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Abstract

Single image low light enhancement is an important task

and it has many practical applications. Most existing meth-

ods adopt a single image approach. Although their per-

formance is satisfying on a static single image, we found,

however, they suffer serious temporal instability when han-

dling low light videos. We notice the problem is because

existing data-driven methods are trained from single image

pairs where no temporal information is available. Unfortu-

nately, training from real temporally consistent data is also

problematic because it is impossible to collect pixel-wisely

paired low and normal light videos under controlled envi-

ronments in large scale and diversities with noise of iden-

tical statistics. In this paper, we propose a novel method

to enforce the temporal stability in low light video enhance-

ment with only static images. The key idea is to learn and in-

fer motion field (optical flow) from a single image and syn-

thesize short range video sequences. Our strategy is gen-

eral and can extend to large scale datasets directly. Based

on this idea, we propose our method which can infer mo-

tion prior for single image low light video enhancement and

enforce temporal consistency. Rigorous experiments and

user study demonstrate the state-of-the-art performance of

our proposed method. Our code and model will be pub-

licly available at https://github.com/zkawfanx/

StableLLVE.

1. Introduction

Illumination in sunny day and low light night can vary

more than 10 orders of magnitude. In low light scenes, sen-

sor noise is not negligible due to the low signal-to-noise

ratio (SNR). Therefore, low light image enhancement is an

important task which improves the SNR and enhances the

image after modeling the noise and the signal. It enables

various computer vision algorithms to perform properly.

Rather than explicitly modeling the noise and the signal,
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recent data-driven methods [3, 4, 9, 25, 26, 27] implicitly

learn such models from image data and get satisfying re-

sults on a single static image. And they require pixel-wisely

paired images of low and high SNR for training. However,

we notice that it is impossible to collect pixel-wisely paired

low and normal light videos under controlled environments

in large scale and diversities with noise of identical statis-

tics. Therefore, existing single image methods use either

synthetic data or temporally inconsistent single image data

for training. Thus, no temporal consistency can be learned

through existing data. One can perceive serious artifacts and

flickering from existing single image methods when han-

dling low light videos.

In this paper, we aim to enforce temporal consistency

even when training from static images. We propose a novel

method to enforce the temporal stability in low light video

enhancement with only static images. The key idea is to

learn and infer motion field (optical flow) from a single im-

age and synthesize short range video sequences. Our strat-

egy is general and can extend to large scale datasets directly.

Based on this idea, we propose our method which can in-

fer motion prior for single image low light video enhance-

ment and enforce temporal consistency. In particular, we

present an image-based method to achieve low light video

enhancement and tackle temporal inconsistency problem

by imposing consistency on the network. Specifically, we

choose optical flow to mimic motions of dynamic scenes. It

is more capable of representing both global and local mo-

tions. We first predict plausible optical flow from static im-

ages. Then we warp images with optical flow to be adjacent

frames and impose consistency on deep model.

We conduct rigorous experiments to validate the effec-

tiveness of our method. Experimental results on both syn-

thetic and real data show that our method outperforms the

state-of-the-art single image methods and achieves compa-

rable results to video-based ones, which means our method

can alleviate flickering problem without the need of videos.

Furthermore, we also conduct a user study on 26 volunteers,

of whom 78.9% prefer our method, suggesting the better

temporal stability of our method.
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Our main contributions are summarized as follows:

• We present a novel solution to solving temporal incon-

sistency problem of low light video enhancement when

using only single image data.

• We propose to use optical flow prior to indicate po-

tential motion from single image and thus enable us to

model the temporal consistency.

• We demonstrate the state-of-the-art performance of

our method from rigorous experiments and user study.

2. Related works

Low light video enhancement is closely related to low

light image enhancement. In this section, we briefly review

some typical methods of this two tasks.

Low Light Image Enhancement Traditional low light

image enhancement methods can be divided into two cat-

egories, i.e., histogram equalization based methods and

Retinex theory based methods. Histogram equalization

[22] is a simple yet effective method to stretch the his-

togram of images and improve the contrast. Many meth-

ods [1, 2, 7, 15, 20] extend it using more complex priors.

Arici et al. [1] propose WAHE to adjust the level of con-

trast enhancement while alleviating unnatural artifacts by

introducing specially designed penalties. Celik and Tjah-

jadi [2] propose CVC to enhance the contrast of an input

image using interpixel contextual information. Lee et al.

