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Abstract

Non-maximum Suppression (NMS) is an essential post-

processing step in modern convolutional neural networks

for object detection. Unlike convolutions which are inher-

ently parallel, the de-facto standard for NMS, namely Gree-

dyNMS, cannot be easily parallelized and thus could be

the performance bottleneck in convolutional object detec-

tion pipelines. MaxpoolNMS is introduced as a paralleliz-

able alternative to GreedyNMS, which in turn enables faster

speed than GreedyNMS at comparable accuracy. However,

MaxpoolNMS is only capable of replacing the GreedyNMS

at the first stage of two-stage detectors like Faster-RCNN.

There is a significant drop in accuracy when applying Max-

poolNMS at the final detection stage, due to the fact that

MaxpoolNMS fails to approximate GreedyNMS precisely in

terms of bounding box selection. In this paper, we pro-

pose a general, parallelizable and configurable approach

PSRR-MaxpoolNMS, to completely replace GreedyNMS at

all stages in all detectors. By introducing a simple Re-

lationship Recovery module and a Pyramid Shifted Max-

poolNMS module, our PSRR-MaxpoolNMS is able to ap-

proximate GreedyNMS more precisely than MaxpoolNMS.

Comprehensive experiments show that our approach out-

performs MaxpoolNMS by a large margin, and it is proven

faster than GreedyNMS with comparable accuracy. For the

first time, PSRR-MaxpoolNMS provides a fully paralleliz-

able solution for customized hardware design, which can

be reused for accelerating NMS everywhere.

1. Introduction

Object detection is one of the key tasks in computer vi-

sion, with the objective of localizing and classifying ob-

jects in a scene. During the past few years, deep convo-

lutional neural networks has emerged as the champion of
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Figure 1. (Top) Visualized comparison of MaxpoolNMS [2], our

method and GreedyNMS at the final detection stage of Faster-

RCNN. Compared to MaxpoolNMS, our method behaves more

like GreedyNMS. (Bottom) Pipeline of PSRR-MaxpoolNMS. Re-

lationship Recovery to build up the confidence score maps, fol-

lowed by Pyramid Shifted MaxpoolNMS to eliminate overlapped

boxes and only keep the boxes with peak scores. Each cell on

the map encodes the confidence score, scale/ratio (C) and spatial

location (X,Y ) of bounding boxes.

object detection [9, 21, 19]. Convolutional object detec-

tors are broadly grouped into either one-stage detectors like

SSD [19] and YOLO [20] or two-stage detectors like Faster

RCNN [21] and R-FCN [3], in which convolutions of-

ten account for the majority of computing operations. On

the other side, significant progress has been made towards

better-performing dedicated hardware for accelerating the

convolution operations by exploiting their inherent paral-

lelism, such as GPU and Google TPU [15]. Therefore, the

execution time spent on convolution operations is decreas-
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ing rapidly, e.g., at milliseconds.

Non-maximum Suppression (NMS), as a must-have

post-processing technique in all convolutional object de-

tectors, is likely to become the performance bottleneck in

object detection pipelines [2]. The de-facto standard for

NMS, namely GreedyNMS, is composed of a sorting opera-

tion over confidence scores for tens of thousands of bound-

ing boxes, followed by nested for loops to greedily select

the boxes with high scores and remove the boxes signifi-

cantly overlapped with the selected ones. Unlike convolu-

tions which are inherently parallel, GreedyNMS cannot be

easily parallelized due to the nested for loops. Thus, Greed-

NMS would gradually dominate the execution time of con-

volutional object detectors [2], as convolutions run faster

thanks to the increasing parallelism on dedicated hardware

(e.g., from P100 to V100 GPU).

MaxpoolNMS [2], as a parallelizable alternative to Gree-

dyNMS, is introduced to largely accelerate GreedyNMS

without incurring loss in detection accuracy. MaxpoolNMS

is inspired by the observation that bounding boxes with high

confidence scores correlate to peak values on the so-called

confidence score maps in which the spatial relationship be-

tween anchor boxes is preserved. Therefore, NMS can be

designed as simple max pooling on the score maps which

encode confidence scores, scales, ratios, and spatial loca-

tions of anchor boxes (see Fig 1 Bottom). After max pool-

ing, only boxes with peak scores are kept and the others are

suppressed. In terms of execution time, MaxpoolNMS runs

much faster than GreedyNMS, mainly attributed to the fact

that max pooling operations are inherently parallel.

However, MaxpoolNMS is dedicated only to replacing

the GreedyNMS at the first stage of two-stage detectors,

e.g., the GreedyNMS after the region proposal network in

Faster-RCNN. There is a significant drop in detection ac-

curacy when directly applying MaxpoolNMS at the second

stage of two-stage detectors, e.g., the GreedyNMS after the

detection network in Faster-RCNN (see visualized example

in Fig. 1 Top and quantitative results in Table 1). This low-

ers the value of MaxpoolNMS since a customized hardware

for MaxpoolNMS cannot be reused to replace GreedyNMS

at all stages in all detectors.

