and syn-

thesize accurate semantic labels, by leveraging only a few

human-provided examples. For the purpose of zero-shot

image classification, GANs have also been used for synthe-

sizing visual features of unseen classes from their semantic

features [5, 36, 14, 44]. To the best of our knowledge, ours

is the first work in using GANs to directly synthesize a large

dataset of images annotated to a high level of detail.

Semi-Supervised Learning: Given a large set of unla-

beled images and a small set of annotated images, semi-

supervised approaches [37, 47, 22, 40, 27] aim to learn bet-

ter segmentation networks than with supervised data alone.

Most of these methods treat the segmentation network as a

generator, and train it adversarially with the small set of real

annotations. In their case, the adversarial losses try to learn

good segmentations from fake ones produced by the model,

but they do not exploit generative modelling of images

themselves, as we do in our work. Pseudo-labels [3, 46]

and consistency regularization [46, 48] have also recently

been explored for semantic segmentation [40], where the

key ideas involve training on the small labeled dataset, and

re-training the model using a mix of real labeled data and

highly confident predictions on unlabeled images. Different

than existing semi-supervised methods, we utilize a GAN to

synthesize both images and their pixel-wise labels.

Concurrent work by [15] also translates GAN features

into semantic segmentation. However, their method relies

on a decoder built with convolutional and residual blocks

for projecting the internal layers of StyleGAN into a seg-

mentation map. Our method directly interprets the disen-

tangled feature vector for each pixel into its semantic la-

bel by a simple ensemble of MLP classifiers, which better

utilizes the semantic knowledge in the StyleGAN’s feature

vectors. Furthermore, we use our approach to create large

datasets of images annotated with high-detailed part labels

and keypoints, which we hope will enable a wide variety of

downstream applications not possible previously.

In parallel work [31], the authors explore an alternative

direction in which the GAN, equipped with a segmentation

branch, is also used as a semantic decoder at test time. A

related idea was explored in [34], where a VAE was used to

decode amodal instance masks from partially visible masks.

An encoder maps an image into a latent code using test-

time optimization, which is then used to predict both the

reconstructed image as well as semantic outputs. The se-

mantic GAN is trained differently than ours, using adver-

sarial losses. This method requires more training data than

ours and is slower at test time, however, it has the appealing

property of out of domain generalization.

Contrastive Learning: Contrastive methods learn a rep-

resentation space for images with a contrastive loss for mea-

suring similarity of sampled pairs [18]. Recent work on

contrastive learning has shown promising results for im-

age classification [42, 23, 49, 1, 19, 7, 8, 17, 39]. With

the learned self-supervised representation, the classification

accuracy can be significantly improved by fine-tuning on

a small amount of labeled examples. Contrastive learn-

ing can also be applied to image segmentation by learn-

ing on pairs of image patches [23]. Like ours, this line

of work uses learned image representations to amortize the

need for large labeled datasets. However, instead of using

contrastive losses, we leverage the semantic knowledge in

GAN’s feature maps for fine-grained annotation synthesis.
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Figure 2: Overall architecture of our DATASETGAN. We upsample the

feature maps from StyleGAN to the highest resolution for constructing

pixel-wise feature vectors for all pixels on the synthesized image. An

ensemble of MLP classifiers is then trained for interpreting the semantic

knowledge in the feature vector of a pixel into its part label.

3. Our Approach

We now introduce DATASETGAN which synthesizes

image-annotation pairs. We primarily focus on pixel-wise

annotation tasks such as semantic segmentation and key-

point prediction, since they are typical examples of the most

time consuming manual annotation tasks.

The key insight of DATASETGAN is that generative

models such as GANs that are trained to synthesize highly

realistic images must acquire semantic knowledge in their

high dimensional latent space. For example, the latent code

in architectures like StyleGAN contains disentangled di-

mensions that control 3D properties such as viewpoint and

object identity [26, 54]. Interpolating between two latent

codes have been shown to yield realistic generations [26],

indicating that the GAN has also learned to semantically

and geometrically align objects and their parts. DATASET-

GAN aims to utilize these powerful properties of image

GANs. Intuitively, if a human provides a labeling corre-

sponding to one latent code, we expect to be able to effec-

tively propagate this labeling across the GAN’s latent space.

