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Abstract

In this paper, we investigate a new variant of neural

architecture search (NAS) paradigm – searching with ran-

dom labels (RLNAS). The task sounds counter-intuitive for

most existing NAS algorithms since random label provides

few information on the performance of each candidate ar-

chitecture. Instead, we propose a novel NAS framework

based on ease-of-convergence hypothesis, which requires

only random labels during searching. The algorithm in-

volves two steps: first, we train a SuperNet using ran-

dom labels; second, from the SuperNet we extract the sub-

network whose weights change most significantly during the

training. Extensive experiments are evaluated on multiple

datasets (e.g. NAS-Bench-201 and ImageNet) and multiple

search spaces (e.g. DARTS-like and MobileNet-like). Very

surprisingly, RLNAS achieves comparable or even better re-

sults compared with state-of-the-art NAS methods such as

PC-DARTS, Single Path One-Shot, even though the coun-

terparts utilize full ground truth labels for searching. We

hope our finding could inspire new understandings on the

essential of NAS.

1. Introduction

Recent years Neural Architecture Search [49, 2, 50, 47,

48, 29, 35, 38, 10] (NAS) has received much attention in

the community as its superior performances over human-

designed architectures on a variety of tasks such as image

classification [38, 39, 19], object detection [10, 16] and se-

mantic segmentation [27]. In general, most existing NAS

frameworks can be summarized as a nested bilevel opti-

mization, formulated as follows:

a⋆ = argmax
a∈A

Score (a,W⋆

a
) (1)

s.t. W
⋆

a
= argmin

W

L (a,W) , (2)

*Corresponding author. This work is supported by The National Key

Research and Development Program of China (No.2017YFA0700800) and

Beijing Academy of Artificial Intelligence (BAAI).

where a is a candidate architecture with weights Wa sam-

pled from the search space A; L(·) represents the training

loss; Score(·) means the performance indicator (e.g. accu-

racy in supervised NAS algorithms or pretext task scores in

unsupervised NAS frameworks [28]) evaluated on the val-

idation set. Briefly speaking, the NAS paradigm aims to

search for the architecture which obtains the best validation

performance, thus we name it performance-based NAS in

the remaining text.

Despite the great success, to understand why and how

performance-based NAS works is still an open question.

Especially, the mechanism how NAS algorithms discover

good architectures from the huge search space is well worth

study. A recent literature [37] analyzes the searching re-

sults under cell-based search spaces and reveals that ex-

isting performance-based methods tend to favor architec-

tures with fast convergence. Although Shu et al. [37] fur-

ther empirically find that architectures with fast conver-

gence can not achieve the highest generalization perfor-

mance, the fast convergence connection pattern still implies

that there may exist high correlations between architec-

tures with fast convergence and the ones with high perfor-

mance (named ease-of-convergence hypothesis for short).

Inspired by the hypothesis, we propose an alternative NAS

paradigm, convergence-based NAS, as follows:

a⋆ = argmax
a∈A

Convergence (a,W⋆

a
) (3)

s.t. W
⋆

a
= argmin

W

L (a,W) , (4)

where Convergence(·) is a certain indicator to measure the

speed of convergence; other notations follow the same defi-

nitions as in Eq. 1, 2.

In this paper we mainly investigate convergence-based

NAS frameworks, which is rarely explicitly explored in pre-

vious works to our knowledge. First of all, we study the

role of labels in both frameworks. In performance-based

NAS, we notice that feasible labels are critical in both search

steps: for Eq. 1 step, since we need to select the architecture

with the highest validation performance, reasonable labels

such as ground truths or at least carefully-designed pretext

task (e.g. rotation prediction [17]) labels in unsupervised
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NAS [28] are required for evaluation. For Eq. 2 step such

corresponding labels are also necessary in the training set

to optimize the weights. While in convergence-based NAS,

Eq. 3 only depends on a metric to estimate the convergence

speed, which is free of labels. Though the optimization

in Eq. 4 still needs labels, the purpose of the training is

just to provide the evidence for the benchmark in Eq. 3

rather than accurate representations. So, we conclude that in

convergence-based NAS the requirement of labels is much

weaker than that in performance-based NAS.

The observation motivates us to take a further step: in

convergence-based NAS, can we use only random labels for

search, instead of any feasible labels like ground truths or

pretext task labels entirely? To demonstrate it, we propose

a novel convergence-based NAS framework, called Ran-

dom Label NAS (RLNAS), which only requires random la-

bels to search. RLNAS follows the paradigm of Eq. 3, 4.

In Eq. 4 step, random labels are adopted to optimize the

weight for each sampled architecture a; while in Eq. 3 step,

a customized angle metric [21] is introduced to measure the

distance between trained and initialized weights, which es-

timates the convergence speed of the corresponding archi-

tecture. To speed up the search procedure, RLNAS further

utilizes the mechanism of One-Shot NAS [3, 19] to decou-

ple the nested optimization of Eq. 3 and Eq. 4 into a two-

step pipeline: first training a SuperNet with random labels,

then extracting the sub-network with the fastest conver-

gence speed from the SuperNet using evolutionary search.