In this paper, we propose a general approach, namely

PSRR-MaxpoolNMS, to completely replace GreedyNMS at

all stages in all detectors. The key is to approximate Gree-

dyNMS as precisely as possible, which can be measured by

the overlap ratio of the selected bounding boxes between

GreedyNMS and the approximation method. As evidenced

by the low overlap ratio (see Table 1), MaxpoolNMS fails to

approximate GreedyNMS, mainly due to (A) the score map

mismatch problem on confidence score maps (see Fig. 2)

and (B) the difficulty of maximizing the score map spar-

sity (see Fig. 4 and Fig. 5) with a single-scan max pool-

ing on the confidence score maps. PSRR-MaxpoolNMS

introduces a Relationship Recovery module and a Pyramid

Shifted MaxpoolNMS module to solve problem (A) and (B)

respectively. As a result, our PSRR-MaxpoolNMS is able

to approximate GreedyNMS more precisely than Maxpool-

NMS (see the overlap ratio in Table 1).

We summarize our contributions as follows:

• A general approach PSRR-MaxpoolNMS to accelerate

NMS at all stages in all convolutional object detectors.

• A Relationship Recovery module to correct the score

map mismatch when projecting bounding boxes to

confidence score maps, enabling more accurate scale,

aspect ratio and spatial relationships between boxes.

• A Pyramid Shifted MaxpoolNMS on confidence score

maps to significantly increase the sparsity of the score

maps, and thus eliminate more overlapped boxes.

• In PSRR-MaxpoolNMS, the Relationship Recovery

and the Pyramid Shifted MaxpoolNMS are simple and

parallelizable operations. Therefore, for the first time,

PSRR-MaxpoolNMS provides a fully parallelizable

solution for customized hardware design, which can

be reused for accelerating NMS everywhere.

• Finally, our PSRR-MaxpoolNMS outperforms Max-

poolNMS by a large margin. Moreover, it is proven

faster than GreedyNMS with comparable accuracy.

2. Related Works

2.1. One­stage and Two­stage Object Detectors

Convolutional object detection frameworks are roughly

classified into One-stage detectors and Two-stage detectors.

One-stage detectors like SSD and YOLO [19, 20, 17] di-

rectly predict the bounding box coordinates and class prob-

ability by passing an entire image through a single unified

network. Two-stage detectors like Faster-RCNN [21, 11, 9]

are based on the class agnostic region proposals. The re-

gion proposals are the candidate bounding boxes that poten-

tially enclose target objects. Different from previous works

RCNN [10] or Fast-RCNN [9] which employ hand-crafted

region proposal generation [25], Faster-RCNN [21] gener-

ates region proposals by training a Region Proposal Net-

work (RPN). The features of the proposals are fed into sub-

sequent detection network to predict the final box coordi-

nates and class-specific probability for each proposal.

2.2. Non­maximum Suppression

The final goal of object detectors is to output exactly one

bounding box to tightly enclose each target object. How-

ever, most object detection pipelines tend to generate re-

dundant highly-overlapped bounding boxes to enclose an

object, hence introducing large number of false positives.
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Non-maximum Suppression (NMS) is an essential step to

suppress the redundant bounding boxes.

The most widely used NMS method is GreedyNMS

[4]. GreedyNMS firstly sorts the boxes by their confidence

scores in descending order, then iteratively selects the most

confident predictions from the remaining boxes and elim-

inates all the other boxes that have large overlap with the

selected ones. There are variants of NMS to increase the de-

tection accuracy [1, 18, 13, 7, 22]. SoftNMS [1] decreases

the scores of the boxes to be suppressed, instead of delet-

ing these boxes by hard thresholding. Adaptive NMS [18]

learns to adaptively set the box selection threshold accord-

ing to object density. Hosang et al. [13] reformulates NMS

as ConvNet that can be trained end to end. Visibility guided

NMS [7] leverages the detection of the whole objects as

well as the detection of the visible parts to tackle the prob-

lem of highly occluded object detection. FeatureNMS [22]

leverages on the feature embedding distance to determine

whether to suppress or keep the candidate boxes.

Hardware-aware NMS acceleration has been less ex-

plored. MaxpoolNMS [2] reformulates NMS as max pool-

ing on confidence score maps to remove the redundant

boxes. Max pooling operations are inherently parallel, thus

MaxpoolNMS is much more efficient than GreedyNMS

which cannot be easily parallelized. However, Maxpool-

NMS is only confined to the region proposal network (RPN)

of the two-stage detectors, and cannot be generalized to all

stages in all detectors including one-stage detectors.

