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Abstract

Person image synthesis, e.g., pose transfer, is a challeng-

ing problem due to large variation and occlusion. Existing

methods have difficulties predicting reasonable invisible re-

gions and fail to decouple the shape and style of clothing,

which limits their applications on person image editing. In

this paper, we propose PISE, a novel two-stage generative

model for Person Image Synthesis and Editing, which is

able to generate realistic person images with desired poses,

textures, or semantic layouts. For human pose transfer, we

first synthesize a human parsing map aligned with the target

pose to represent the shape of clothing by a parsing gener-

ator, and then generate the final image by an image genera-

tor. To decouple the shape and style of clothing, we propose

joint global and local per-region encoding and normaliza-

tion to predict the reasonable style of clothing for invisi-

ble regions. We also propose spatial-aware normalization

to retain the spatial context relationship in the source im-

age. The results of qualitative and quantitative experiments

demonstrate the superiority of our model on human pose

transfer. Besides, the results of texture transfer and region

editing show that our model can be applied to person im-

age editing. The code is available for research purposes at

https://github.com/Zhangjinso/PISE.

1. Introduction

Person image synthesis is a challenging problem in com-

puter vision and computer graphics, which has great appli-

cation potentials in image editing, video generation, virtual

try-on, etc. Human pose transfer [16, 20, 23, 24, 32], i.e.,

synthesizing a new image for the same person in a target

pose, is an active topic in person image synthesis.

Recently, Generative Adversarial Networks (GANs) [4]

achieve great success in human pose transfer. Many meth-

ods directly learn the mapping from the source image and

pose to the target image using neural networks [32, 23,

24, 12]. Most of these methods utilize a two-branch (pose

branch and image branch) framework to transfer the feature

of the source image from the source pose to the target pose.

However, by taking keypoints as the pose representation,
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Figure 1. Our model PISE allows to transfer new pose or texture

to a single person image, and also enables region editing.

it is difficult to predict a sharp and reasonable image with

sparse correspondences when the source pose and the tar-

get pose have large differences. To deal with this problem,

flow-based methods [13, 20] estimate an appearance flow

to obtain denser correspondences, which is used to warp

the source image or its feature to align with the target pose.

The final image delivered by refining the warped image or

decoding the warped image feature is a rearrangement of

the source image elements. Thus, the generated image can

preserve details of the source image, but the invisible region

due to occlusion is not satisfactorily recovered. To predict

invisible regions, some methods [16, 29] introduce human

parsing maps to human pose transfer. The human parsing

map provides semantic correspondence to synthesize the fi-

nal image and enables applications of person image editing.

However, these methods cannot disentangle the shape and

style information (e.g., the category and texture of cloth-

ing) and fail to preserve spatial context relationships. For
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flexible and detailed editing, it is better to disentangle the

shape and style. Meanwhile, preserving spatial information

of the source image and reasonable prediction of invisible

regions are also important for producing the desired output

for human pose transfer.

The aforementioned methods encounter three challenges

to synthesize satisfactory images: 1) the coupling of the

shape and style of clothing, 2) potential uncertainties in in-

visible regions, and 3) loss of spatial context relationships.

To address these problems, we propose a novel Decou-

pled GAN for person image synthesis and editing. Instead

of directly learning a mapping from the source to the target,

we take the human parsing map as the intermediate result

to provide semantic guidance to predict a reasonable shape

of clothing. We propose joint global and local per-region

encoding and normalization to control the texture style on a

semantic region basis, better utilizing information for both

visible and invisible regions. Specifically, for the region

visible in the source image, we use the local feature of the

corresponding region to predict the style of clothing. For

the region invisible in the source image but visible in the

target image, we obtain the global feature of the source im-

age to predict the reasonable style of clothing, which can

well deal with the generation of invisible regions. Bene-

fiting from the human parsing map and per-region texture

control, the shape and the style of clothing are disentan-

gled for more flexible editing. Besides, to preserve the spa-

tial context relationship, we propose a novel spatial-aware

normalization to transfer spatial information of the source

image to the generated image. After per-region normaliza-

tion and spatial-aware normalization, the generated target

feature passes through a decoder to output the final image.