We evaluate our RLNAS in popular search spaces like

NAS-Bench-201 [15], DARTS [30] and MobileNet-like

search space [5]. Very surprisingly, though RLNAS does

not use any feasible labels, it still achieves comparable

or even better performances on multiple benchmarks than

many supervised/unsupervised methods, including state-of-

the-art NAS frameworks such as PC-DARTS [43], Single-

Path One-Shot [19], FairDARTS [13], FBNet [40] and Un-

NAS [28]. Moreover, networks discovered by RLNAS are

also demonstrated to transfer well in the downstream tasks

such as object detection and semantic segmentation.

In conclusion, the major contribution of the paper is that

we propose a new convergence-based NAS framework RL-

NAS, which makes it possible to search with only random

labels. We believe the potential of RLNAS may includes:

A simple but stronger baseline. Compared with the

widely used random search [24] baseline, RLNAS is much

more powerful, which can provide a stricter validation for

future NAS algorithms.

Inspiring new understandings on NAS. Since the per-

formance of RLNAS is as good as many supervised NAS

frameworks, on one hand, it further validates the effective-

ness of ease-of-convergence hypothesis. On the other hand,

however, it suggests that the ground truth labels or NAS

on specified tasks do not help much for current NAS algo-

rithms, which implies that architectures found by existing

NAS methods may still be suboptimal.

2. Related Work

Supervised Neural Architecture Search. Supervised

neural architecture search (NAS) paradigm is the main-

stream NAS setting. Looking back the development his-

tory, supervised NAS can be divided into two categories hi-

erarchically: nested NAS and weight-sharing NAS from the

perspective of search efficiency. In the early stage, nested

NAS [49, 2, 50, 47, 48, 29, 35, 38] trains candidate architec-

tures from scratch and update controller with corresponding

performance feedbacks iteratively. However, nested NAS

works at the cost of a surge in computation, e.g. NAS-

Net [50] costs about 1350–1800 GPU days. ENAS [34] ob-

serves the computation bottleneck of nested NAS and forces

all candidate architectures to share weights. ENAS takes

1000× less computation cost than nested NAS [34] and pro-

poses a new NAS paradigm named weight-sharing NAS.

A large number of literature [30, 9, 43, 3, 4, 5, 19] fol-

low the weight-sharing strategy due to the superiority of

search efficiency. This work is also carried out under the

weight-sharing strategy. Unlike most weight-sharing ap-

proaches, we are not focusing on the improvement of search

efficiency.

According to different optimization steps, weight-

sharing approaches can be further divided into two cat-

egories: the one joint step optimization approach named

gradient-based NAS [30, 9, 43]) and the two sequential

steps optimization approach named One-Shot NAS [3, 4,

5, 19]). The gradient-based NAS relaxes discrete search

space into a continuous one with architecture parameters,

which are optimized with end-to-end paradigms. Because

of the non-differentiable characteristic of angle, we fol-

low the mechanism of One-Shot NAS to study convergence-

based NAS.

Unsupervised Neural Architecture Search. Recently,

unsupervised learning [20, 8, 18] has received much atten-

tion, and the unsupervised paradigm has also appeared in

the field of NAS. [44] used unsupervised architecture repre-

sentation in the latent space to better distinguish network ar-

chitectures with different performance. UnNAS [28] intro-

duces unsupervised methods [17, 33, 46] to weight-sharing

NAS in order to ablate the role of labels. Although UnNAS

does not use the labels of the target dataset, the labels like

rotation category, etc on the pretext tasks are still exploited.

UnNAS shows that weight-sharing NAS can still work with

the absence of ground truth labels, but it is hard to conclude

that labels are completely unnecessary. Different from un-

supervised learning, which requires representation, unsu-

pervised NAS focuses on architectures. Therefore, random
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labels are introduced in this paper, which completely detach

from prior supervision information and help us thoroughly

ablate the impact of labels on NAS.

Model Evaluation Metrics. [32, 1] develop training-free

NAS which means searching directly at initialization with-

out involving any training. They focus on investigating

training-free model evaluation metrics to rank candidate ar-

chitectures. [32] uses the correlation between input Jaco-

bian to indicate model performance. [1] uses the com-

bination of NTKs and linear regions in input space to

measure the architecture trainability and expressivity. Al-

though training-free NAS has much higher search efficiency,

there is still a performance gap compared with well-trained

weight-sharing NAS. ABS [21] introduces angle metric to

indicate model performance and mainly focuses on search

space shrinking. Different from ABS, we directly search

architectures with angle metric.

3. Methodology

As mentioned in the introduction, in order to utilize the

mechanism of Oner-Shot NAS, we first briefly review Sin-

gle Path One-Shot (SPOS) [19] as preliminary. Based on

SPOS framework, we then put forward our approach Ran-

dom Label NAS (RLNAS).

3.1. Preliminary: SPOS

SPOS is one of the One-Shot approaches, which decou-

ple the NAS optimization problem into two sequential steps:

firstly train SuperNet, and then search architectures. Differ-

ent from other One-Shot approaches, SPOS further decou-

ples weights of candidate architectures by training Super-

Net stochastically. Specifically, SPOS regards a candidate

architecture in SuperNet as a single path and uniformly ac-

tivates a single path to optimize corresponding weights in

each iteration. Thus, the SuperNet training step can be ex-

pressed as:

W
⋆

a
= argmin

W

Ea∼Γ (A)L (a,W) , (5)

where L means objective function optimized on training

dataset with ground truth labels and Γ (A) is a uniform dis-

tribution of a ∈ A.