3. Method

In this section, we first briefly review MaxpoolNMS [2]

(Section 3.1) and analyze its limitations (Section 3.2). Then

we introduce our PSRR-MaxpoolNMS to address the lim-

itations. PSRR-MaxpoolNMS is composed of two steps:

Relationship Recovery (Section 3.3), followed by Pyramid

Shifted MaxpoolNMS (Section 3.4).

3.1. Revisiting MaxpoolNMS

MaxpoolNMS [2] is an effective yet efficient NMS ap-

proach which is specifically designed for removing the

overlapped anchor boxes at the first stage of Faster-

RCNN detection pipeline, i.e., the Region-Proposal Net-

work (RPN). MaxpoolNMS is composed of two modules.

First, as illustrated in Fig. 2, it constructs a set of confi-

dence score maps, of which each score map corresponds

to a specific combination of anchor box scale and ratio

(i.e., channel c), and each cell on the score map encodes

the objectness score (i.e., cell value) and spatial location

(i.e. x and y on the map) of an anchor box that generated

by the RPN. For instance, if we use 4 anchor box scales

{642, 1282, 2562, 5122} and 3 anchor box ratios {1 : 2, 1 :
1, 2 : 1} for a RPN with down sampling ratio β (e.g.,

β = 16), there are 12 confidence score maps with width

Figure 2. MaxpoolNMS [2] projects a anchor box (Dashed red) to

a score map with ratio 1:2 (Coral), without consideration of box

regression. This leads to the score map mismatch problem, i.e.

the regressed box (Solid green) of the anchor has changed in ratio,

and thus is projected to another score map with ratio 1:1 (Blue

gray). The projection of the regressed box is correct as it encloses

the motorcycle more accurately than its corresponding anchor box.

⌊W
β
⌉ and height ⌊H

β
⌉, where W and H denote image width

and height respectively.

Second, based on the observation that objects correspond

to peak scores on the confidence score maps, a simple max

pooling is operated on the maps to suppress anchor boxes

with low scores and only keep anchor boxes with peak

scores. Moreover, since each score map is dedicated to a

specific anchor box size, the kernel size and pool stride for

max pooling on that map are determined by its associated

anchor box size,

kx, sx = max(⌊
αw

β
⌉, 1), ky, sy = max(⌊

αh

β
⌉, 1) (1)

where kx,ky are the kernal sizes and sx,sy are the pool

strides in x direction and y direction respectively. w,h de-

note the anchor box size (width and height) on a specific

score map. β is the down sampling ratio for the score maps.

α represents the overlap threshold, which is used to con-

trol the trade-off between precision and recall. A larger α

would suppress more overlapped boxes (lead to higher pre-

cision), but at the risk of missed object detections (lead to

lower recall).

Moreover, the max pooling in MaxpoolNMS has 3 vari-

ants: (1) Single-Channel MaxpoolNMS, or multi-scale

MaxpoolNMS, applies max pooling on each score map

(channel) independently. (2) Cross-Ratio MaxpoolNMS

concatenates score maps at different ratios for each scale,

followed by 3D max pooling on the concatenated maps. (3)

Cross-Scale MaxpoolNMS concatenates score maps at ad-

jacent scales for each ratio, followed by 3D max pooling on

the concatenated maps.

Finally, the anchor boxes remaining on the score maps

are combined and sorted by their scores in descending order.

Only the top boxes are returned as final detections.
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3.2. Limitations of MaxpoolNMS

Though the execution of MaxpoolNMS is much faster

than GreedyNMS by paralleling the simple max pooling

operations, MaxpoolNMS suffers from a huge shortcoming

that it is dedicated only to replacing GreedyNMS at the first

stage of regular two-stage convolutional object detectors.

To maintain high detection accuracy, GreedyNMS is still a

must-have post processing method for the second stage of

two-stage detectors and one-stage detectors such as SSD.

This makes MaxpoolNMS less attractive in the sense that

it lowers the value of a customized hardware for Maxpool-

NMS which cannot be easily reused for accelerating NMS

at all stages in all detectors.

We observe the detection accuracy drops significantly

when applying MaxpoolNMS at the second stage of two-

stage detectors. Specifically, we perform MaxpoolNMS af-

ter the detection network of Faster-RCNN to remove over-

lapped boxes, with ResNet-50 as backbone. As shown in

Table 1, MaxpoolNMS performs significantly worse than

GreedyNMS on PASCAL VOC dataset, with over 50% drop

in mAP. As shown in Fig. 1 Top, one can see that the fi-

nal selected boxes of MaxpoolNMS is significantly differ-

ent from that of GreedyNMS, which leads us to a hypoth-

esis that the poor performance of MaxpoolNMS is because

it fails to approximate GreedyNMS very well. We mea-

sure the quality of the approximation as the overlap ratio of

selected bounding boxes between MaxpoolNMS and Gree-

dyNMS. As evidenced in Table 1, mAP increases with the

overlap ratio, but the overlap ratio for MaxpoolNMS is low.