[15] propose LDR to enhance image contrast by amplifying

the gray-level differences between adjacent pixels based on

the layered difference representation of 2D histograms. On

the other hand, Retinex theory [14] assumes that an image

is composed of reflection and illumination. Jobson et al.

[11] propose the best placement of the logarithmic function

and Gaussian form to define a specific retinex called SSR

to handle gray-world violations. They [10] also extend it to

multiscale version and define a method of color restoration.

Lee et al. [16] adaptively compute the weights of each SSR

output according to the content of input. Wang et al. [28]

propose NPE to enhance image details while preserving nat-

uralness. Guo et al. [6] propose LIME to refine the initial

illumination map of each pixel by imposing a structure prior

and get final enhancement from it.

Deep learning based methods are recently introduced

into low light image enhancement task. Lore et al. [17]

propose a multi-autoencoder framework called LLNet for

enhancing low light images and denoising. Wei et al. [30]

propose RetinexNet based on the Retinex theory [14] to de-

compose images into reflectance and illumination and en-

hance the illumination to get normal light images. Lv et

al. [19] design a multibranch network called MBLLEN to

handle low light image enhancement and denoising simulta-

neously. They also [18] extend it by adding attention mod-

ule and provide a large scale synthetic dataset. Wang et al.

[27] propose a network called DeepUPE to model image-to-

image illumination and collect an expert-retouched dataset.

Zhang et al. [33] propose a network called KinD based on

retinex theory and design a restoration module to handle

noise. Chen et al. [4] collect a dataset named SID and train

a U-Net [24] to estimate enhanced sRGB images from raw

low light images. These models do not fully consider tem-

poral consistency and may face flickering problem if ap-

plied to videos directly.

Low Light Video Enhancement Unlike low light image

enhancement, low light video enhancement is still open and

challenging. Common solution is to extend low light im-

age enhancement models to their 3D version. Lv et al. [19]

substitute the 2D convolution layers of MBLLEN [19] with

3D ones to handle image sequences and train the model on

synthetic low light video data. Jiang et al. [9] propose a

novel setup to collect dark and bright video pairs and train

a modified 3D U-Net on them, which gets promising results

thanks to this dataset. However, this specialized equipment

is unavailable to the public yet, which consequently limits

the diversity and scale of collected video dataset.

Other attempts have also been made to utilize image-

based methods to enhance low light videos and alleviate

flickering problem. Self-consistency is often utilized to

improve the performance and stability of deep models by

imposing similarity of data pairs. Chen et al. [3] collect

a video dataset containing low light image sequences and

their long exposure ground truths of static scenes and train

their model with randomly sampled frame pairs from the

same sequence. With the help of self-consistency loss, the

model learns to tolerate minor differences of inputs caused

by noise and keeps its outputs stable. Eilertsen et al. [5] pro-

pose more general strategies to learn temporal stability in

which they apply random disturbances like noise or global

affine transformation including rotation, translation to im-

ages and feed them into networks. By enforcing consis-

tency between warped outputs, they help model keep stable

when processing video frames. However, simple transfor-

mations such as rotation and translation are not enough to

represent motions between video frames, since they can not

describe complex motions such as irregular motion of non-

linear objects and ego-motion of cameras. In contrast, we

consider optical flow as descriptor of motions in dynamic

scenes which is complement to representing motions and

well exploited in the past decades.

Lai et al. [13] also propose a deep network with Conv-

LSTM module to learn temporal consistency from video

sequences explicitly utilizing optical flow estimated by

FlowNet2 [8] at the training stage, which serves as a general
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Figure 1. Overview of our full pipeline that consists of two steps. (a) Optical Flow Prediction. We first utilize instance segmentation [31]

to detach objects from background and randomly sample 10 guidance motion vectors on each object region. With bright image and vectors

fed into optical flow prediction network [32], we can vary the directions and magnitudes to get diverse optical flow. This prediction step

can be computed offline before training. (b) Training and Testing. Our method consists of two branches of which the upper one works in

both training and testing phase while the other one only works during training as an auxiliary branch to impose temporal consistency on

the network. Images in the second branch are warped from images in the main branch with the same optical flow. During inference stage,

our network directly take the input and predict the output.

(a) (b) (c) (d)

Figure 2. Examples of optical flow results. (a) Normal light video

frame. (b) Optical flow from global affine transformation. (c) Op-

tical flow prediction by our instance aware optical flow simula-

tion. (d) Optical flow estimated from adjacent normal light video

frames. The predicted optical flow is instance-aware and more

similar to the real optical flow between adjacent video frames than

that of global transformation.

post-processing method to alleviating flickering regardless

of specific task. Different from their work, we train image-

based models with image data and embed temporal consis-

tency implicitly into them with optical flow generated from

single images.