Figure 1 shows some applications of our model.

The main contributions of this work are summarized as

follows:

• We propose a two-stage model with per-region control

to decouple the shape and style of clothing. Exper-

imental results on human pose transfer, texture trans-

fer, and region editing show the flexibility and superior

performance of our person image synthesis and editing

method.

• We propose joint global and local per-region encod-

ing and normalization to predict the reasonable style

of clothing for invisible regions, and preserve the orig-

inal style of clothing in the target image.

• We propose a spatial-aware normalization to retain the

spatial context relationship in the source image, and

transfer it by modulating the scale and bias of the gen-

erated image feature.

2. Related Work

2.1. Image Synthesis

In recent years, Generative Adversarial Networks

(GANs) [4] have made great success in image synthe-

sis [28, 27, 21]. Isola et al. [9] first introduced condi-

tional GANs [17] to solve the image-to-image generation

task, which was extended to high-resolution image synthe-

sis [25]. Zhu et al. proposed an unsupervised method with

cycle consistency to transfer images between two domains

without paired data. StyleGAN [11] used adaptive instance

normalization (AdaIN) [8] to achieve scale-specific control

of image synthesis. SPADE [19] adopted spatially-adaptive

normalization to synthesize new images given semantic in-

put by modulating the activations in normalization layers.

Zhu et al. [33] leveraged group convolution and designed a

Group Decreasing Network to alleviate memory access cost

problem. SEAN [31] improved SPADE by proposing per-

region encoding to control the style of individual regions in

the generated images. However, these methods have lim-

ited editable capacity in human pose transfer due to sparse

correspondence of keypoints and large variation in pose and

texture. In this paper, we propose a two-stage model to ob-

tain semantic guidance to achieve more controllable image

synthesis.

2.2. Human Pose Transfer

Human pose transfer is a highly active topic in computer

vision and computer graphics. PG2 [15] firstly introduced

this problem and utilized a coarse-to-fine framework to al-

leviate the challenging generation problem. It concatenated

the source image, the source pose, and the target pose as

inputs to learn the target image, which leads to feature mis-

alignment. Some methods used a two-branch framework

with the image branch and pose branch to deal with the

misalignment between the source and target images. Zhu

et al. [32] proposed to transfer image information from the

source pose to the target pose progressively with a local at-

tention mechanism. Tang et al. [24] modeled appearance

information and shape information with two novel blocks.

Li et al. [12] designed pre-posed image-guided pose fea-

ture update and post-posed pose guided image feature up-

date to better utilize the pose and image features. These

methods used keypoints as their pose representation and fo-

cused on transferring image information with the guidance

of pose information. Therefore, only sparse correspondence

between the source image and the target image can be ob-

tained, which is difficult to transfer image information from

the source pose to the target pose. To provide semantic cor-

respondence between the source image and the target im-

age, some methods introduced the human parsing map as

semantic guidance. Dong et al. [2] used a two-stage model,

which first synthesized a target semantic segmentation map
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Figure 2. Overview of our model.

and then rendered textures from the original image using a

soft-gated warping block. Han et al. [26] first synthesized

a target human parsing map, then estimated a dense flow to

warp source image feature and finally refined the image us-

ing a U-Net-based [18] network. These flow-based methods

can preserve some details, but cannot cope well with large

occlusion, which limits their application on person image

synthesis. Men et al. [16] used human parsing maps for

attribute-controllable person image synthesis. Zhang et al.

[29] introduced gated convolution to learn a dynamic fea-

ture selection mechanism and adaptively deform the image

layer by layer. However, these methods fail to disentangle

the shape and style information and cannot edit the image

flexibly. Our model generates more reasonable and realis-

tic person images with the consistencies of both shape and

style. Besides, our model can edit the image more flexibly

by disentangling the shape and style information.