We find that there are 2 key factors that lead to the low

overlap ratio for MaxpoolNMS, the score map mismatch on

confidence score maps and the difficulty of maximizing the

score map sparsity with a single-scan max pooling on the

confidence score maps.

• Score map mismatch occurs during the construction

of confidence score maps. MaxpoolNMS projects an-

chor boxes to score maps without consideration of box

regression. This leads to the score map mismatch prob-

lem if the regressed boxes correspond to the anchor

boxes have changed dramatically in location, scale or

aspect ratio. Fig. 2 shows one example of change in ra-

tio. The mismatch would cause wrong box projections

on score maps, which in turn bring in negative effect

on the following max pooling operations.

• Low sparsity on score maps. Since MaxpoolNMS

operates only a single-scan max pooling on the con-

fidence score maps, it is hard to achieve high spar-

sity on dense score maps, implying a lot of highly-

overlapped boxes remain after pooling, as illustrated in

the left of Fig. 4 (i.e., max pooling with Single Chan-

nel only). Moreover, a single-scan max pooling on the

confidence score maps would cause the edge effect. As

shown in Fig. 5 Left, the boxes in the adjacent cells are

both kept after max pooling, even though one of them

is considered as a duplication.

3.3. Relationship Recovery

Instead of projecting anchor boxes to the confidence

score maps, our Relationship Recovery projects the re-

gressed boxes to the maps, which solves the score map

mismatch problem. With the help of box regression, the

regressed boxes in general enclose the objects more accu-

rately than their corresponding anchor boxes, in terms of

spatial location, size and shape (i.e., scale and aspect ra-

tio). As such, the confidence score maps projected by the

regressed boxes are able to better reflect the actual spatial

and channel (a combination of scale and ratio) relationships

between objects in a scene. Concretely, the Relationship

Recovery module consists of three parts: spatial and chan-

nel recovery to identify the spatial location (X,Y ) and the

channel (C(s, r)) of a regressed box should be mapped to,

followed by the score assignment which determines the con-

fidence score for each cell in the maps (see Fig. 3).

Spatial Recovery. MaxpoolNMS projects anchor box

to wrong spatial location on score map due to dramatic shift

of location after box regression. To address this location

mismatch problem, given the center position [xc, yc] of a

regressed box in input image, Spatial Recovery maps it to

the spatial index [X,Y ] on score map as

X = ⌊
xc

β
⌋, Y = ⌊

yc

β
⌋, (2)

where β is the down sampling ratio of the score maps.

Channel Recovery. MaxpoolNMS projects anchor box

to a channel (C(s0, r0)) of the score maps simply based on

the default scale (s0) and ratio (r0) of the anchor box. Sim-

ilarly, the channel projection could be wrong if the corre-

sponding regressed box have changed dramatically in scale

and/or ratio. To solve this channel mismatch problem, given

a regressed box with size w
′

, h
′

, Channel Recovery calcu-

lates the nearest scale s to w
′

× h
′

and the nearest ratio r to
h
′

w
′ based on Euclidean-distance, and choose C(s, r) as the

projected channel for the box.

Figure 3. Relationship Recovery to solve score map mismatch.
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Figure 4. Pyramid MaxpoolNMS. A sequence of max pooling is operated one after another on the confidence score maps, with different

channel combinations and pooling parameters (kernel size and stride) determined by the scale (s) and ratio (r) of the map (From left to

right: single channel, cross ratio, cross scale and cross all channels). One can see that the confidence score maps become more and more

sparse with the Pyramid MaxpoolNMS (i.e., multi-scan max pooling).

Score Assignment. After the spatial locations and chan-

nels for all boxes are determined, each cell in the maps

could have more than one box projected to it. Therefore,

score assignment is introduced to only keep the box with

the highest score in each cell. One may note that the score

assignment is basically 1×1 max pooling in each cell of the

score maps, thus it can be treated as a pre-filtering step for

removing overlapped boxes that are easy to be identified.

Remarks. All operations of the relationship recovery

method are simple and highly parallelizable. In addition,

the relationship recovery method is anchor-free. In other

words, relationship recovery, as the first step of our PSRR-

MaxpoolNMS, opens up a possibility to extend PSRR-

MaxpoolNMS from anchor-based one-stage or two-stage

convolutional object detectors to anchor-free convolutional

object detectors [16, 5], since the construction of confi-

dence score maps doesn’t reply on anchor box at all. In-

stead, it only requires the location and size of regressed

box, which is accessible in anchor-free detectors as well.

We would leave it as our future work.