Our DATASETGAN is extremely simple, while ex-

tremely powerful. Specifically, we synthesize a small num-

ber of images by utilizing a GAN architecture, StyleGAN

in our paper, and record their corresponding latent feature

maps. A human annotator is asked to label these images

with a desired set of labels. We then train a simple ensem-

ble of MLP classifiers on top of the StyleGAN’s pixel-wise

feature vectors, which we refer to as the Style Interpreter,

to match the target human-provided labeling. Figure 2 pro-

vides a visualization. We observe that training the Style In-

terpreter requires only a few annotated examples for achiev-

ing good accuracy. When the Style Interpreter is trained,

we use it as a label-generating branch in the StyleGAN ar-

chitecture. By sampling latent codes z and passing each

through the entire architecture, we have an infinite dataset

generator! These datasets can then be used for training any

computer vision architecture just as real datasets are.

We take advantage of the effectiveness of DATASET-

GAN in requiring only a few human-labeled images, and

devote efforts in annotating each individual image to a very

high-detail pixel-wise labeling. We create tiny datasets of

up to 40 images containing extremely detailed part and

keypoint annotations for a few classes, and utilize our

DATASETGAN to synthesize much larger datasets. We be-

lieve that the community will find these datasets useful for

a variety of exciting downstream applications.

We briefly summarize StyleGAN in Sec 3.1, and de-

scribe Style Interpreter in Sec 3.2. We discuss dataset gen-

eration in Sec 3.3, and detail our annotation efforts in Sec 4.

3.1. Prerequisites

DATASETGAN uses StyleGAN as the generative back-

bone due to its impressive synthesis quality. The Style-

GAN generator maps a latent code z ∈ Z drawn from a

normal distribution to a realistic image. Latent code z is

first mapped to an intermediate latent code w ∈ W by

a mapping function. w is then transformed to k vectors,

w1, ..., wk, through k learned affine transformations. These

k transformed latent codes are injected as style informa-

tion into k/2 synthesis blocks in a progressive fashion [25].

Specifically, each synthesis block consists of an upsampling

(×2) layer and two convolutional layers. Each convolu-

tional layer is followed by an adaptive instance normaliza-

tion (AdaIN) layer [21] which is controlled by its corre-

sponding wi, a transformed latent code. We denote the out-

put feature maps from the k AdaIN layers as {S0, S1.., Sk}.

3.2. Style Interpreter

We interpret StyleGAN as a “rendering” engine, and its

latent codes as “graphics” attributes that define what to ren-

der. We thus hypothesize that a flattened array of features

that output a particular RGB pixel contains semantically

meaningful information for rendering the pixel realistically.

To this end, we upsample all feature maps {S0, S1.., Sk}
from AdaIN layers to the highest output resolution (resolu-

tion of Sk), and concatenate them to get a 3D feature tensor

S∗ = (S0,∗, S1,∗.., Sk,∗). Each pixel i in the output im-

age has its own feature vector S∗
i = (S0,∗

i , S1,∗
i .., Sk,∗

i ),
as shown in Figure 2. We use a three-layer MLP classifier

on top of each feature vector to predict labels. We share

weights across all pixels for simplicity.

Training: We discuss annotation collection in Sec 4.

Note that our goal here is to train the feature classifier –

the corresponding synthesized image is only used to collect

annotations from a human labeler.

Since feature vectors S∗
i are of high dimensionality

(5056), and the feature map has a high spatial resolution

(1024 at most), we cannot easily consume all image fea-

ture vectors in a batch. We thus perform random sampling

of feature vectors from each image, whereby we ensure that

we sample at least once from each labeled region. We utilize

a different loss for different tasks we consider. For seman-

tic segmentation, we train the classifier with cross-entropy

loss. For keypoint prediction, we build a Gaussian heatmap

for each keypoint in the training set, and use the MLP func-
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Figure 3: Small human-annotated face

and car datasets. Most datasets for

semantic segmentation (MS-COCO [33],

ADE [56], Cityscapes [11]) are too large

for a user to be able to check every single

training image. In this figure, we show all

labeled training examples for face (a-c) and

car (d-f) segmentation. a) shows an exam-

ple of segmentation mask and associated la-

bels, b) shows the full collection of training

images (GAN samples), and c) shows the

list of annotated parts and the number of in-

stances in the dataset. As a fun fact, note

that there are more labels in a single image

than there are images in the dataset.

tions to fit the heat value for each pixel. We do not back-

propagate gradients to the StyleGAN backbone.