3. Method

As shown in Figure 2, our approach consists of two gen-

erators: a parsing generator and an image generator. The

inputs of the parsing generator are the source pose Ps, the

target pose Pt, and the source parsing map Ss. The pars-

ing generator estimates a human parsing map Sg aligned

with the target pose Pt. This allows the image editing of

the shape of the final image to be controllable. The pose

representation includes 18 human keypoints extracted by

Human Pose Estimator (HPE) [1], which has 18 channels

and encodes the locations of 18 joints of a human body.

The source parsing map Ss is extracted by Part Grouping

Network (PGN) [3] from the source image Is. To clean in-

correct labels (e.g., left leg and right leg) and reduce the

number of categories, we re-organize the map from 21 cate-

gories to 8 categories: hair, upper clothes, dress, pants, face,

upper skin, leg, and background. The image generator syn-

thesizes a high-quality image Ig of the reposed person con-

ditioned on the human parsing map Sg . The inputs of the

image generator are the source image Is, the source parsing

map Ss, the generated parsing map Sg and the target pose

Pt. To provide detailed control of the styles in individual

regions, we propose joint global and local per-region encod-

ing and normalization to decouple the style and shape. With

the generated parsing map Sg and per-region style control,

we decouple the shape and style of clothing to facilitate im-

age editing tasks. Besides, we propose spatial-aware nor-

malization to retain the spatial context relationship. Note

that the model can deal with other tasks, e.g., texture trans-

fer and region editing.

3.1. Parsing Generator

The parsing generator is responsible for generating the

human parsing map aligned with the target pose while keep-

ing the clothing style and body shape of the person in the

source image. The inputs, the source pose Ps, the target

pose Pt, and the source parsing Ss, are first embedded into

a latent space by an encoder, which consists of M down-

sampling convolutional layers (M = 4 in our case). Inspired

by PINet [29], instead of applying residual blocks [5] like

previous methods [2, 26], we use gated convolution to de-

form the feature Fs of source human parsing map Is from

the source pose to the target pose to avoid the drawback of

vanilla convolution that treats all the pixels as valid infor-

mation. The formulation of gated convolution is

Ox,y = φ(

kh
∑

i=−kh

kw
∑

j=−kw

ukh+i,kw+j · Iy+i,x+j)·

σ(

kh
∑

i=−kh

kw
∑

j=−kw

vkh+i,kw+j · Iy+i,x+j),

(1)
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where · denotes the element-wise multiplication of two fea-

ture maps. Ix,y and Ox,y are the input and output at position

(x, y), kh = (ksh−1)/2 and kw = (ksw−1)/2. ksh and ksw
are the kernel sizes (e.g., 3 × 3). σ denotes sigmoid func-

tion which ensures the output gating values are between 0

and 1. φ denotes the activation function. u and v are two

different convolutional filters.

Gated convolution can learn a dynamic selection mech-

anism for each spatial location, which is suitable for un-

aligned generation tasks [28, 27, 29]. Finally, with the de-

formed parsing feature Fd, the generated human parsing

map Sg is delivered by a decoder with standard configu-

ration. The detailed network design can be found in the

supplementary material.

3.2. Image Generator

The image generator aims at transferring the textures of

individual regions in the source image to the generated pars-

ing map. From another point of view, this can be seen as a

semantic map-to-image translation problem conditioned on

the source image. Inspired by SEAN [31], we first extract

per-region styles of the source image Is with the source

human parsing map Ps, which are then transferred using

normalization techniques. Because some visible regions in

the target image are invisible in the source image due to

large variation in pose, the number of regions in our gener-

ated parsing map is different from that of the source image.