3.4. Pyramid Shifted MaxpoolNMS

We propose Pyramid Shifted MaxpoolNMS to remove

overlapped boxes on the confidence score maps, in which

the Pyramid MaxpoolNMS aims to thoroughly suppress

overlapped boxes across channels (scale and ratio), while

the Shifted MaxpoolNMS aims to effectively eliminate

overlapped boxes in spatial domain by addressing the edge

effect problem. After Pyramid Shifted MaxpoolNMS, the

score maps become highly sparse, with only a small num-

ber of non-zero cells. The boxes in the non-zero cells are

returned as final detections.

Pyramid MaxpoolNMS. On one hand, MaxpoolNMS

operates only a single-scan max pooling on the confidence

score maps. On the other hand, MaxpoolNMS assumes

overlapped boxes only exist in the channels with adjacent

scales (or ratios) on the score maps, which is not always

true as the overlapped boxes can be distributed at arbitrary

scales/ratios (e.g. a mini cooper occluded by a truck). As

such, a single-scan max pooling with invalid assumption

is not sufficient to suppress overlapped boxes effectively,

resulting in low sparsity on the score maps after pooling.

One can increase the overlap threshold α in Eq. 1 to induce

higher sparsity, at the risk of missed detections [2].

We propose Pyramid MaxpoolNMS to induce score map

sparsity progressively by executing a sequence of max pool-

ing one after another on the confidence score maps with

different channel combinations, as illustrated in Fig. 4.

The sequence of max pooling starts from a Single-Channel

max pooling, followed by Cross-Ratio and Cross-Scale

max pooling, and ends at Cross-all-Channels max pool-

ing. As introduced in Section 3.1, Single-Channel max

pooling operates on single score map independently, while

Cross-Ratio and Cross-Scale max pooling operate on mul-

tiple score maps by concatenating channels at adjacent ra-

tios/scales. In addition, we introduce Cross-all-Channels

max pooling which operates pooling on all channels. In

this way, our Pyramid MaxpoolNMS gradually increases

the ”receptive field” of pooling operator from local (single

score map) to global (all maps), thus without the need of

any assumption on the distribution of overlapped boxes.

When operating max pooling on single channel inde-

pendently, the kernel size and stride for each channel are

set as Eq. 1. When operating max pooling across multiple

channels, the kernel size (or stride) is set as the minimum

of kernel sizes (or strides) of the channels concatenated.

First, if the kernel size is larger than the minimum value,

it may suppress true positives detected by the precedent

Single-Channel max pooling. Second, the larger gap be-

tween scales/ratios, the less likely to have overlapped boxes,

hence a small kernel size (or stride) could reduce the risk of

suppressing true positives.
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Figure 5. Shifted MaxpoolNMS to alleviate edge effect. (Left)

The boxes in the adjacent cells are both kept after max pooling

with pool size 2x2 and stride 2. (Right) By adding another max

pooling with 1 cell shift, the box with higher score is kept, while

the other one is suppressed.

Shifted MaxpoolNMS. Shifted MaxpoolNMS can fur-

ther increase the score map sparsity, and thus eliminate

overlapped boxes in spatial domain (X,Y ) more effectively.

This is achieved by introducing additional max pooling

with a spatial shift on the confidence score maps, which in

turn addresses the edge effect problem, as shown in Fig. 5.

Specifically, given a kernel size k, the shifted max pool-

ing is operated on the score maps padded with ⌊k
2
⌉ zeros

around the border. Finally, the shifted max pooling can be

appended after each pooling step in the sequence of Pyra-

mid MaxpoolNMS.

4. Experiments

4.1. Experimental Setup

We evaluate different NMS approaches only at the in-

ference stages of both Faster-RCNN [21] and SSD [19].

(1) Faster-RCNN [21] is a two-stage convolutional object

detector. We use ResNet-50, ResNet-101 and ResNet-

152 [12] as the backbone network architectures. For Faster-

RCNN training, we follow the default training parameters

of the public PyTorch implementation 1. Since Maxpool-

NMS [2] can be viewed as a simplified version of our

PSRR-MaxpoolNMS, we simply replace GreedyNMS with

Multi-Scale (or Single-Channel) MaxpoolNMS as the post

processing technique at the first stage of Faster-RCNN,

which achieves comparable accuracy but runs much faster

than GreedyNMS. (2) SSD [19] is a one-stage convolu-

tional object detector. We use VGG-16 [24], MobileNet-

v1 [14], MobileNet-v2 [23] as the backbone. We evaluate

NMS using the pre-trained models provided by the public

PyTorch implementation 2. In pre-processing stage, SSD

first filters out the bounding boxes with score <0.01 for

each class. For GreedyNMS, it further selects 200 boxes

with top scores from the boxes passed the pre-processing

stage. Our PSRR-MaxpoolNMS takes all boxes passed the

1https://github.com/jwyang/faster-rcnn.pytorch
2https://github.com/qfgaohao/pytorch-ssd

Table 1. Detection accuracy (mAP) of our method and Maxpool-

NMS on Pascal VOC, at the second stage of Faster-RCNN with

ResNet-50 as backbone. We also report the overlap ratio of se-

lected bounding boxes between GreedyNMS and MaxpoolNMS

(or our method). As a reference, mAP for GreedyNMS is 78.1%.