3. Method

We propose a novel method to achieve low light video

enhancement via image-based methods and tackle flicker-

ing problem by stabilizing the network. More concretely,

we utilize optical flow to represent motion occurred be-

tween video frames of dynamic scenes. We mimic adjacent

frames of images by warping them with corresponding op-

tical flow. Given image pairs of original image and warped

image, we train our network in a siamese way in which we

feed them one by one to the network. By imposing consis-

tency between output pairs we can help network be tempo-

rally stable. We focus on both noise-free and noisy cases

and we test our model on real noisy data to show the robust-

ness and flexibility of our network.

In this section, we first introduce the whole work flow

and architecture and then provide implementation details.

3.1. Architecture

An ideal temporally stable model should be transform-

invariant. In other word, the model should get outputs of

transformed inputs with the same transformations as if the

operations are applied to outputs directly. Only a model

behaving in this way can process videos frame by frame

without flickering problem. Holding this assumption, we

try to generate motion with optical flow to mimic actual

video sequences. By feeding such image pairs into network

and enforcing consistency between outputs before and after

warping, we can help the network learn temporal stability.

As shown in Figure 1, we first predict plausible optical

flow from well illuminated ground truth before training the

network. We utilize an pretrained instance segmentation

model from open-source toolkit Detectron2 [31] to detach

object regions from backgrounds, where local motions usu-

ally occur. Given estimated object masks, it is easy to get

optical flow predictions with an unsupervised model called

CMP [32]. Figure 2 shows a comparison of our predicted
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Figure 3. Visual results of clean case. Ours is much cleaner than the baseline in terms of artifacts and comparable to video-based methods.

optical flow and that of global transformation with real opti-

cal flow estimated from adjacent ground truth video frames,

where our prediction is instance-aware and more similar to

the real case. With necessary optical flow ready, we train

our image-based model in a siamese way. The upper part

of the pipeline is the first pass of network and is the same

as common training procedure. A low light image x1 from

training dataset is fed into the network g(·) and it predicts

an enhanced result g(x1). The network learns to recover

normal light images with the help of supervision from cor-

responding well illuminated ground truth y1. To provide

more temporal information, we warp the input image x1

with random optical flow f which is predicted based on

ground truth. The warped image x2 serves as input for the

second pass. The output g(x2) is also compared to corre-

sponding warped ground truth y2 for supervision. Finally,

the output g(x1) is warped with the same optical flow f to

W
(

g(x1), f
)

and compared with output g(x2).
Previous works [3, 4, 9] have collected their low light

datasets and simply train a U-Net [24] on their data. Here,

we also choose this simple yet effective model to validate

the effectiveness of our method and follow the implementa-

tion in SID [4]. We adopt l1 loss for all losses and the loss

used to train the network can be defined as a combination

of enhancement loss Le and consistency loss Lc:

L = Le + λLc, (1)

where λ is the weight which balances the constraints of two

loss parts. Specifically, Le and Lc are formulated as:

Le =
∑

i=1,2

‖g(xi)− yi‖1, (2)

and

Lc = ‖W
(

g(x1), f
)

− g(x2)‖1, (3)

where g(·) represents the network forwarding operation. xi

and yi denote the input and the ground truth in the ith pass.

f is the optical flow we generate for motion simulation.

For generality, we take both noise-free and noisy cases

into consideration. For noise-free case, we train deep model

Table 1. Quantitative comparison on clean cases. The three groups

from top to bottom are image-based methods, video-based meth-

ods, and single image methods utilizing self-consistency including

SFR and ours.

Method PSNR↑ SSIM↑ AB(Var)↓ MABD↓WE (×1e-3)↓

LIME [6] 17.36 0.7386 9.65 0.37 3.420

MBLLEN [19] 18.41 0.8100 77.24 1.95 1.700

RetinexNet [30] 19.78 0.8353 1.32 0.09 1.372

SID [4] 22.95 0.9428 4.93 0.43 1.182

MBLLVEN [19] 24.50 0.9482 1.79 0.80 0.999

SMOID [9] 24.85 0.9472 1.30 0.17 1.077

SFR [5] 23.81 0.9413 2.14 0.11 1.097

BLIND [13] 22.87 0.9344 8.66 0.43 0.977

Ours 24.07 0.9483 1.96 0.05 1.061

directly on low light and normal light image pairs following

the procedure described above. For noisy case, we first sam-

ple noise from Gaussian and Poisson distributions and add

it to low light images before being fed into network.