To amortize the effect of random sampling, we train an

ensemble of N classifiers, N = 10 in our paper. We use

majority voting in each pixel at test time for semantic seg-

mentation. For keypoint prediction, we average the N heat

values predicted by each of the N classifiers for each pixel.

Our feature classifiers require remarkably few annotated

images to make accurate predictions, shown in Fig 4 and 5,

and validated in Experiments.

3.3. DatasetGAN as a Labeled Data Factory

Once trained, our Style Interpreter is used as a label-

synthesis branch on top of the StyleGAN backbone, form-

ing our DATASETGAN. We can therefore generate any de-

sired number of image-annotation pairs, which forms our

synthetic dataset. Synthesizing an image-annotation pair re-

quires a forward pass through StyleGAN, which takes 9s on

average. While our experiments show that downstream per-

formance keeps slightly increasing with every 10k of syn-

thesized images, there is an associated cost and we use a

dataset of 10k in size for most experiments.

Naturally, StyleGAN also fails occasionally which intro-

duces noise in the synthesized dataset. We noticed that the

StyleGAN’s discriminator score is not a robust measure of

failure and we found that utilizing our ensemble of classi-

fiers to measure the uncertainty of a synthesized example

is a more robust approach. We follow [29], and use the

Jensen-Shannon (JS) divergence [2, 38] as the uncertainty

measure for a pixel. To calculate image uncertainty, we sum

over all image pixels. We filter out the top 10% most uncer-

tain images. We provide details in the Appendix.

Random samples from five of our synthesized datasets

for part segmentation of various object classes are shown

in Fig 4 and Fig 5. While not perfect (e.g., missing wrin-

kles), the quality of the synthesized labels is remarkable.

Crowdsourcing labels on the same scale (10k images) for

one dataset would take over 3200 hours (134 days), and,

we hypothesize, would be extremely noisy since annotat-

ing an image to that level of detail requires both skill and

immense patience. In our case, human-annotation time for

a dataset was roughly 5 hours, affording us to leverage a

single skilled annotator. This is described next.

4. Collecting Fine-grained Annotations

Real and GAN generated images were annotated with

LabelMe [43] by a single experienced annotator. For the

GAN-generated images, which are used for training the

Style Interpreter, there are 40 bedrooms (1109 polygons),

16 cars (605 polygons), 16 heads (950 polygons), 30 birds

(443 polygons), and 30 cats (737 polygons). For each class,

we manually defined a partonomy including as many de-

tails as it was possible. Fig. 3 shows the partonomy and all

the annotated images for two classes. Real images (from

different datasets – see Sec 5) are used for evaluation only.

Statistics of Annotating Real vs GAN images: GANs

produce images with different quality depending on the

class. In the case of heads, the images are very realistic

and the annotation resulted in a similar number of parts than

when annotating real images (58 annotated parts on average

for GAN images and 55 parts for real images). The anno-

tation of each head, with all the parts takes 1159 seconds

(to annotate only the head outline took 74 seconds on av-

erage). GANs trained on Birds and Cats result in slightly

worst quality images. GAN bird images had 13.7 parts,

while real birds were annotated with 17 parts. GAN Cats

had 23.6 parts while real cats had 27.4 annotated parts on

average. Despite of the slight decrease in the number of

parts, the amount of detailed parts available for annotation

in GAN generated images is remarkable.

Annotation Times: Birds, with all the parts, took 262

seconds to annotate, and Cats took 484 seconds, on aver-

age per image. GAN generated bedrooms are of high qual-

ity but contained fewer recognizable objects than real im-

ages. GAN generated images have resolution of 256x256

pixels, while the real images were higher resolution. GAN

bedrooms had 37.8 annotated objects on average while real

bedrooms had 47.8 annotated objects. One average, GAN

bedroom images took 629 seconds to annotate while real

images took 1583 seconds as they contain more details.
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Figure 4: Examples of synthesized images and labels from our DATASETGAN for faces and cars. StyleGAN backbone was trained on CelebA-HQ (faces)

on 1024× 1024 resolution images, and on LSUN CAR (cars) on 512× 384 resolution images. DATASETGAN was trained on 16 annotated examples.