Method Box Overlap (%) mAP (%)

MaxpoolNMS [2] single 15.0 33.0

MaxpoolNMS [2] ratio 18.5 36.6

MaxpoolNMS [2] scale 11.6 26.5

Ours 45.3 77.6

pre-processing stage as input.

For both Faster-RCNN and SSD, our PSRR-

MaxpoolNMS is applied to suppress the final bounding

box predictions. We fix α to the value of 0.75. In our

channel-recovery step, we set the anchors to the scales of
[

642, 1282, 2562, 5122
]

and the ratios of [0.5, 1, 2]. For

Cross-Ratio MaxpoolNMS, all the 3 ratios of each scale are

concatenated for max pooling. For Cross-Scale Maxpool-

NMS, we only concatenate 2 channels with adjacent scales

for each step of max pooling. We denote Single-Channel

MaxpoolNMS, Cross-Ratio MaxpoolNMS and Cross-Scale

MaxpoolNMS as single, ratio and scale, respectively.

We perform experiments on PASCAL VOC [6] and

KITTI [8] datasets. For PASCAL VOC, we train Faster-

RCNN detection model using 2007 and 2012 trainval

datasets and evaluate on 2007 test dataset. We report the

mean average precision (mAP) for PASCAL VOC dataset.

For KITTI, we randomly split the dataset into 5611 training

images and 1870 testing images. We report mAP at diffi-

culty levels from easy to difficult on KITTI.

4.2. Comparison with MaxpoolNMS

We compare MaxpoolNMS [2] with our PSRR-

MaxpoolNMS approach at the second stage of Faster-

RCNN. Results on PASCAL VOC dataset are shown in Ta-

ble 1. First, we observe that MaxpoolNMS performs poorly,

e.g. MaxpoolNMS single 33% versus GreedyNMS 78.1%.

As expected, though the detection mAP increases with the

overlap ratio, the overlap ratio of selected boxes between

MaxpoolNMS and GreedyNMS is still very low. Second,

our PSRR-MaxpoolNMS better approximates GreedyNMS

which is evidenced by the large overlap ratio and compara-

ble detection accuracy with GreedyNMS (less than 1% drop

in mAP). It is worth noting that similar to [2], the only pa-

rameter to be set for our method is the overlap threshold α.

Thus, our method PSRR-MaxpoolNMS does not introduce

extra parameter tuning workload, while outperforms Max-

poolNMS by a significant margin.

4.3. Comparisons with GreedyNMS

We compare our PSRR-MaxpoolNMS with Gree-

dyNMS, on various datasets and convolutional object de-
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Table 2. Comparisons of our method and GreedyNMS on KITTI dataset, with ResNet variants as the backbone of Faster-RCNN.

Car Pedestrian Cyclist

Method mAP(easy to hard) Easy Mod Hard Easy Mod Hard Easy Mode Hard

GreedyNMS 94.7 89.8 83.0 99.1 97.0 87.4 90.2 81.5 74.8 94.8 90.5 86.9

Ours (ResNet-50) 93.4 88.5 82.8 96.4 95.6 87.9 90.1 80.9 74.7 93.6 89.0 85.7

GreedyNMS 94.0 88.6 81.5 98.6 95.9 86.4 89.7 81.4 74.1 93.7 88.7 84.1

Ours (ResNet-101) 93.5 88.1 81.2 95.9 95.5 86.1 89.5 79.5 72.1 95.1 89.1 85.2

GreedyNMS 94.6 89.8 83.0 98.3 95.7 86.2 91.0 83.2 76.7 94.4 90.5 86.1

Ours (ResNet-152) 93.8 89.5 82.7 96.8 96.1 86.9 90.7 82.8 75.6 93.8 89.5 85.6

Table 3. Comparisons of our method and GreedyNMS on PAS-

CAL VOC dataset, with both two-stage detector Faster-RCNN and

one-stage detector SSD.

