
Prototypical Pseudo Label Denoising and Target Structure Learning for

Domain Adaptive Semantic Segmentation

Pan Zhang1 *, Bo Zhang2, Ting Zhang2, Dong Chen2, Yong Wang1, Fang Wen2

1University of Science and Technology of China 2Microsoft Research Asia

Abstract

Self-training is a competitive approach in domain adap-

tive segmentation, which trains the network with the pseudo

labels on the target domain. However inevitably, the pseudo

labels are noisy and the target features are dispersed due to

the discrepancy between source and target domains. In this

paper, we rely on representative prototypes, the feature cen-

troids of classes, to address the two issues for unsupervised

domain adaptation. In particular, we take one step further

and exploit the feature distances from prototypes that pro-

vide richer information than mere prototypes. Specifically,

we use it to estimate the likelihood of pseudo labels to facil-

itate online correction in the course of training. Meanwhile,

we align the prototypical assignments based on relative fea-

ture distances for two different views of the same target,

producing a more compact target feature space. Moreover,

we find that distilling the already learned knowledge to a

self-supervised pretrained model further boosts the perfor-

mance. Our method shows tremendous performance advan-

tage over state-of-the-art methods. The code is available at

https://github.com/microsoft/ProDA.

1. Introduction

Despite the remarkable success of deep learning in com-

puter vision, attaining high performance requires vast quan-

tities of data. It is usually expensive to obtain labels for

dense prediction tasks, e.g., semantic segmentation. There-

fore, people think of leveraging abundant photo-realistic

synthetic images with freely generated labels [44, 45].

However, deep neural networks are notoriously sensitive

to the domain misalignment that any nuanced unrealism

in rendered images will induce poor generalization to real

data. To address this issue, domain adaption techniques aim

to transfer the knowledge learned from the synthetic images

(source domain) to real ones (target domain) with minimal

performance loss. In this work, we focus on the challenging

*This work is done during the first author’s internship at Microsoft Re-

search Asia.

case, unsupervised domain adaptation (UDA), where there

are no accessible labels in the target domain. Specifically,

we solve the UDA problem for semantic segmentation.

Rather than explicitly aligning the distributions of the

source and target domains as most predominant solu-

tions [6, 27, 48, 54, 58], self-training [34, 69, 75, 76] has

recently emerged as a simple yet competitive approach in

the UDA task. This is achieved by iteratively generating a

set of pseudo labels based on the most confident predictions

on the target data and then relying on these pseudo labels

to retrain the network. In this way, the network gradually

learns the adaptation in the self-paced curriculum learning.

However, the performance still lags far behind the super-

vised learning or semi-supervised learning using a few la-

beled samples, making unsupervised domain adaptation im-

practical in real scenarios.

After dissecting the self-training, we find two key ingre-

dients are lacking in previous works. First, typical prac-

tice [75, 76] suggests selecting the pseudo labels according

to a strict confidence threshold, while high scores are not

necessarily correct, making the network fail to learn reliable

knowledge in the target domain. Second, due to the domain

gap, the network is prone to produce dispersed features in

the target domain. It is likely that for target data, the closer

to the source distribution, the higher the confidence score.

As a result, data lying far from the source distribution (i.e.

low scores) will never be considered during the training.

In this paper, we propose to online denoise the pseudo

labels and learn a compact target structure to address the

above two issues respectively. We resort to prototypes,

i.e., the class-wise feature centroids, to accomplish the two

tasks. (1) We rectify the pseudo labels by estimating the

class-wise likelihoods according to its relative feature dis-

tances to all class prototypes. This depends on a practical

assumption that the prototype lies closer to the true centroid

of the underlying cluster, implying that false pseudo labels

are in the minority. It is worth noting that the prototypes

are computed on-the-fly, and thus the pseudo labels are pro-

gressively corrected throughout the training. (2) We draw

inspiration from the Deepcluster [4] to learn the intrinsic

structure of the target domain. Instead of directly learning
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from the cluster assignment, we propose to align soft pro-

totypical assignments for different views of the same target,

which produces a more compact target feature space. We

refer to our method ProDA as we heavily rely on prototypes

for domain adaption.

Supercharged with the above techniques, our ProDA can

demonstrate clear superiority over prior works. Moreover,

we find that the domain adaptation can also benefit from

the task-agnostic pretraining — distilling the knowledge to

a self-supervised model [10, 23] further boosts the perfor-

mance to a record high. Our contributions can be summa-

rized as follows:

• We propose to online correct the soft pseudo labels ac-

cording to the relative feature distances to the proto-

types, whereas the prototypes are also updated on-the-fly.

The network thereby learns from denoised pseudo labels

throughout the training.

• We propose to rely on the soft prototypical assignment to

teach the learning of an augmented view so that a compact

target feature space can be obtained.

• We show that distilling the already-learned knowledge to

a self-supervised pretrained model further improves the

performance significantly.