Figure 5: Examples of synthesized images and labels from our DATASETGAN for birds, cats, bedrooms. StyleGAN was trained on NABirds (1024×1024

images), LSUN CAT (256×256), and LSUN Bedroom (256×256). DATASETGAN was trained on 30 annotated bird examples, 30 cats, and 40 bedrooms.

Limitations: Since our approach relies on labeling GAN

images, image quality sometimes interferes with labeling.

Our annotator complained when annotating Birds. Synthe-

sized bird legs are mostly invisible, blurry and unnatural,

making annotation challenging. As shown in Fig 5, our

synthesized datasets barely generated the leg labels, which

influences test-time performance for this part as a result.

5. Experiments

We extensively evaluate our approach. First, we perform

evaluation on part segmentation across five different cate-

gories: Car, Face, Bird, Cat, and Bedroom(scene). Further-

more, we also label two keypoint datasets (Car and Bird),

and also evaluate keypoint detection performance supported

by our approach. We finally showcase a qualitative 3D

application that leverages our synthesized data for Car, to

achieve single-image 3D asset creation.

StyleGAN models: Each class requires a pretrained

category-specific StyleGAN model. For Car, Cat, Face and

Bedroom, we directly use the pretrained StyleGAN models

from the official GitHub repository provided by StyleGAN

authors. For bird, we train our own StyleGAN models on

NABirds [50], which contains 48k images.

5.1. Parts Segmentation

Our Generated Datasets: Figures 4, 5 show samples

of synthesized image-annotation pairs for all classes used

in the paper. We notice that higher resolution StyleGAN

models (Bird, Face) result in more accurate synthesized an-

notations. We provide more examples in the Appendix.

Figure 6: Number of

training examples vs.

mIOU. We compare to

baselines on ADE-Car-

12 testing set. The

red dash line repre-

sents the fully super-

vised method which ex-

ploits 2.6k training ex-

amples from ADE20k.

Parts Segmentation Network: For simplicity, we exploit

Deeplab-V3 [6], with ImageNet pre-trained ResNet151 [20]

backbone, as the part segmentation network to be trained

on our synthesized datasets. We let Deeplab-V3 output one

probability distribution over all part labels for each pixel.

While exploiting part hierarchies in the model is possible,

we opted for the simplest approach here. We use Deeplab-

V3 as the backbone for all the baseline models.

Baselines: We compare our method to two types of base-

lines: Transfer-Learning (TL) and Semi-Supervised base-

line. For the TL baseline, we initialize the network with

the pre-trained weights on semantic segmentation of MS-

COCO [32], and finetune the last layer on our small human-

annotated dataset in a supervised way. This baseline evalu-

ates the standard practice in computer vision of pre-training

on a large dataset and only finetuning in-domain. It does not

access unlabeled data on the target domain, but leverages a

large labeled dataset from another domain. We adopt [40]

as the state-of-the-art semi-supervised baseline, and use the

same pre-trained backbone as in our approach. We train this
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Testing Dataset ADE-Car-12ADE-Car-5 Car-20 CelebA-Mask-8 (Face) Face-34 Bird-11 Cat-16 Bedroom-19

Num of Training Images 16 16 16 16 16 30 30 40

Num of Classes 12 5 20 8 34 11 16 19

Transfer-Learning 24.85 44.92 33.91 ± 0.57 62.83 45.77 ± 1.5121.33 ± 1.32 21.58 ± 0.61 22.52 ± 1.57

Transfer-Learning (*) 29.71 47.22 ✗ 64.41 ✗ ✗ ✗ ✗

Semi-Supervised [40] 28.68 45.07 44.51 ± 0.94 63.36 48.17 ± 0.6625.04 ± 0.29 24.85 ± 0.35 30.15 ± 0.52

Semi-Supervised [40] (*) 34.82 48.76 ✗ 65.53 ✗ ✗ ✗ ✗

Ours 45.64 57.77 62.33 ± 0.55 70.01 53.46 ± 1.2136.76 ± 2.1131.26 ± 0.71 36.83 ± 0.54

✗ means that the method does not apply to this setting due to missing labeled data in the domain.

Table 1: Comparisons on Part Segmen-

tation. (*) denotes In-domain experiment,

where training and testing are conducted on

the same dataset but a different split. Other-

wise, training is conducted on our generated

images. Note that In-domain setting does

not apply to our approach, as we do not train

StyleGAN on the provided datasets.