Detection Pipeline GreedyNMS Ours

Faster-RCNN [21] (ResNet-50) 78.1 77.6

Faster-RCNN [21] (ResNet-101) 78.4 78.0

Faster-RCNN [21] (ResNet-152) 78.7 78.4

SSD [19] (VGG-16) 77.3 76.1

SSD [19] (MobileNet-v1) 67.6 66.4

SSD [19] (MobileNet-v2) 68.7 67.8

tectors. First, we perform experiments on KITTI dataset

with Faster-RCNN detector and report detection results in

Table 2. We observe that our method achieves compara-

ble detection accuracy with GreedyNMS on KITTI at most

of the operating points, regardless of the backbone models

used. Second, we perform experiments on PASCAL VOC

dataset with both two-stage (i.e. , Faster-RCNN) and one-

stage (i.e. , SSD) detectors. As shown in Table 3, one can

see that our approach performs slightly worse (less than 1%

for most of the operating points) than GreedNMS with var-

ious backbone models and different object detectors. With

Faster-RCNN detector and ResNet-152 as the backbone,

the performance gap in mAP between PSRR-MaxpoolNMS

and GreedyNMS is only 0.3%. It is also worth noting that

our PSRR-MaxpoolNMS approach is applicable to various

object detection pipelines.

4.4. Efficiency

We perform both theoretical and experimental analy-

sis on the computing efficiency of our method PSRR-

MaxpoolNMS. Table 4 provides the theoretical analysis

of the time complexity for GreedyNMS and our method.

Given the number of input boxes N , the time complexity for

both the Relationship Recovery and Pyramid Shifted Max-

poolNMS is O(N), which is much smaller than that of the

GreedyNMS O(N logN) + O(N2). Moreover, both the

Relationship Recovery and Pyramid Shifted MaxpoolNMS

can be easily parallelized, which in turn would further re-

duce the execution time of PSRR-MaxpoolNMS.

Figure 6. Execution time (in ms) of our method and GreedyNMS

as a function of the number of bounding boxes being processed.

We also report the timing breakdown of our method (Relationship

Recovery (RR), and Pyramid Shifted (PS) MaxpoolNMS). Both

methods run on CPU.

We also measure the execution time of GreedyNMS and

our method on Intel(R) Core(TM) i9-10900X CPU, with

different number of bounding boxes being processed. We

experiment on SSD with VGG-16 as backbone on PAS-

CAL VOC dataset. For fair comparison, we remove the

score thresholding step in order to set the number of in-

put boxes being processed per image per class. Results

are reported in Figure 6. First, with the increasing num-

ber of input bounding boxes, our PSRR-MaxpoolNMS is

more and more efficient than GreedyNMS. When the num-

ber of box is increased to 8000, the excutation time of

PSRR-MaxpoolNMS is 89 ms while the GreedyNMS takes

512 ms, which is almost 6 times slower than our method.

Second, we look into the timing breakdown of PSRR-

MaxpoolNMS. We observe that the execution time of Pyra-

mid Shifted MaxpoolNMS is almost constant, while the ex-

ecution time of Relationship Recovery linearly increases

with the number of boxes, due to our own implementa-

tion of Relationship Recovery is currently not parallelized.

For Pyramid Shifted MaxpoolNMS, we rely on the PyTorch

Maxpool and MaxUnpool API which are already paral-

lelized on CPU.
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Table 4. Time Complexity and Parallelism.

Method Complexity Parallel

Relationship Recovery O(N) X

PS MaxpoolNMS O(N) X

GreedyNMS O(N logN) +O(N2) ×

Table 5. Effect of each component of Pyramid MaxpoolNMS on

Spatial and Channel Recovery.

- baseline spa recover spa + cha recover

single 41.2 44.4 71.1

ratio 49.0 63.0 73.6

scale 31.3 67.5 68.0

all 38.9 63.8 63.9

4.5. Ablation studies

In this section, we perform ablation studies to evalu-

ate different components in our method, i.e., Relationship

Recovery and Pyramid Shifted MaxpoolNMS. All experi-

mental results are reported on PASCAL VOC dataset, with

ResNet-50 as the backbone of Faster-RCNN detector.

4.5.1 Relationship Recovery

Spatial and Channel Recovery. We analyze the effect of

each component of Pyramid MaxpoolNMS on spatial and

channel recovery. Results are reported in Table 5. One can

see that compared with the baseline that is lacking of re-

covered relationships (because it is based on the anchor box

projection), both the spatial and channel recovery step could

alleviate the score map mismatch problem and improve the

detection accuracy over the baseline by a large margin, re-

gardless of the channel combination used in the subsequent

max pooling stage.

Score Assignment. As mentioned before, for score as-

signment in each cell of the score maps, we only keep

the box with the highest score, which can be treated as

a pre-filtering step based on max pooling in each cell

(max-assign). We also investigate alternatives beyond

max-assign, i.e., random-assgin and sum-assign. ’random-

assign’ is to randomly choose a box (and its score value)

that projected to a cell. ’sum-assign’ is to sum the score val-

ues of all boxes projected to a cell. Like max-assign, both

random-assign and sum-assign could be easily parallelized.