3.2. Implementation Details

Our training is implemented on Pytorch [21]. We apply

random cropping, horizontal flipping and rotation for data

augmentation. Cropping size is 512×512 and rotation an-

gles include 90, 180 and 270 degrees. The learning rate is

set to 1×10−4, and the model is trained by Adam optimizer

[12] with default parameters for 50 epochs on single GTX

1080ti. For the stability of training, we stop the gradients of

Lc propogating to the warped output W
(

g(x1), f
)

.

4. Data Preparation

In this section, we detail the data preparation procedure

for training our model.

4.1. Optical Flow Prediction

Instead of global affine transformation, we choose op-

tical flow to represent motion for its ability to represent

both global and local motions. Thus, we need to acquire

predicted optical flow of images first. Unlike most optical

flow methods which concentrate on estimating optical flow
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Figure 4. Visual results of noisy case. Results are similar to clean case where ours performs better than image-based methods and compa-

rably to video-based methods

of two different images, we try to predict random optical

flow from a single image. Specifically, Conditional Motion

Propagation Network (CMP) [32] is adopted. We utilize its

pretrained model to predict plausible optical flow of ground

truths. In the generation step, it needs to be initialized with

some guidance motion vectors on objects and we use in-

stance segmentation [31] to help obtain these vectors. We

first segment images and get rough object masks represent-

ing objects regions. Then, we sample several motion vec-

tors on each region and predict optical flow based on them:

f = CMP(y, V ), (4)

where CMP represents the optical flow prediction model,

y and V denote ground truth images and guidance motion

vectors, respectively.

We randomly sample 10 vectors for each object in im-

ages to get final predictions. Notice that the randomly sam-

pled guidance vectors can not ensure the quality of pre-

dicted optical flow but we believe that failures in optical

flow predictions can also be helpful for training by intro-

ducing disturbances. The predicted optical flow serves as

initial start point that generates various optical flow cases

via augmentation. With the predicted optical flow results,

we can get the warped image by

x2 = W (x1, f), (5)

where f represents the predicted optical flow, x1 and x2 are

the original and warped images respectively.

Visualizations of optical flow we predict are included in

the supplementary material.

4.2. Low Light Image Synthesis

To investigate the effectiveness of our method, we need

to compare our models with both image-based and video-

based methods but low light video datasets are rare. In this

paper, we choose DAVIS dataset [23] as our ground truth

data. It is a large scale dataset for video segmentation tasks.

We exclude badly illuminated videos and synthesize low

Table 2. Quantitative results for noisy case. Our method is more

stable than image-based methods and comparably stable to video-

based methods.

Method PSNR↑ SSIM↑ AB(Var)↓ MABD↓ WE(×1e-3)↓

LIME [6] 16.83 0.4567 8.29 0.33 5.545

MBLLEN [19] 18.38 0.7982 78.76 1.93 1.719

RetinexNet [30] 19.56 0.7475 1.45 0.09 1.769

SID [4] 22.93 0.9253 4.03 0.39 1.303

MBLLVEN [19] 23.08 0.8839 2.81 1.02 1.221

SMOID [9] 23.42 0.9212 0.82 0.17 1.184

SFR [5] 22.82 0.9299 2.29 0.12 1.200

BLIND [13] 22.94 0.9174 7.86 0.33 1.031

Ours 24.01 0.9305 3.00 0.10 1.024

light videos. Following [18], we darken these bright images

using gamma correction and linear scaling:

x = β × (α× y)γ , (6)

where γ is gamma correction which is sampled in a uniform

distribution U(2, 3.5). α and β denote linear scaling factors

and are sampled from U(0.9, 1) and U(0.5, 1), respectively.

DAVIS [23] contains two resolutions, full resolution and

480P. We use all full resolution videos, including training

set, test and validation sets for 2017 challenge and 2019

challenge. After excluding badly illuminated videos, we

keep all videos with 1920×1080 resolution and get 107

videos containing 7179 frames in total. We randomly split

these videos into training set and test set, 87 videos in train-

ing set and 20 videos in test set specifically. The same im-

age augmentation is applied to corresponding optical flow.

Standalone augmentation is performed to them after that to

get various plausible optical flow. They are randomly ro-

tated by 2 degrees, randomly flipped, and random global

offset is added in horizontal or vertical direction or both.