Testing Dataset Car-20 CUB-Bird

Metric L2 Loss ↓ PCK th-15 ↑ PCK th-10 ↑ PCK th-5 ↑ L2 Loss↓ PCK th-25 ↑ PCK th-15 ↑ PCK th-10 ↑

Transfer Learn. 4.4 ×10
−4 43.54 36.66 18.53 5.3 ×10

−4 23.17 18.21 12.74

Ours 2.4 ×10
−4 79.91 67.14 35.17 4.3 ×10

−4 60.61 46.36 32.00

Fully Sup. ✗ ✗ ✗ ✗ 3.2 ×10
−4 77.54 65.00 53.73

Table 2: Comparisons on Keypoint De-

tection. Our method leads to significantly

better results than those obtained by base-

line methods.

method on our human-labeled images plus the unlabeled

real images that the StyleGAN is trained on. To demon-

strate the effectiveness of our method, we further compare

to a fully supervised baseline which is trained on a large

number of labeled real images. Further details are in Ap-

pendix. We emphasize that all methods and our approach

use the same segmentation network architecture, and the

only difference is the training data and algorithm.

Test Datasets: For cars, we evaluate our model on part

segmentation at different level of details, to leverage the

existing datasets for benchmarking. Car instances from

ADE20K [55, 56] and PASCAL [13] have 12 and 5 part la-

bels, respectively. We split cars in ADE20K testing set into

our validation and testing sets, which contains 50 and 250

images. We refer to cars from ADE20K as ADE-Car-12

and further merge labels from ADE-Car-12 into 5 classes

(ADE-Car-5) according to the PASCAL annotation pro-

tocol. We also exploit 900 cars from PASCAL for cross-

domain testing purposes (no training), namely PASCAL-

Car-5. For faces, we evaluate our model on CelebA-Mask-

8 [35], which contains 30K images with 8 part categories.

We exploit the first 500 images in testing set as validation

set. Since there is no existing fine-detailed part segmen-

tation datasets for cat, bird, and bedrooms and both ADE-

Car-12 and CelebA-Mask-8 are relatively coarse compared

to our annotation, we manually annotate 20 test images

for each category to evaluate the performance on detailed

part labeling (described as “Real” in Sec 4). We refer to

them as Car-20, Face-34, Bird-11, Cat-16, Bedroom-19,

respectively. We select images for these small test datasets

from Stanford Cars [28], Celeb-A mask [35], CUB [52],

and Kaggle Cat [53], respectively. For bedrooms, we pick

20 images from the web. A summary of all test datasets is

in Table 1. Since there is no validation set for our annotated

datasets, we split testing images into five folds. We set each

fold as validation and choose checkpoints accordingly. We

report mean IOU and standard deviation.

Quantitative Comparison: We first compare our ap-

proach to Transfer-Learning and Semi-supervised baselines

in Tab 1. We evaluate in both out-of-domain and in-domain

settings, where baselines are trained on our annotated im-

ages (Sec. 4) or an equal number of randomly selected in-

domain images (ADE cars). Note that our method falls in

the out-of-domain setting, since we only train on our syn-

thesized dataset and test on real images. Our method outper-

forms both Transfer-Learning and Semi-Supervised learn-

ing baselines on all classes by a large margin. Strikingly,

on ADE-Car-12, our model outperforms the out-of-domain

baselines by 20.79% for Transfer-Learning and 16.96% for

Semi-supervised Learning, and outperforms two in-domain

baselines by 15.93% and 10.82%, respectively.

We further show the number of training images in our la-

beled datasets v.s mIOU and compare to baselines on ADE-

Car-12 test set in Fig. 6. The red dash line is the fully su-

pervised model trained on the full ADE-Car-12 training set

(2600 images). Our approach, using the same architecture

and hyperparameters, comparable with the fully supervised

model with as few as 25 annotations, which is less than 1%

of what the fully supervised method uses. Finally, we show

a comparison to fully supervised baseline on ADE-Car-5

and PASCAL-Car-5 in Table 5. Here, our performance is

not better than the fully supervised baseline on ADE-Car-5.

We hypothesize this is due to ADE20K being out-of-domain

for our model, and in-domain for the baseline, and that 2500

labeled examples used by the baseline are sufficient to train

a good model for this easier 5-class task. Note that we out-

perform the baseline by 1.3% when both our models are

evaluated in the out-of-domain setting on PASCAL-Car-5,

showcasing better generalization capabilities.