• The proposed ProDA substantially outperforms state-of-

the-art. With the Deeplabv2 [8] network, our method

achieves the Cityscapes [13] segmentation mIOU by 57.5

and 55.5 when adapting from the GTA5 [44] and SYN-

THIA [45] datasets, improving the adaption gain1 by

52.6% and 58.5% respectively over the prior leading ap-

proach.

2. Related Work

Unsupervised domain adaptation. As suggested by the

theoretical analysis [3], domain alignment methods focus

on reducing the distribution mismatch by optimizing some

divergence [30, 35] or adopting adversarial training [20, 40]

at either the image level [1, 12, 19, 26, 49, 63, 68], the inter-

mediate feature level [6, 27, 48, 58] or the output level [54].

However, aligning global distribution cannot guarantee a

small expected error on the target domain [7, 28, 72]. Re-

cent approaches [17, 36, 59] attempt to align distribution in

a class-wise manner, aiming to promote fine-grained feature

alignment. In fact, it is unnecessary to rigorously align the

distribution as long as the features are well-separated.

On the other hand, techniques originated from semi-

supervised learning (SSL) offer competitive performance.

Entropy minimization and its variants [9, 46, 57] encour-

age the network to make sharp predictions on the unla-

beled target data, and the resulting network is prone to be

over-confident on false predictions. To address this, self-

training [75] that leverages iteratively generated pseudo la-

1The mIoU gain relative to the model without domain adaption.

bels has been proposed. However, the pseudo labels are

inevitably noisy. Hence, [76] adds confidence regulariza-

tion terms to the network, while [73] explicitly estimates a

prediction confidence map to reduce the side-effect of unre-

liable labels. In [34], self-training and image translation are

found mutually beneficial. A recent work [69] generates

pseudo labels based on categorical centroids and enforces

feature alignment in category level. However, these self-

training approaches are optimized in an alternative manner

— labels are fixed over the course of representation learn-

ing, and only get updated after the entire training stage.

In contrast, we propose an online pseudo label updating

scheme where the false predictions are rectified according

to the prototypical context estimated in the target domain.

Unsupervised representation learning. A surge of re-

search interest has been recently attracted to unsupervised

learning [42]. Early efforts dedicate to designing pretext

tasks [16, 18, 29, 70], which are proven beneficial for UDA

when utilized as auxiliary tasks on target data [47, 53, 66].

The gap with supervised learning is considerably closed by

a few prominent works [10, 23] that build on contrastive

learning. A series of recent works [2, 5, 21, 39] find that

the network is able to learn rich semantic features as long

as they are consistent under different augmented views.

Yet these methods assume image-wise discrimination [64],

making them unsuitable for learning pixel-level semantics

for segmentation tasks. In this work, we find the marriage of

consistent learning and cluster-based representation learn-

ing fits remarkably well with the UDA problem and learn a

compact target feature space inspired from Deepcluster [4].

Differently, we align relative feature distances rather than

cluster assignments for different augmented views.

Learning from noisy labels. Self-training even with care-

ful thresholding still gives noisy pseudo labels. Therefore,

this work is also motivated by emerging techniques [52] of

learning from noisy labels. A straightforward way is to de-

sign robust losses [62, 71], but these methods fail to handle

real-world noisy data. Self-label correction [51, 61, 73, 74]

is a more appealing approach. A typical manner [31, 38]

under this category is to train two or multiple learners si-

multaneously and exploit their agreement of predictions to

measure the label reliability. Our proposed pseudo label

denoising is more close to [22] which online corrects the

incorrect labels according to the prototypes determined by

some complex heuristics. In contrast, we are able to com-

pute prototypes on-the-fly. On the other hand, knowledge

distillation (KD) [25, 32, 33, 65] is proven effective to trans-

fer clean knowledge from the teacher model to the student

even when the network learns from itself [10, 32]. In this

work, we demonstrate that the knowledge distillation to a

self-supervised pretrained model further pushes the perfor-

mance limit in our task.
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Figure 1: We illustrate the existing issues of self-training by visualizing the feature space. (a) The decision boundary

(dashed line) crosses the distribution of the target data and induces incorrect pseudo label predictions. This is because the

network is unaware of the target distribution when generating pseudo labels. To solve this, we calculate the prototypes of

each class on-the-fly and rely on these prototypes to online correct the false pseudo labels. (b) The network may induce

dispersed feature distribution in the target domain which is hardly differentiated by a linear classifier.

3. Preliminary

Given the source dataset Xs = {xs}
ns

j=1 with segmen-

tation labels Ys = {ys}
ns

j=1, we aim to train a segmen-

tation network that learns the knowledge from the source

and is expected to achieve low risk on the target dataset

Xt = {xt}
nt

j=1 without accessing its ground truth labels Yt,
where Ys and Yt share the same K classes. Generally, the

network h = g ◦ f can be regarded as a composite of a

feature extractor f and a classifier g.