SEAN sets the styles of invisible regions to zero, which ig-

nores the implied relationship between visible and invisi-

ble regions of person images (e.g., a man in a coat is more

likely to wear trousers than shorts). Therefore, instead of

using only local region-wise average pooling, we propose

joint global and local per-region average pooling to ex-

tract the style of the region in the source image. We then

concatenate the source image Is, the source parsing map

Ss, the generated parsing map Sg and the target pose Pt in

depth (channel) dimension and extract its feature Fp. Fi-

nally, similar to existing normalization techniques, we con-

trol the per-region style of Fp by modulating its scale and

bias. However, previous normalization techniques lose the

spatial information of the source image. To solve this prob-

lem, we propose a spatial-aware normalization method to

preserve the spatial context relationship of the source im-

age. After spatial-aware normalization, the desired person

image Ig is delivered by a decoder.

3.2.1 Per-region encoding

Given the source image Is, we first extract its feature map

using a bottleneck structure with 4 down-sampling convo-

lution layers and 2 transposed convolution layers. The out-

put of encoder Fi with 256 channels contains the spatial

context relationship and style of the source image. Intu-

itively, the styles of individual regions are independent of

their shapes. With the source parsing map Ss, we disen-
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Figure 3. Details of per-region normalization and spatial-aware

normalization in our model.

tangle the shape and style by extracting style information

using average pooling to remove the shape information. To

preserve the style information visible in the source image

and predict a reasonable style for invisible regions condi-

tioned on the source image, we propose joint global and

local per-region average pooling to extract the style of the

source image, which is formulated as

P (Ssj ) =











avg
w,h

(Fi · Ssj ),
∑

Ssj > 0

avg
w,h

(Fi),
∑

Ssj ≤ 0
, (2)

where avg(·) denotes average pooling in the spatial dimen-

sion. w and h are the width and height of the feature map

Fi. j indicates the category index, and Ssj is the source

semantic map w.r.t. category j. The first case considers lo-

cal average pooling where category j appears in the source

image, and the second case is global average pooling for

unseen categories. The size of output P (Ssj ) after average

pooling is 256 × N , where N is the number of label cate-

gories (8 in our case).

3.2.2 Per-region normalization

The newly generated feature Fp from a basic encoder con-

tains the information of the inputs and aligns with the gener-

ated parsing map Sg . With the per-region style code P (Ssj )
w.r.t. label category j, we can transfer the style to the newly

generated feature Fp by modulating its scale and bias. As

shown in Figure 3, for each region Sgj in the generated

parsing map Sg , we find the corresponding region style in

P (Ssj ). Thanks to our joint global and local per-region en-

coding, the style codes of all the regions can be found in

P (Ssj ). Then we use two fully connected layers to predict

the scale and bias for Fp, which are then applied for per-

region normalization. The generated feature Fp is updated

to Fn that contains the per-region styles of the source im-

age.

3.2.3 Spatial-aware normalization

As illustrated in Section 3.2.1, the style included in P (Ssj )
loses the spatial context relationship of the source image
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due to average pooling. It is difficult to make the generated

images preserve the details (especially spatial details) in the

source image. As shown in Figure 3, to preserve the spa-

tial context relationship in the source image, in addition to

extracting styles by average pooling in the spatial dimen-

sion, we also extract spatial scale (γ) and bias (β) from the

source image code Fi using 1 × 1 convolution layers. We

retain spatial context relationships using γ and β. However,

due to the misalignment between the source image and the

target image, how to transfer γ and β to the generated image

is a challenging problem. To tackle this problem, we try to

compute the correspondence between the feature after per-

region normalization Fn and the feature of the source image

Is. We first use a correspondence loss to constrain the simi-

larity between Fn and the pre-trained VGG-19 [22] feature

of the target image. With the correspondence loss, Fn can

be more aligned with the feature of the target image in the

latent space, which constrains them to be in the same do-

main. Then, we compute the correspondence between Fn

and the VGG-19 feature of the source image Is. We use the

correspondence layer [6] to compute a correlation matrix

M(p1, p2) =
Fn(p1)

Tφi(Is)(p2)

||Fn(p1)|| ||φi(Is)(p2)||
, (3)

where φi denotes the activation map of the i-th layer of

the VGG-19 network. We use conv3 1 in our experiments.