Table 6 reports the detection mAP with different score as-

signment variants. We observe that max-assign performs

the best, followed by sum-assign and random-assign.

4.5.2 Pyramid Shifted MaxpoolNMS

Pyramid MaxpoolNMS. We evaluate the effect of the

number of channel combinations in a sequence and the

Table 6. Effect of the score assignment variants on Relationship

Recovery.

method random-assign sum-assign max-assign

mAP (%) 75.1 76.5 77.6

Table 7. Effect of the channel combinations and the execution or-

der in the sequence of the Pyramid MaxpoolNMS.

- original order reverse order

single (Single-Scale) 71.1 -

ratio (Cross-Ratio) 73.6 -

scale (Cross-Scale) 68.0 -

all (Cross-All-Channel) 63.9 -

single+ratio 74.2 73.7

single+ratio+all 76.9 76.1

single+ratio+scale+all 77.6 77.4

Table 8. Effect of the Shifted MaxpoolNMS.

- w/o shift-pool w/ shift-pool

mAP (%) 74.2 77.6

execution order in the sequence that defined by Pyramid

MaxpoolNMS. Table 7 reports the detection results. First,

single-scan max pooling (i.e. , single, ratio, scale, all.) per-

forms consistently worse than multi-scan max pooling pre-

defined in a sequence (e.g., a sequence single+ratio has 2

max pooling), implying the necessity of Pyramid Maxpool-

NMS. Second, if we execute the sequence in reverse order

(e.g. for a sequence single+ratio, execute ratio first, fol-

lowed by single), the performance is slightly worse than the

original execution order.

Shifted MaxpoolNMS for Edge Effect. We perform

study on our Shifted MaxpoolNMS and report the results in

Table 8. It shows that without the additional Shifted Max-

poolNMS to alleviate the edge effect, the detection mAP

drops obviously about 3.4%.

5. Conclusion

In this paper, we propose PSRR-MaxpoolNMS as a par-

allelizable alternative to GreedyNMS for overlapped box

removal in all convolutional object detectors. With the

proposed Relationship Recovery module and the Pyramid

Shifted MaxpoolNMS module, we tackle the problems of

score map mismatch and low sparsity after pooling on

the score maps. Comprehensive experiments show that

PSRR-MaxpoolNMS achieves comparable detection accu-

racy with GreedyNMS, but with much higher speedup in

execution time.
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[7] Nils Gählert, Niklas Hanselmann, Uwe Franke, and Joachim

Denzler. Visibility guided nms: Efficient boosting of amodal

object detection in crowded traffic scenes. arXiv preprint

arXiv:2006.08547, 2020. 3

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the kitti vision benchmark

suite. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 3354–3361. IEEE, 2012. 6

[9] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-

national conference on computer vision, pages 1440–1448,

2015. 1, 2

[10] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In Proceedings of the IEEE con-

ference on computer vision and pattern recognition, pages

580–587, 2014. 2

[11] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In Proceedings of the IEEE international

conference on computer vision, pages 2961–2969, 2017. 2

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016. 6

[13] Jan Hosang, Rodrigo Benenson, and Bernt Schiele. A con-

vnet for non-maximum suppression. In German Conference

on Pattern Recognition, pages 192–204. Springer, 2016. 3

[14] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 6

[15] Norman P Jouppi, Cliff Young, Nishant Patil, David Patter-

son, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh

Bhatia, Nan Boden, Al Borchers, et al. In-datacenter perfor-

mance analysis of a tensor processing unit. In Proceedings

of the 44th Annual International Symposium on Computer

Architecture, pages 1–12, 2017. 1

[16] Hei Law and Jia Deng. Cornernet: Detecting objects as

paired keypoints. In Proceedings of the European Confer-

ence on Computer Vision (ECCV), pages 734–750, 2018. 5

[17] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2980–2988, 2017. 2

[18] Songtao Liu, Di Huang, and Yunhong Wang. Adaptive nms:

Refining pedestrian detection in a crowd. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 6459–6468, 2019. 3

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. Ssd: Single shot multibox detector. In European con-

ference on computer vision, pages 21–37. Springer, 2016. 1,

2, 6, 7

[20] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016. 1, 2

[21] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In Advances in neural information pro-

cessing systems, pages 91–99, 2015. 1, 2, 6, 7

[22] Niels Ole Salscheider. Featurenms: Non-maximum sup-

pression by learning feature embeddings. arXiv preprint

arXiv:2002.07662, 2020. 3

[23] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510–4520, 2018. 6

[24] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014. 6

[25] Jasper RR Uijlings, Koen EA Van De Sande, Theo Gev-

ers, and Arnold WM Smeulders. Selective search for ob-

ject recognition. International journal of computer vision,

104(2):154–171, 2013. 2

15848