Ablation Studies: We ablate choices in our approach on

the Car category with 16 training examples. We first ab-

late the size of generated dataset in Table 3. Increasing the

number of synthesized examples from 3,000 to 10,000 im-

proves performance, however the improvement is marginal

when we further add more data. We use the uncertainty

denoising strategy described in Sec. 3.3 and report results

of filtering the most uncertain examples using different ra-

tios. As shown in Table 4, denoising plays an important

role. Removing noisy data is the result of a trade-off be-

tween diversity and uncertainty. Removing more uncertain

(noisy) data means less diversity during training. In experi-

ments hereon, we set the size of the generated dataset to be

10,000 and filter out the top 10% uncertain examples.
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Generated Dataset Size 3K 5K 10K 20K

mIOU 43.34 44.37 44.60 45.04

Table 3: Ablation study of synthesized dataset size. Here, Style-

Interpreter is trained on 16 human-labeled images. Results are re-

ported on ADE-Car-12 test set. Performance is slowly saturating.

Filtering Ratio 0% 5% 10% 20%

mIOU 44.60 44.89 45.64 45.18

Table 4: Ablation study of the filtering ratio. We filter out the most uncertain

synthesized Image-Annotation pairs. Result shown are reported on ADE-Car-12

test set, using the generated dataset of size 10k. We use 10% in other experiments.

Testing Dataset ADE-Car-5 PASCAL-Car-5

Num of Classes 5 5

Deeplab-V3 [6] (2600 labels) 59.41 (*) 54.31

Ours (25 labels) 57.71 55.65

Table 5: Comparisons to fully supervised methods for Part Segmen-

tation. (*) denotes In domain experiments. Deeplab-V3 is trained on

ADE-CAR and our model is trained on our generated dataset.

Number of Annotated Images 1 7 13 19

Random / 40.06 ± 1.32 42.44 44.41

Active Learning / 40.88 43.49 46.82

Manual 33.92 41.19 43.61 46.74

Table 6: Data selection. We compare different strategies for selecting Style-

GAN images to be annotated manually. mIoU is reported on ADE-Car-12 test

set. We compute mean & var over 5 random runs with 7 training examples.

Training Data Selection: In our approach, as few as 20

training examples are required for achieving good accuracy,

which is remarkable for this level of detail. In such a low-

data regime, selecting the right images to be manually la-

beled is crucial. We ablate three different options. The most

straightforward selection protocol is to simply choose the

images randomly from the generated dataset. A more time

consuming option, but one that is typically used when col-

lecting datasets, is to employ a human (CV expert) to look

through the dataset and select the most representative and

diverse examples. Finally, as a more advanced strategy, ac-

tive learning (AL) can be used, where selection and model

training (training Style Interpreter) alternate in a continu-

ous loop. Similarly to [29], we exploit ensemble-based AL

strategy [2] followed by applying coreset [45]. We reuse

the ensembles and JS divergence as described in Sec. 3.3 to

calculate image uncertainty. We filter out the top k% most

uncertain examples and run coreset with N centers on the

top k + 10% to k% percent of data to select the most rep-

resentative examples. We use N = 12 and k = 10 in this

paper. Finally, we ask our CV expert to select the top 6 most

realistic images to be annotated out of the subset.

We compare these strategies in Table 6. Our experiments

always start with mean of 10k random samples as the first

example and AL selects 6 training examples all together in

each round. Both manual and AL outperform random sam-

pling. We also report standard deviation of the random se-

lection on 7 training examples, computed over 5 rounds.

Upper bound performance of RS is similar to AL or the

manual strategy. Note that AL requires re-labeling each

time an experiment is run, and thus is not practical for the

remainder of the paper. We instead exploit the manual se-

lection strategy.

Qualitative Results: We showcase qualitative results on

our test datasets in Fig 7. While not perfect, the results

demonstrate that our approach leads to the labeling outputs

of impressive quality, especially for operating in the few-

shot regime. Most errors occur for thin parts (wrinkles or

bird legs) or parts without visual boundaries (cat neck).

5.2. Keypoint Detection

We showcase the generality of DATASETGAN by testing

on another task, i.e. keypoint detection.