Fn(p1) and Fn(p2) denote the channel-wise centralized fea-

tures of Fn at the positions p1 and p2, respectively.

The γ and β that denote spatial context relationships at

each position can be transformed from the source image to

the target image by multiplying them with the correlation

matrix M. Then, Fn is further updated to Fg by modu-

lating the scale and bias. Therefore, after passing through

the spatial-aware normalization module, Fg retains both the

style and spatial relationships of the source image. Finally,

The decoder outputs the final image Ig .

3.3. Loss Functions

We first train the parsing generator and the image gener-

ator respectively and then end-to-end train our full model.

In the following, we will describe the loss function of two

generators in details.

Parsing Generator Loss. The full loss function of the pars-

ing generator can be formulated as:

Lparsing = Lcross + λpℓLℓ1 . (4)

where λpℓ is the coefficient of the ℓ1 item.

In order to generate reasonable human parsing maps we

apply ℓ1 distance loss between the generated parsing map

and the target parsing map:

Lℓ1 = ||Sg − St||1. (5)

Besides, to generate high-quality human parsing maps,

we also use cross-entropy loss Lcross, which is defined as:

Lcross = −
1

N

N−1
∑

i=0

Sti log(Softmax(Sgi)), (6)

where N is the number of categories of labels (N = 8 in

our case).

Image Generator Loss. The full loss used for training

the image generator consists of correspondence loss, recon-

struction ℓ1 loss, perceptual loss, style loss, and adversarial

loss, defined as:

Limage = λcLcor + λℓLℓ + λpLper + λsLstyle + λaLadv,
(7)

where λc, λℓ, λp, λs and λa are weights that balance con-

tributions of individual loss terms.

The correspondence loss is used to constrain the gener-

ated feature Fn and the pre-trained VGG-19 [22] feature of

the target image to align in the same domain, which is de-

fined as:

Lcor = ||Fn − φi(It)||2. (8)

In practice, we use the feature from conv3 1 of VGG-19 to

compute the correspondence loss.

The reconstruction ℓ1 loss is used to encourage the gen-

erated image Ig to be similar with the target image It at the

pixel level, which is defined as:

Lℓ1 = ||Ig − It||1. (9)

We also adopt perceptual loss and style loss [10] to generate

more realistic images. The perceptual loss calculates the ℓ1
distance between activation maps of the pre-trained VGG-

19 network, which can be written as:

Lper =
∑

i

||φi(Ig)− φi(It)||1. (10)

We adopt the feature of [relu1 1, relu2 1, relu3 1,

relu4 1, relu5 1] with the same weight. The style loss

measures the statistical difference of the activation maps be-

tween the generated image Ig and the target image It, which

is formulated as:

Lstyle =
∑

j

||Gφ
j (It)−Gφ

j (Ig)||1. (11)

In practice, we use the feature of [relu2 2, relu3 4,

relu4 4, relu5 2] with the same weight. The adversarial

loss with discriminator D is employed to penalize the dis-

tribution difference between generated (fake) images Ig and

target (real) images It, which is written as:

Ladv = E[log(1−D(Ig))] + E[logD(It)]. (12)

4. Experimental Results

Dataset. We conduct our experiment on DeepFashion In-

shop Clothes Retrieval Benchmark [14], which contains

52712 images with the resolution of 256 × 256. The im-

ages vary in terms of poses and appearances. We split the
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Figure 4. Our results of person image synthesis in arbitrary poses.

Source image Target pose Target image PATN XingGAN BiGraph ADGAN GFLA PINet Ours

Figure 5. Qualitative comparisons with state-of-the-art methods. From left to right are the results of PATN [32], XingGAN [24], BiGraph

[23], ADGAN [16], GFLA [20], PInet [29] and ours, respectively.

data with the same configuration as PATN [32] and collect

101,966 pairs of images for training and 8,750 pairs for test-

ing. Note that the person identities in the test set are differ-

ent from those in the training set.