After SuperNet trained to convergence, SPOS performs

architecture search as:

a⋆ = argmax
a∈A

ACCval (a,W
⋆

a
) . (6)

SPOS implements Eq. 6 by utilizing an evolution algorithm

to search architectures. With initialized population, SPOS

conducts crossover and mutation to generate new candidate

architectures and uses validation accuracy as fitness to keep

candidate architectures with top performance. Repeat this

way until the evolution algorithm converges to the optimal

architecture.

3.2. Our approach: Random Label NAS (RLNAS)

The combination of two decoupled optimization steps,

SuperNet structure consisting of single paths and evolution

search, makes SPOS simple but flexible. Following the

mechanism of SPOS, we decouple the convergence-based

optimization of Eq. 3 and Eq. 4 into the following two steps.

Firstly, SuperNet is trained with random labels:

W
⋆

a
= argmin

W

Ea∼Γ (A)L (a,W, R) , (7)

where R represents random labels; other notations follow

the same definitions as in Eq. 5.

Secondly, evolution algorithm with convergence-based

metric Convergence(·) as fitness searches the optimal ar-

chitecture from SuperNet:

a⋆ = argmax
a∈A

Convergence (a,W⋆

a
) . (8)

In the next section, we introduce the mechanism of gen-

erating random labels in Sec. 3.2.1 and use an angle-based

metric as Convergence(·) to estimate model convergence

speed in Sec. 3.2.2.

3.2.1 Random Labels Mechanism

In representation learning field, deep neural net-

works (DNNs) have the capacity to fit dataset with

partial random labels [45]. Further more, [31] tries to

understand what DNNs learn when trained on natural

images with entirely random labels and experimentally

demonstrates that pre-training on purely random labels can

accelerate the training of downstream tasks under certain

conditions. For NAS field, although we pursue the optimal

model architecture rather than model representation in

search phase, model representation is still involved in

the performance-based NAS. However, it is still an open

question can neural architecture search work within random

labels setting. In the view of this, we try to study the impact

of random labels on NAS optimization problem.

At first, we introduce the mechanism of generating ran-

dom labels. To be specific, random labels obey the discrete

uniform distribution and the number of discrete variable is

equal to the image category of dataset in default (other pos-

sible methods are discussed in Sec. 4.3). Random labels

corresponding to different images are sampled in data pre-

processing procedure and these image-label pairs will not

change during the whole model optimization process.

3.2.2 Angle-based Model Evaluation Metric

Recently, [37] found out that searched architectures by NAS

algorithms share the same pattern of fast convergence. With
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this rule as a breach, we try to design model evaluation

metrics from the perspective of model convergence. [6]

firstly measure the convergence of a stand-alone trained

model with a angle-based metric. The metric is defined as

the angle between initial model wights and trained ones.

ABS [21] introduces this metric into the NAS community

and uses it to shrink the search space progressively. Dif-

ferent from ABS, we focus on the optimization problem

with random labels and adopt angle-based metric to directly

search architectures rather than shrink search space. Prior

to extend angle to guide architecture search, we first review

angle metric in ABS [21].

Review Angle Metric in ABS. SuperNet is represented

as a directed acyclic graph (DAG) denoted as A(O,E),
where O is the set of feature nodes and E is the set of

connections (each connection is instantiated as an alterna-

tive operation) between two feature nodes. ABS defines

A(O,E) with the only input node Oin and the only out-

put node Oout. A candidate architecture is sampled from

SuperNet and it is represented as a(O, Ẽ). The candidate

architecture has the same feature nodes O as SuperNet but

subset edges Ẽ ∈ E. ABS uses a weight vector V (a,W)
to represent a model and constructs V (a,W) by concate-

nating the weights of all paths from Oin to Oout. The dis-

tance between the initialized candidate architecture whose

weights is W0 and the trained one with weights Wt is:

Angle(a) = arccos (
< V (a,W0),V (a,Wt) >

‖V (a,W0)‖2 · ‖V (a,Wt)‖2
). (9)

Extensive Representation of Weight Vector. As above

discussed, ABS define the SuperNet with just one input

node and one output node. However, for some search

spaces, they consist of cell structures with multiple input

nodes and outputs nodes. For example, each cell in DARTS

has two input nodes and the output node of each cell con-

sists outputs of all intermediate nodes by concatenation,

which motivates us to consider all intermediate nodes as

output nodes for the identification of architecture topology.

In general, we redefine weight vector V (a,W) by concate-

nating the weights of all paths from Oin to Oout.

Parameterize Non-weight Operations. So as to resolve

the conflict among candidate architectures with the same

learnable weights, ABS parameterizes non-weight opera-

tions (’pool’, ’skip-connect’ and ’none’). The ’pool’ op-

eration (both ’average pool’ and ’max pool’) is assigned

with a fixed tensor with dimension [O,C,K,K] (O and C
represent output channels and input channels respectively,

K is the kernel size) and all elements are 1/K2. Dif-

ferent from ABS assign ’skip-connect’ with empty vector,

we propose an alternative parametric method, which as-

signs identity tensor with dimension [O,C, 1, 1] to the ’skip-

connect’ operation. We adjust parametric methods for dif-

ferent search spaces, e.g., empty weights and identity ten-

sor are assigned to ’skip-connect’ in NAS-Bench-201 and

DARTS or MobileNet-like search space respectively. The

reason for the difference may be related to the complexity

of the search space. The ’none’ operation need not to be pa-

rameterized as ABS and it determines the number of paths

that make up the weights vector V . If there is a ’none’ in

a path, then weights of operations in this path will not in-

volved in angle calculation.