Experimental Settings: We follow the common practice

of keypoint detection, i.e. predicting heatmaps instead of

keypoint locations. We apply the same strategy and set-

tings as in the part segmentation experiments, except that

the model outputs a heatmap per class instead of a probabil-

ity distribution, and L2 loss instead of cross-entropy loss is

used. Similarly, we compare our approach to the Transfer-

Learning baseline on Car and Bird. We evaluate the bird

model on the CUB bird dataset, while the car model on 20

manually-labeled real images since no previous car dataset

have keypoints annotation as fine as ours.

Results: Performance evaluation is reported on the test

set in Table 2, with qualitative results in Fig. 8. Results

demonstrate that our approach significantly outperforms the

fine-tuning baseline using the same annotation budget.

5.3. 3D Application: Animatable 3D Assets

We now showcase how detailed part and keypoint predic-

tion tasks can be leveraged in one downstream application.

In particular, we aim to perform 3D reconstruction from sin-

gle images (inverse rendering) to get rich 3D assets that can

be animated realistically and potentially used in 3D games.

This result is the first result of its kind.

We focus on cars. We aim to utilize the predicted key-

points as a way to estimate better 3D shape from monoc-

ular images. We further aim to map part segmentation to

the estimated 3D model, which can then be used for post-

processing: 1) placing correct materials for each part such

as transparent windshields, 2) creating emissive lighting,

and 3) replacing wheels with rigged wheels from an asset

store, to enable the estimated 3D cars to drive realistically.

We follow a similar pipeline as in [54] to predict 3D

shapes, texture, but also predict 3D parts and 3D keypoints.

In particular, we first use StyleGAN to generate multiview

images for different content codes. We then use our Style

Interpreter to generate part and keypoint labels. We train

an inverse graphics network that accepts an image as in-

put and predicts 3D shape, texture, 3D part labeling and

3D keypoints, by utilizing differentiable rendering [9]. For

3D parts, we predict a part map, and paste it onto 3D

shape (deformed sphere) in the same manner as for tex-

ture. For 3D keypoints, we learn a probability distribution

over all vertices in the deformed shape. We utilize all losses
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Cars
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34 cls.

Faces
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16 cls.
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image groundtruth prediction image groundtruth prediction image groundtruth prediction image groundtruth prediction

Figure 7: Qualitative Results: We visualize predictions of DeepLab trained on DATASETGAN’s datasets, compared to ground-truth annotations. Typical

failure cases include parts that do not have clear visual boundaries (neck of the cat), or thin structures (facial wrinkles, bird legs, cat whiskers).

groundtruth prediction groundtruth prediction groundtruth prediction groundtruth prediction groundtruth prediction groundtruth prediction

Figure 8: Qualitative results for Keypoint Detection. First row: Model trained on the generated dataset using 30 human-provided annotations. Results

shown are on CUB-Bird test set. Second row: Here 16 human-provided annotations are used. Results shown are on Car-20 test set.

Figure 9: 3D Application: We showcase our detailed part segmentation and keypoint detection in reconstructing animatable 3D objects from monocular

images. We follow [54] for training the inverse graphics network, but augment it with 3D part segmentation and 3D keypoint branches, which we supervise

with 2D losses. Top left corner shows the input image, keypoint prediction is in the bottom, followed by a rendering of the predicted textured & segmented

3D model into several views. We show an animated scene with lit front and back lights in the last column, which is made possible due to our 3D part

segmentation. Cars have physics, rigged wheels, and can be driven virtually. See Supplementary for a video.

from [9, 54], and add an L2 loss on the projected keypoints,

and Cross Entropy loss on the projected part segmentation.

Details are in the Appendix.
Results: We provide qualitative results in Fig. 9, with ad-

ditional results in Appendix, by highlighting the predicted

part segmentation and animatable 3D assets.

6. Conclusions

We proposed a simple but powerful approach for semi-

supervised learning with few labels. We exploited the

learned latent space of the state-of-the-art generative model

StyleGAN, and showed that an effective classifier can be

trained on top from only a few human-annotated images.

We manually label tiny datasets corresponding to 7 dif-

ferent tasks, each to a high detail. Training on these, our

DATASETGAN synthesizes large labeled datasets on which

computer vision architectures can be trained. Our approach

is shown to outperform all semi-supervised baselines sig-

nificantly, in some cases surpassing fully supervised ap-

proaches trained with two orders of magnitude more data.

We believe this is only the first step towards more effective

training of deep networks. In the future, we plan to extend

DatasetGAN to handle a large and diverse set of classes.
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