4.3. Noise

Noise is another matter we want to take care of. Aside

from optical flow prediction and low light image generation,

we use Gaussian and Poisson noise for noise simulation. We
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Figure 5. Visual results of different weights. With the increase of weights, model outputs becomes smoother.

believe that our pipeline is robust and can be applied to real

noisy images. The noise sampling can be described as

n = P(x, σp) +N (σg), (7)

where σp, σg denote parameters of Poisson noise and Gaus-

sian noise, respectively. They are both sampled from

U(0.01, 0.04).

5. Experiments

We conduct quantitative and qualitative experiments to

verify the effectiveness of our method. First we compare

our method with other methods under noise-free and noisy

setting respectively. Then we make comparisons using real

low light videos. After that, we conduct ablation study to

figure out optimal weight of our self-consistency branch and

to show how it behaves with existence of different noise

components and under different low light levels. Finally,

we conduct a user study and inference speed test for further

comparison.

Due to the limited space, we only provide several typical

visual results here. More qualitative results, results of an-

other real scene, results of ablation study on different light

levels and results of inference speed test can be found in our

supplementary material.

5.1. Experiment Setup

We compare our method with three kinds of enhance-

ment methods, including image-based methods, video-

based methods and methods utilizing self-consistency.

Seven methods are selected from these categories. In

the first group, LIME [6] is a traditional method while

MBLLEN [19], RetinexNet [30] and SID [4] are deep learn-

ing methods. Two video-based methods MBLLVEN [19]

and SMOID [9] are also learning based methods. The last

method proposed by Eilertsen et al. [5] imposes consistency

between global transformed image pairs and we denote it

as SFR here for short. In addition, we include the post-

processing method from Lai et al. [13] which is denoted

as BLIND in quantitative evaluation to further complement

Table 3. Ablation Study of branch weights. With the increase of

weights, model becomes more stable temporally and PSNR and

SSIM increase.

Weight PSNR↑ SSIM↑ AB(Var)↓ MABD↓ WE(×1e-3)↓

λ = 0.01 22.26 0.9381 5.25 0.55 1.356

λ = 0.1 22.40 0.9442 4.13 0.40 1.348

λ = 0.5 22.54 0.9433 4.66 0.47 1.298

λ = 1 22.44 0.9476 4.84 0.53 1.415

λ = 5 22.82 0.9478 3.83 0.41 1.250

λ = 10 23.37 0.9548 1.89 0.25 1.231

λ = 15 24.05 0.9571 1.73 0.08 1.171

λ = 20 24.04 0.9545 1.30 0.04 1.147

our experiments in spite that post-processing is not the fo-

cus of our discussion.

We evaluate their performances with two common met-

rics: Peak Signal-to-Noise Ratio (PSNR) and Structural

SIMilarity (SSIM) [29]. Furthermore, we choose AB(Var)

from [19], Mean Absolute Brightness Difference (MABD)

from [9] and Warping Error (WE) from [13] to validate tem-

poral stability of models. Warping Error takes use of optical

flow and reflects differences among adjacent frames mainly

in dynamic areas. The lower values in the three metrics

stand for better temporal stability.

5.2. Synthetic Data

Here we conduct two experiments for both noise-free

and noisy cases. Quantitative results are provided in Tables

1 and 2.

As can be seen in Table 1, image-based methods LIME

[6], MBLLEN [19] and RetinexNet [30] get compara-

ble results on PSNR and SSIM under noise-free setting.

MBLLEN and RetinexNet are better than LIME in terms

of PSNR and SSIM and more stable according to Warp-

ing Error. While MBLLEN gets large values in AB(Var)

due to its under-exposed and over-exposed enhancements.

But they are all worse than our baseline SID. Video-based

methods MBLLVEN [19] and SMOID [9] both have better

PSNR and SSIM and smaller Warping Error. For SFR [5]

and our method, we can see that both methods achieve com-

parable results as video-based methods while ours are better
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Table 4. Ablation Study of different noise distributions. Ours gets

comparable results in cases of different noise distributions, which

shows robustness of our method.

Noise PSNR↑ SSIM↑ AB(Var)↓ MABD↓ WE(×1e-3)↓

G 23.29 0.8681 2.38 0.1208 1.208

P 24.04 0.9374 1.96 0.1176 1.176

G+P 23.27 0.8648 1.95 0.1243 1.243

than the other. As for the post-processing method BLIND

[13], it only improves the results of the baseline on Warping

Error and has no help to PSNR and SSIM.