4. Experiments

4.1. Search Space and Training Setting

We analyze and evaluate RLNAS on three existing pop-

ular search spaces: NAS-Bench-201 [15], DARTS [30] and

MobileNet-like search space [5].

NAS-Bench-201. There are 6 edges in each cell and each

edge has 5 alternative operations. Because of repeated

stacking, NAS-Bench-201 consists of 15625 candidate ar-

chitectures and provides the real performance for each ar-

chitecture. We adopt the same training setting for SuperNet

in a single GPU across CIFAR-10 [23] CIFAR-100 [23] and

ImageNet16-120 [11]. We train the SuperNet 250 epochs

with mini-batch 64. We use SGD to optimize weights

with momentum 0.9 and weight decay 5e−4. The learning

rate follows cosine schedule from initial 0.025 annealed to

0.001. In evolution phase, we use population size 100, max

iterations 20 and keep top-30 architectures in each iteration.

All experiment results on NAS-Bench-201 are obtained in

three independent runs with different random seeds.

DARTS. Different from vanilla DARTS [30], each inter-

mediate node only samples two operations among alterna-

tive operations (except ’none’) from its all preceding nodes

in SuperNet training phase. We train the SuperNet with 8

cell on CIFAR-10 for 250 epochs and other training settings

keep the same as DARTS [30]. We also train 14 cell Super-

Net with initial channel 48 on ImageNet. We use 8 GPUs to

train SuperNet 50 epochs with mini-batch 512. SGD with

momentum 0.9 and weight decay 4e−5 is adopted to opti-

mize weights. The cosine learning rate schedules from 0.1

to 5e−4. We use the same evolution hyper-parameters as

Single Path One-Shot (SPOS) [19]. As for model evaluation

phase (retrain searched architecture), we follow the training

setting as PC-DARTS [43] on ImageNet.

MobileNet. The MobileNet-like search space proposed in

ProxylessNAS [5] is adopted in this paper. The SuperNet

contains 21 choice blocks and each block has 7 alternatives:
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Method
Configurations CIFAR-10 (%) CIFAR-100 (%) ImageNet16-120 (%)

Label type Performance indicator valid acc test acc valid acc test acc valid acc test acc

A (SPOS) ground truth label validation accuracy 88.49 92.11 66.51 66.89 40.16 40.80

B ground truth label angle 90.20 93.76 70.71 71.11 40.78 41.44

C random label validation accuracy 76.47 80.60 52.48 52.84 29.58 28.37

D (RLNAS) random label angle 89.94 93.45 70.98 70.71 43.86 43.70

Table 1: Search performance on NAS-Bench-201 across CIFAR-10, CIFAR-100 and ImageNet16-120.

6 MobileNet blocks (combination of kernel size {3,5,7}
and expand ratio {3,6}) and ’skip-connect’. We keep the

same experiment setting for both search phase and evalua-

tion phase as SPOS [19].

4.2. Searching Results

4.2.1 NAS-Bench-201 Experiment Results

Search performance. For NAS-Bench-201 search space,

experiments are conducted on three datasets: CIFAR-10,

CIFAR-100 and ImageNet16-120. Different from other lit-

erature only search on CIFAR-10 and look up real perfor-

mance of the found architecture on various test dataset (e.g.,

test accuracy on CIFAR-100 or ImageNet16-120), we actu-

ally train SuperNet on different target datasets and search

architectures with the unique SuperNet. Firstly, we con-

struct SuperNet based NAS-Bench-201 search space and

train the SuperNet by uniform sampling strategy [19] with

ground truth labels or random labels. Then, angle or vali-

dation accuracy is regarded as fitness to perform evolution

search. According to different method configurations, there

are total four possible methods as described in Table 1. For

simplity, we denoted they as method A, B, C and D respec-

tively. In particular, method A and D correspond to SPOS

and RLNAS. The search performance on three datasets are

reported in Table 1. We first compare method C and D

within the random label setting, and find that angle sur-

passes validation accuracy with a large margin. Similar

results can also be observed under the ground truth label

setting, but the margin between method A and B is not such

large. This suggests that angle can evaluate models more ac-

curately than validation accuracy. Further more, in the case

where angle is used as the metric, even if random labels are

used, RLNAS obtains comparable accuracy on CIFAR-10

and CIFAR-100 and even outperforms method B by 1.26%

test accuracy on ImageNet16-120.

Ranking correlation. In addition to the analysis of top

architectures as Table 1, we further conduct rank correla-

tion analysis. The first step is also to train SuperNet with

ground truth labels or random labels. Secondly, we traverse

the whole NAS-Bench-201 search space and rank them

with different model evaluation metrics independently. We

treat the rank based on real performance provided by NAS-

Bench-201 as the ground truth rank. At last, we compute

the Kendall’s Tau [22, 36, 12, 21] between the rank based

on the model evaluation metric and the ground truth rank to

evaluate the ranking correlation. We compare angle and val-

idation accuracy as model evaluation metric in both ground

truth label and random label setting across three datasets.

The ranking correlation results are shown in Table 2. The

results on different datasets show the consistent order of

ranking correlation: C<A<D<B. It should be noted that

the rank obtained by validation accuracy in the case of ran-

dom labels has almost no correlation with the ground truth

rank. To our surprise, angle still has the ranking correla-

tion around 0.5 under the random label setting, which even

exceeds validation accuracy in ground truth label case.