Metrics. We use Learned Perceptual Image Patch Similar-

ity (LPIPS) [30] to measure the distance between the gen-

erated image and the ground-truth image in the perceptual

level. Meanwhile, Peak Signal to Noise Ratio (PSNR) is

employed to compute the error between the generated im-

age and the ground-truth image in the pixel level. Besides,

we adopt Fréchet Inception Distance (FID) [7] to compute

the distance between distributions of the generated images

and the ground-truth images, which is used to measure the

realism of the generated images.

4.1. Person Image Synthesis in Different Poses

Human pose transfer aims at synthesizing new images

for the same source person in different poses. Figure 4

shows some visual results generated by our method. Given

a source image and some different poses extracted from im-
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Table 1. Quantitative comparison with state-of-the-art methods1.

Model FID ↓ LPIPS ↓ PSNR ↑

PATN [32] 23.70 0.2520 31.16

BiGraph [23] 24.36 0.2428 31.38

XingGAN [24] 41.79 0.2914 31.08

GFLA [20] 14.52 0.2219 31.28

ADGAN [16] 16.00 0.2242 31.30

PINet [29] 15.28 0.2152 31.31

Ours 13.61 0.2059 31.38

Table 2. Quantitative results of ablation study.

Model FID ↓ LPIPS ↓ PSNR ↑

Global-Enc 15.21 0.2137 31.35

Local-Enc 15.50 0.2138 31.30

w/o SN 14.15 0.2071 31.43

Full 13.61 0.2059 31.38

ages in the test set, our model generates realistic images

with fine details.

4.2. Comparison with State­of­the­art Methods

We conduct qualitative and quantitative comparisons

with several state-of-the-art methods.

Qualitative Comparison. We compare the visual results of

our method with six state-of-the-art methods: PATN [32],

XingGAN [24], BiGraph [23], ADGAN [16], GFLA [20]

and PINet [29]. Figure 5 shows some examples. PATN,

XingGAN, and BiGraph fail to generate sharp images and

cannot keep the consistency of shape and texture due to the

use of sparse correspondence extracted from keypoints. The

flow-based method, GFLA, preserves the detailed texture

in the source image. However, it is difficult to obtain rea-

sonable results for the invisible regions of the source im-

age. ADGAN and PINet succeed in keeping shape consis-

tency and predicting reasonable shapes of clothing, but they

lose spatial context relationships. Our model uses spatial-

aware normalization to retain spatial context relationships,

and hence can generate more natural and sharper images

(the second and fourth rows). Besides, our model retains

the shape (the first and third rows) and predicts more rea-

sonable results (the second and fifth rows).

Quantitative Comparison. Table 1 gives the quantitative

results on the 8750 test images compared with six state-

of-the-art methods: PATN [32], XingGAN [24], BiGraph

[23], ADGAN [16], GFLA [20] and PINet [29]. Our results

get the best PSNR score, which measures the error in pixel

level. Besides, we introduce LPIPS to compute the simi-

larity in perceptual level and FID to measure the realism of

1Note that we take the images resized from 256 × 176 to 256 × 256 as

the inputs of GFLA.

Source image Target poseTarget image Global-Enc Local-Enc w/o SN Full

Figure 6. Qualitative results of ablation study.

the generated images. Our results achieve the best perfor-

mance in terms of both FID and LPIPS, which indicates that

our model not only generates more realistic images but also

keeps the best consistency of shape and texture.

4.3. Ablation Study

We train several ablation models to prove our hypotheses

and validate the effect of our improvements.

Global Encoding Model (Global-Enc). The global encod-

ing model replaces per-region styles with the same global

feature extracted from the source image using the global

average pooling.