Several typical enhancements are shown for visual com-

parison in Figure 3. We can see that LIME suffers from over

saturation and RetinexNet gets unreal results. MBLLEN

performs poorly in recovering brightness. SID [4] suffers

from checkerboard artifacts due to deconvolution. SFR [5]

and ours are more stable temporally.

Experimental results of all compared methods under

Gaussian and Poisson noise are provided in Table 4. We

can see that all methods decrease slightly in their PSNR

and SSIM while their temporal stability keep tight with

their clean cases. Besides, our method and SFR [5] can

achieve comparable performance and temporal stability

as video-based methods. Also our method surpasses all

compared image-based methods and the post-processing

method BLIND [13].

As shown in Figure 4, we can see that LIME, MBLLEN

and RetinexNet all fail to recover correct low light video.

Brightness of MBLLEN is much lower than ground truth

which results in the large value of AB(Var). RetinexNet

enhances images with unreal color and too much smooth-

ness which results in better temporal stability. SID actually

gets heavier artifacts due to the existence of noise. SFR and

ours perform better while ours is still better than the other.

Video-based methods all get pleasant visual quality com-

pared to aforementioned ones.

Both quantitative metric results and visual quality show

that our method can improve temporal stability of deep

model and alleviate flickering problem without the need of

video training data.

5.3. Real Data

To further verify the robustness of the proposed method,

we collect real low light videos. All tested methods except

LIME are trained on synthetic noisy data. As shown in Fig-

ure 7, traditional method LIME actually performs well for it

does not get influenced by data distribution but suffers from

over-exposure and over-saturation. Learning based meth-

ods all show somehow differences from real data but we can

still discriminate out their temporal stability on real videos.

Among these results, MBLLEN enhances its results sim-

ilarly to LIME and faces over-saturation too. RetinexNet

gets unreal color and over-exposed. SID suffers from arti-

0% 20% 40% 60% 80% 100%

LIME (Guo, 2017)

RetinexNet (Chen, 2018)

MBLLEN (Lv, 2018)

SID (Chen, 2018)

SFR (Eilertsen, 2019)

Others Ours

Figure 6. Preference distribution of the user study. Our method is

compared with seven methods in seven blind A/B tests. Partici-

pants vote for methods that are more stable and visually pleasant.

facts. In contrast, SFR and our method evidently alleviate

this problem. But we can still find out some artifacts in out-

puts from SFR.

5.4. Ablation Study

Training a temporally stable image-based model is ac-

tually a compromise between visual quality and temporal

stability. The optimal result lies in the balance of them.

To show the influence of different weight on consistency

branch and generality of our model, we conduct two abla-

tion studies of weight parameter and noise distributions.

We conduct ablation study to investigate optimal weight

for our method. With different parameter settings, our

method behaves accordingly. As we can see in Table 3, with

the increase of branch weight, the network becomes more

temporally stable compared to that with smaller weight and

improves its PSNR and SSIM. When the weight arrives at

a certain point, the benefit of improving enhancement qual-

ity disappears and the network starts to drop in PSNR and

SSIM for more improvements on temporal stability. And

we can find out the best parameter setting is around λ = 20.

Visual results are provided in Figure 5.

We compare our method on different noise distribu-

tions including Gaussian noise only, Poisson noise only

and mixed noise. Quantitative results are provided in Ta-

ble 4. We can find that with various noise components, our

pipeline all work properly.

5.5. User Study

We conduct a user study on video stability with 26 par-

ticipants. The experiment consists of 5 groups of blind A/B

tests between our method and other image-based methods.

7 test videos are randomly selected for each group. Only

two enhanced videos are provided to users at a time. Figure

6 shows that our method surpasses all image-based methods

by a large margin.
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Figure 7. Several frames for real data test. From top to bottom: 1. Input; 2. LIME [6]; 3. MBLLEN [19]; 4. RetinexNet [30]; 5.

MBLLVEN [19]; 6. SMOID [9]; 7. SID [4]; 8. SFR [5]; 9. Our results.

6. Conclusion

In this paper, we propose a novel method for low light

video enhancement with image-based model and alleviate

flickering by temporally stabilizing it. With the help of

generated optical flow, we guide the model to learn tem-

poral stability by enforcing consistency on warped outputs.

Quantitative and qualitative results show the good balance

of enhancement quality and temporal stability of the trained

model. Our method can effectively work for the video re-

covery by single frames. In the future, we are planning to

investigate how to extend our model for deraining, dehaz-

ing, intrinsic decomposition and other tasks where temporal

consistency are important.
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