Method† CIFAR-10 CIFAR-100 ImageNet16-120

A (SPOS) 0.4239 0.4832 0.4322

B 0.6671 0.6942 0.6342

C 0.0874 −0.0195 −0.0262

D (RLNAS) 0.5059 0.5097 0.4716

Table 2: Ranking correlation on NAS-Bench-201. † refer to

Table 1 for detailed method configurations.

4.2.2 DARTS Search Space Results

We conduct two types of experiments in DARTS search

space: search architectures with 8 cells on CIFAR-10,

then transfer to ImageNet and search architectures with 14

cells on ImageNet directly. For experiment conducted on

CIFAR-10, the training dataset is divided into two subsets

with equal size, one of which is used to train the SuperNet,

and the other is used as the validation dataset to evaluate

model performance in the search phase. As for experiments

searched on ImageNet, 50K images are separated from the

original training dataset as validation and the rest images

are used as the new training dataset.

Search architectures on CIFAR-10. We first analyze the

search performance on CIFAR-10 dataset in Table 3. RL-

NAS embodies strong generalization ability when transfer-

ing searched architecture from CIFAR-10 to ImageNet. As

shown in the first block of Table 3, RLNAS has reached

76.0% top-1 accuracy, even obtains 75.6% within 600M

FLOPs constrain.
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Search type Method Params (M) FLOPs (M) Top-1 (%) Top-5 (%)

CIFAR-10

DARTS [30] ( sup.) 4.7 574 73.3 91.3

SPOS [19] (sup, our impl.) 4.3 471 73.7 91.6

PC-DARTS [43] (sup.) 5.3 586 74.9 92.2

FairDARTS-B [13] (sup.) 4.8 541 75.1 92.5

P-DARTS [9] (sup.) 4.9 557 75.6 92.6

RLNAS (unsup.) 5.7 629 76.0 92.9

RLNASH (unsup.) 5.3 581 75.6 92.5

ImageNet

SPOS [19] (sup, our impl.) 4.6 512 74.5 92.1

NAS-DARTS† [28] (sup.) 5.3 582 76.0 92.7

PC-DARTS [43] (sup.) 5.3 597 75.8 92.7

RLNAS (unsup.) 5.5 597 75.9 92.9

Table 3: DARTS search space results: comparison of the SOTA methods on ImageNet. There are two search types of methods

and the results of the first block and the second block are searched on CIFAR-10 and ImageNet respectively. H FLOPs of

the searched architecture is scaled down within 600M by adjusting initial channels from 48 to 46. † retrain NAS-DARTS

reported in UnNAS [28] as PC-DARTS [43].

Search architectures on ImageNet. After demonstrat-

ing the transferring ability of RLNAS among classification

tasks, we further verify the efficacy of our method by di-

rectly searching on ImageNet. To our best knowledge, it

is the first time to train SuperNet with 14 cells in DARTS

search space without any SuperNet structure modification

or complicated techniques. After SuperNet training, we

search candidate architectures with 600M FLOPs constrain.

The searching results are shown in the second block of Ta-

ble 3 and RLNAS obtains 75.9%. Compared with the re-

sults found on CIFAR-10, the performance of RLNAS is

further improved by 0.3%, which indicates that narrowing

the gap between the training setting (both dataset and Super-

Net structure) of the search phase and the one in the evalu-

ation phase is helpful for architecture search.

Comparison with UnNAS. Further, we compare our

method with UnNAS [28] which also search architectures

directly on ImageNet-1K with three pretext tasks [17, 33,

46]. For fair comparisons with UnNAS, we have no FLOPs

limit in the search phase, but after the search is completed,

we limit the FLOPS within 600M by scaling the initial

channels from 48 to 42. Simultaneously, we retrain the

three architectures reported as UnNAS [28] with the same

training setting as PC-DARTS [43]. Table 4 shows that our

method obtains high performance with 76.7% and 75.9%

within 600M FLOPs constrain, which is comparable with

UnNAS with jigsaw task and competitive to results obtained

by the other two pretext tasks.

4.2.3 MobileNet-like Search Space Results.

To verify the versatility of our method, we further conduct

experiments in the MobileNet-like search space. We train

SuperNet with 120 epochs on ImageNet as [19]. In the

search phase, we limit model FLOPs within 475M so as

to make fair comparisons with other methods. Results are

Method
Params

(M)

FLOPs

(M)

Top-1

(%)

Top-5

(%)

UnNAS [28] (rotation task.) 5.1 552 75.8 92.6

UnNAS [28] (color task.) 5.3 587 75.5 92.6

UnNAS [28] (jigsaw task.) 5.2 560 76.2 92.8

RLNAS (random label.) 6.6 724 76.7 93.1

RLNASH (random label.) 5.2 561 75.9 92.8

Table 4: DARTS search space results: comparison with

UnNAS on ImageNet. The architectures of UnNAS based

on three pretext tasks are provided in [28] and we retrain

them as PC-DARTS training setting [43].H FLOPs of the

searched architecture is scaled down within 600M by ad-

justing initial channels from 48 to 42.

summarized in Table 5. RLNAS obtains 75.6% top-1 ac-

curacy. Compared with other SOTA methods, our method

even outperforms with a slight margin, which verify that our

strategy does not overfit to any search space and can achieve

effective results generally.