Local Encoding Model (Local-Enc). The local encoding

model adopts per-region encoding. However, for the style

of invisible regions, the style code is set to be zero.

The Model without Spatial-aware Normalization (w/o

SN). This model is designed to measure the contribution of

spatial-aware normalization described in Section 3.2.3. We

train this model in the same configuration as our full model.

Full Model (Full). We use joint global and local per-region

encoding and spatial-aware normalization in this model.

Quantitative results on the 8750 test images are shown

in Table 2. As shown in Table 2, compared with the global

encoding model and local encoding model, the joint global

and local per-region encoding and normalization improve

the performance by predicting the style of each region, es-

pecially for the authenticity of generated images and the

similarity to the ground-truth images. Besides, due to the

detailed images generated by our full model, our full model

has a slightly lower PSNR than the model without spatial-

aware normalization in the pixel level, but it gains the best
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Figure 7. Texture transfer results. The left figure and the right figure show the results of transfer the texture of upper clothes and pants,

respectively. In each figure, the first row shows the reference images, and the second row shows the results generated by our method. The

first column of each figure shows the source image.

Reference image 1 Reference image 2𝛼=0 𝛼=0.2 𝛼=0.4 𝛼=0.6 𝛼=0.8 𝛼=1

Figure 8. Texture interpolation results.

Figure 9. Region editing results.

performance in similarity in the perceptual level and gen-

erates most realistic images. Figure 6 shows some visual

results of ablation study. With joint global and local encod-

ing and normalization, our method can maintain the exact

style of visible regions (in the first and second rows) and

predict reasonable styles of invisible regions (natural face

and shoes in the fifth row). With spatial-aware normaliza-

tion, our model generates sharper images with the spatial

context relationship (in the second, third and fourth rows).

5. Applications

Benefiting from our two-stage framework and per-region

style encoding, our model decouples the shape and style of

clothing and can be applied to various person image editing

applications.

Texture Transfer The per-region style of our generated im-

ages is controllable by the style code P (Ssj ). Therefore, we

can change the style of each region by replacing the style

code of the corresponding region in P (Ssj ). Specifically,

given a reference image, we can extract its style code and

transfer the per-region style to our generated image. Figure

7 shows some visual results of texture transfer. We transfer

the texture of upper clothes or pants of the reference im-

ages to our generated images. Our model generates natural

images with detailed texture.

Texture Interpolation We control the per-region styles of

our generated images by latent code, which can move along

the manifold of textures from one style to another style.

Taking texture transfer of upper clothes as an example, we

interpolate the styles of upper clothes (j-th in the number of

categories) from one image Is1 to another image Is2 . The

style t of the upper clothes of the generated image is defined

through linear blending as:

t = (1− α)P (Ss1j ) + αP (Ss2j ). (13)

As shown in Figure 8, the texture of the upper clothes grad-

ually changes from the style of the left reference image to

that of the right reference image.

Region Editing Since we use a human parsing map as the

intermediate result, we can edit the generated images by

editing the input parsing of the image generator. Specif-

ically, given a source image and its parsing map, we can

flexibly edit the parsing map to automatically synthesize the

person image as we desired. As shown in Figure 9, we can

change the style of clothing (e.g., T-shirt to waistcoat, pants

to dress, and long hair to short hair). Our model generates

natural images consistent with the edited parsing map.

6. Conclusion

In this paper, we propose PISE, a novel two-stage gen-

erative model for person image synthesis and editing. Our

method first synthesizes a human parsing map and then gen-

erates the target image by joint global and local encoding

and normalization and spatial-aware normalization. Exper-

imental results demonstrate that our model achieves promis-

ing results with detailed texture and consistent shape of

clothing. Besides, the ablation study also verifies the ef-

fectiveness of each designed component. Our model can

also be applied in various applications such as texture trans-

fer and region editing, and generates natural images. In the

future, we will try to generalize our framework to deal with

video generation conditioned on a reference image.
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