Method
Params

(M)

FLOPs

(M)

Top-1

(%)

Top-5

(%)

FairNAS-A [12] (sup.) 4.6 388 75.3 92.4

FBNet-C [40] (sup.) 4.4 375 74.9 92.1

Proxyless (GPU) [5] (sup.) 7.0 457 75.1 92.5

FairDARTS-D [13] (sup.) 4.3 440 75.6 92.6

SPOS [19] (sup.) 5.4 472 74.8 -

RLNAS (unsup.) 5.3 473 75.6 92.6

Table 5: MobileNet search space results: comparison of the

SOTA methods on ImageNet.

4.3. Ablation Study and Analysis

We perform ablation study in this section. We analyze

the impact of random labels and angle metric on RLNAS.

All experiments are conducted on NAS-Bench-201.
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Methods of generating random labels. In the above ex-

periments, we uniformly sample random labels for images

before SuperNet training and we denote it as (1). In this sub-

section, we further discuss 3 other methods for generating

random labels: (2). shuffle all ground truth labels at once

before SuperNet training, (3). uniformly sample labels in

each training iteration, and (4). shuffle ground truth labels

in each training iteration. According to these four meth-

ods, we conducted three repeated architecture search ex-

periments across CIFAR-10, CIFAR-100 and ImageNet16-

120.

As Table 6 shows, in general, the methods of generat-

ing random labels at one time have higher performance than

the methods of randomly generating labels in each iteration.

Even if RLNAS† has better performance than RLNAS∗ and

RLNAS⋆ on CIFAR-10 and CIFAR-100, the performance

on ImageNet16-120 is poor with a large margin and this

means that RLNAS† is instable and has poor transferring

ability. As for RLNAS∗ and RLNAS⋆, these two meth-

ods obtain comparable test accuracy. Considering RLNAS∗

coupled with ground truth labels, we generate random la-

bels with RLNAS⋆ in default and it is easy to apply our

algorithm to tasks without labels.

Method
CIFAR-10 CIFAR-100 ImageNet16-120

test acc (%) test acc (%) test acc (%)

RLNAS⋆ 93.45±0.11 70.71±0.36 43.70±1.25

RLNAS∗ 93.52±0.27 70.25±0.25 43.81±1.12

RLNAS† 92.85±0.46 61.59±6.57 27.51±1.04

RLNAS‡ 93.65±0.07 71.45±0.42 27.51±1.04

Table 6: Search results of four generating random label

method on NAS-Bench-201: (1).⋆ uniform sample all ran-

dom labels at once, (2).∗ shuffle all ground truth labels

at once, (3).† uniform sample labels in each iteration, and

(4).‡shuffle ground truth labels in each iteration.

Impact of image category. We have shown that uniform

sample labels corresponding images before training is the

most appropriate method to generate random labels. In this

section, we further discuss the impact of the label cate-

gory on searching performance. In detail, we sample 20

different categories from 10 to 200 with interval 10 for

CIFAR-10, CIFAR-100 and ImageNet16-120. SuperNet

is trained with different categories of random labels. Af-

ter that, test accuracy and Kendall’s Tau are obtained like

subsection 4.2.1. As shown in Figure 1, test accuracy and

Kendall’s Tau fluctuate greatly when the number of cate-

gories on the ImageNet16-120 is small (in [10, 50]). How-

ever, Kendall’s Tau and test accuracy are not sensitive to la-

bel categories in most cases. This observation implies that

our method can be directly applied to tasks where the real

image category is unknown.
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Figure 1: Impact of the random label category on (a) test ac-

curacy and (b) Kendall’s Tau (best view in color). CIFAR-

10, CIFAR-100 and ImageNet16-120 all sample 20 differ-

ent image categories from 10 to 200 with interval 10. The

red marker in each polyline represents the number of real

image categories for different datasets.

Bias analysis of angle metric. We have shown the im-

pacts of random labels on RLNAS in the above section.

Next, we further ablate the bias of angle metric in archi-

tecture search. Specifically, we initialize two SuperNet

weights with the same distribution but different random

seeds. Based on the SuperNet without training, evolution

algorithm with angle is used to search architectures. We

also construct a random search baseline which train Super-

Net with uniform sampling strategy and ground truth labels,

then randomly sample 100 architectures from NAS-Bench-

201 search space. The top-1 architecture is selected among

the sampled architectures according to their validation ac-

curacy. Table 7 compares our method with two training free

methods with different initialization and one random search

method. The results show that the two training free meth-

ods are worse than random search, and RLNAS is better

than random search. This means that angle metric will not

bias to a certain candidate architecture.

Method
CIFAR-10 CIFAR-100 ImageNet16-120

test acc (%) test acc (%) test acc (%)

Training free† 90.74±1.39 66.97±1.86 38.54±2.86

Training free‡ 91.55±1.34 66.59±2.10 39.03±3.91

Random search 92.09±0.21 67.27±1.28 40.77±3.64

RLNAS 93.45±0.11 70.71±0.36 43.70±1.25

Table 7: Bias analysis of angle towards architectures on

NAS-Bench-201.† and ‡ initializes model weights with nor-

malization distribution and uniform distribution.

4.4. Generalization Ability

We evaluate the generalization ability of RLNAS on two

downstream tasks: object detection and semantic segmenta-

tion. We first retrain the models searched by different NAS

methods on ImageNet , and then finetune these pre-trained
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Method Params (M) FLOPs (M) Acc AP AP50 AP75 APS APM APL

Random search 4.7 519 74.3 31.7 50.4 33.4 16.3 35.2 42.9

DARTS-v1 [30] (sup.) 4.5 507 74.3 31.2 49.5 32.6 16.1 33.9 43.6

DARTS-v2 [30] (sup.) 4.7 531 74.9 31.5 50.3 33.1 16.9 34.5 43.0

P-DARTS [9] (sup.) 4.9 544 75.7 32.9 52.1 34.7 17.2 36.2 44.8

PC-DARTS [43] (sup.) 5.3 582 75.9 32.9 51.8 34.8 17.5 36.3 43.5

UnNAS [28] (rotation task.) 5.1 552 75.8 32.8 51.5 34.7 16.7 36.1 44.5

UnNAS [28] (color task.) 5.3 587 75.5 32.4 51.2 34.2 16.6 35.6 44.6

UnNAS [28] (jigsaw task.) 5.2 560 76.2 33.0 51.9 35.3 16.4 37.2 45.4

Ours† (random label.) 5.5 597 75.9 32.4 50.9 34.4 16.5 35.5 44.5

Ours‡ (random label.) 5.2 561 75.9 32.9 51.6 34.8 16.8 36.7 44.5

Table 8: Object detection results of DARTS search space on MS COCO. † search with 600M FLOPs constrain. ‡ search

without FLOPs constrain but scale FLOPs to 600M.

Method Params (M) FLOPs (M) Acc AP AP50 AP75 APS APM APL

Random search (sup.) 4.5 446 75.3 29.7 47.5 31.4 15.3 32.6 39.9

FairNAS-A [12] (sup.) 4.7 389 75.1 29.8 47.8 31.4 15.5 32.3 41.2

Proxyless (GPU) [5] (sup.) 7.0 457 75.5 29.5 47.5 30.9 15.5 32.4 40.8

FairDARTS-D [13] (sup.) 4.4 477 74.7 29.6 47.2 31.1 14.6 32.5 40.1

SPOS [19] (sup.) 5.4 472 75.6 29.8 48.1 31.1 16.0 32.6 40.4

Ours (unsup.) 5.3 473 75.6 30.0 47.6 31.8 15.7 32.8 40.5

Table 9: Object detection results of MobileNet-like search space on MS COCO.

models on downstream tasks. In order to make fair compar-

isons, models searched in the same search space adopt the

same training setting for ImageNet classification tasks. At

the same time, models for the same downstream task also

use the same training setting, no matter what search space

the model is searched from.

Object detection. We conduct experiments on MS

COCO [26] and adopt RetinaNet [25] as the detection

framework. The train and test image scale is 800× resolu-

tion. We only modify the backbone of RetinaNet and train

RetinaNet with default training setting as Detectron2 [41].

Table 8 and Table 9 show the comparisons of models

searched in DARTS and MobileNet-like search space re-

spectively. RLNAS obtains comparable AP in DARTS

search space and surpasses other methods with slight mar-

gin in MobileNet-like search space.

Semantic segmentation. We further test RLNAS on the

task of semantic segmentation on Cityscapes [14] dataset.

We adopt DeepLab-v3 [7] as segmentation framework.

The train and test image scale is 769×769 and we train

DeepLab-v3 with 40k iterations. The other segmentation

training setting are kept the same as MMSegmentation [42].

Table 10 and Table 11 make comparisons among models

searched on DARTS and MobileNet-like search space re-

spectively. For DARTS search space, RLNAS† obtains

73.2% mIoU and outperform other methods by a large mar-

gin. RLNAS also obtains comparable mIoU compared to

other methods in MobileNet search space.

Summary. We conclude that RLNAS achieves compara-

ble or even superior performance across two downstream

tasks and various search spaces, without bells and whistles.

Method
Params

(M)

FLOPs

(M)

Acc

(%)

mIoU

(%)

Random search (sup.) 4.7 519 74.3 72.3

DARTS-v1 [30] (sup.) 4.5 507 74.3 72.7

DARTS-v2 [30] (sup.) 4.7 531 74.9 71.8

P-DARTS [43] (sup.) 4.9 544 75.7 71.9

PC-DARTS [43] (sup.) 5.3 582 75.9 72.2

UnNAS [28] (rotation task.) 5.1 552 75.8 71.9

UnNAS [28] (color task.) 5.3 587 75.5 72.0

UnNAS [28] (jigsaw task.) 5.2 560 76.2 72.1

Ours† (random label.) 5.5 597 75.9 73.2

Ours‡ (random label.) 5.2 561 75.9 72.5

Table 10: Semantic segmentation results of DARTS search

space on Cityscapes.† search with 600M FLOPs constrain.
‡ search without FLOPs constrain but scale FLOPs to

600M.

Method
Params

(M)

FLOPs

(M)

Acc

(%)

mIoU

(%)

Random search (sup.) 4.5 446 75.3 70.6

FairNAS-A [12] (sup.) 4.7 389 75.1 72.0

Proxyless (GPU) [5] (sup.) 7.0 457 75.5 71.0

FairDARTS-D [13] (sup.) 4.4 477 74.7 72.1

SPOS [19] (sup.) 5.4 472 75.6 71.6

Ours (unsup.) 5.3 473 75.6 71.8

Table 11: Semantic segmentation results of MobileNet-like

search space on Cityscapes.
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Munos, and Michal Valko. Bootstrap your own latent: A new

approach to self-supervised learning, 2020. 2

[19] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. arXiv

preprint arXiv:1904.00420, 2019. 1, 2, 3, 4, 5, 6, 8

[20] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross

Girshick. Momentum contrast for unsupervised visual repre-

sentation learning. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2020. 2

[21] Yiming Hu, Yuding Liang, Zichao Guo, Ruosi Wan, Xiangyu

Zhang, Yichen Wei, Qingyi Gu, and Jian Sun. Angle-based

search space shrinking for neural architecture search. arXiv

preprint arXiv:2004.13431, 2020. 2, 3, 4, 5

[22] Maurice G Kendall. A new measure of rank correlation.

Biometrika, 30(1/2):81–93, 1938. 5

[23] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. Tech Report, 2009. 4

[24] Liam Li and Ameet Talwalkar. Random search and repro-

ducibility for neural architecture search. In Uncertainty in

Artificial Intelligence, pages 367–377. PMLR, 2020. 2

[25] Tsung Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In 2017

IEEE International Conference on Computer Vision (ICCV),

pages 2999–3007, 2017. 8

[26] Tsung Yi Lin, Michael Maire, Serge Belongie, James Hays,

and C. Lawrence Zitnick. Microsoft coco: Common objects

in context. In European Conference on Computer Vision,

2014. 8

[27] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-

deeplab: Hierarchical neural architecture search for semantic

image segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 82–92,

2019. 1

[28] Chenxi Liu, Piotr Dollár, Kaiming He, Ross Girshick, Alan

Yuille, and Saining Xie. Are labels necessary for neural ar-

chitecture search? arXiv preprint arXiv:2003.12056, 2020.

1, 2, 6, 8

[29] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon

Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan

Huang, and Kevin Murphy. Progressive neural architecture

10915



search. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 19–34, 2018. 1, 2

[30] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 2, 4, 6, 8

[31] Hartmut Maennel, Ibrahim Alabdulmohsin, Ilya Tolstikhin,

Robert JN Baldock, Olivier Bousquet, Sylvain Gelly, and

Daniel Keysers. What do neural networks learn when trained

with random labels? arXiv preprint arXiv:2006.10455,

2020. 3

[32] Joseph Mellor, Jack Turner, Amos Storkey, and Elliot J

Crowley. Neural architecture search without training. arXiv

preprint arXiv:2006.04647, 2020. 3

[33] Mehdi Noroozi and Paolo Favaro. Unsupervised learning

of visual representations by solving jigsaw puzzles. In

European Conference on Computer Vision, pages 69–84.

Springer, 2016. 2, 6

[34] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018. 2

[35] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780–4789, 2019. 1, 2

[36] Christian Sciuto, Kaicheng Yu, Martin Jaggi, Claudiu Musat,

and Mathieu Salzmann. Evaluating the search phase of neu-

ral architecture search. arXiv preprint arXiv:1902.08142,

2(3), 2019. 5

[37] Yao Shu, Wei Wang, and Shaofeng Cai. Understanding ar-

chitectures learnt by cell-based neural architecture search.

In International Conference on Learning Representations,

2020. 1, 3

[38] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,

Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-

net: Platform-aware neural architecture search for mobile.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 2820–2828, 2019. 1, 2

[39] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 1

[40] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,

Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing

Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-

vnet design via differentiable neural architecture search. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 10734–10742, 2019. 2, 6

[41] Yuxin Wu, Alexander Kirillov, Francisco Massa, Wan-Yen

Lo, and Ross Girshick. Detectron2. https://github.

com/facebookresearch/detectron2, 2019. 8

[42] Jiarui Xu, Kai Chen, and Dahua Lin. MMSegme-

nation. https://github.com/open- mmlab/

mmsegmentation, 2020. 8

[43] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun

Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial channel

connections for memory-efficient differentiable architecture

search. arXiv preprint arXiv:1907.05737, 2019. 2, 4, 6, 8

[44] Shen Yan, Yu Zheng, Wei Ao, Xiao Zeng, and Mi

Zhang. Does unsupervised architecture representation learn-

ing help neural architecture search? arXiv preprint

arXiv:2006.06936, 2020. 2

[45] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin

Recht, and Oriol Vinyals. Understanding deep learn-

ing requires rethinking generalization. arXiv preprint

arXiv:1611.03530, 2016. 3

[46] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In European conference on computer

vision, pages 649–666. Springer, 2016. 2, 6

[47] Zhao Zhong, Junjie Yan, Wei Wu, Jing Shao, and Cheng-Lin

Liu. Practical block-wise neural network architecture gener-

ation. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 2423–2432, 2018. 1, 2

[48] Zhao Zhong, Zichen Yang, Boyang Deng, Junjie Yan, Wei

Wu, Jing Shao, and Cheng-Lin Liu. Blockqnn: Efficient

block-wise neural network architecture generation. arXiv

preprint arXiv:1808.05584, 2018. 1, 2

[49] Barret Zoph and Quoc V Le. Neural architecture search with

reinforcement learning. arXiv preprint arXiv:1611.01578,

2016. 1, 2

[50] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 8697–8710,

2018. 1, 2

10916