Typically, the networks trained on the source data, i.e.,

the source model, cannot generalize well to the target data

due to the domain gap. To transfer the knowledge, tradi-

tional self-training techniques [75, 76] optimize the cate-

gorical cross-entropy (CE) with pseudo labels ŷt:

ℓtce = −

H×W
∑

i=1

K
∑

k=1

ŷ
(i,k)
t log(p

(i,k)
t ), (1)

where pt = h(xt) and p
(i,k)
t represents the softmax prob-

ability of pixel x
(i)
t belonging to the kth class. Typically,

one can use the most probable class predicted by the source

network as pseudo labels:

ŷ
(i,k)
t =

{

1, if k = argmaxk′ p
(i,k′)
t

0, otherwise
(2)

Here we denote this conversion from the soft predictions to

hard labels by ŷt = ξ(pt). In practice, since the pseudo la-

bels are noisy, only the pixels whose prediction confidence

is higher than a given threshold are accounted for the pseudo

label retraining. In this way, the network in the target do-

main is bootstrapped by learning from pseudo labels that

only get update till convergence, and then the updated la-

bels are employed for the next training stage.

4. Method

4.1. Prototypical pseudo label denoising

We conjecture that updating the pseudo label after one

training stage is too late as the network has already over-

fitted the noisy labels. While simultaneously updating the

pseudo labels and the network weights, on the other hand,

is prone to give trivial solutions.

In this work, we propose a simple yet effective approach

to online update the pseudo labels while avoiding trivial so-

lutions. The key is to fix the soft pseudo labels and pro-

gressively weight them by class-wise probabilities, with the

update in accordance with the freshly learned knowledge.

Formally, we propose to use the weighted pseudo labels for

self-training:

ŷ
(i,k)
t = ξ(ω

(i,k)
t p

(i,k)
t,0 ), (3)

where ω
(i,k)
t is the weight we propose for modulating the

probability and changes as the training proceeds. The

p
(i,k)
t,0 is initialized by the source model and remains fixed

throughout the learning process, thus serving as a boiler-

plate for the subsequent refinement.

We exploit the distances from the prototypes to gradually

rectify the pseudo labels. Let f(xt)
(i) represent the feature

of xt at index i. If it is far from the prototype η(k), the fea-

ture centroids of class k, it is more probable that the learned

feature is an outlier, hence we downweight its probability

of being classified into kth category. Concretely, we define

the modulation weight in Equation 3 as the softmax over

feature distances to prototypes:

ω
(i,k)
t =

exp(−‖f̃(xt)
(i) − η(k)‖/τ)

∑

k′ exp(−‖f̃(xt)(i) − η(k′)‖/τ)
, (4)
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where f̃ denotes the momentum encoder [23] of the fea-

ture extractor f , as we desire a reliable feature estimation

for xt, and τ is the softmax temperature empirically set to

τ = 1. In this equation, ω
(i,k)
t actually approximates the

trust confidence of x
(i)
t belonging to the kth class. Note that

this equation has a close formulation in [43, 50] that shows

promise in few-shot learning. Instead of relying on the pro-

totypes for classifying new samples, we attempt to correct

the mistakes in the pre-generated pseudo labels according

to this prototypical context.

Prototype computation. The proposed label updating

scheme requires to compute the prototypes on-the-fly. At

first, prototypes are initialized according to the predicted

pseudo labels ŷt for target domain images, which is

η(k) =

∑

xt∈Xt

∑

i f(xt)
(i) ∗ ✶(ŷ

(i,k)
t == 1)

∑

xt∈Xt

∑

i ✶(ŷ
(i,k)
t == 1)

, (5)

where ✶ is the indicator function. However, such prototype

calculation is computational-intensive during training. To

address this, we estimate the prototypes as the moving av-

erage of the cluster centroids in mini-batches, so that we can

track the prototypes that slowly move. Specifically, in each

iteration, the prototype is estimated as,

η(k) ← λη(k) + (1− λ)η′(k), (6)

where η′(k) is the mean feature of class k calculated within

the current training batch from the momentum encoder, and

λ is the momentum coefficient which we set to 0.9999.

Pseudo label training loss. With the online refined pseudo

labels, we are able to train the network for target domain

segmentation. Instead of using a standard cross-entropy, we

adopt a more robust variant, symmetric cross-entropy (SCE)

loss [62], to further enhance the noise-tolerance to stabilize

the early training phase. Specifically, we enforce

ℓtsce = αℓce(pt, ŷt) + βℓce(ŷt, pt), (7)

where α and β are balancing coefficients and set to 0.1 and

1 respectively. Following [62], we clamp the one-hot label

ŷt to [1e−4, 1], so as to avoid the numerical issue of log 0.

Why are prototypes useful for label denoising? First, the

prototypes are less sensitive to the outliers that are assumed

to be the minority. Second, prototypes treat different classes

equally regardless of their occurrence frequency, which is

particularly useful to semantic segmentation as class imbal-

ance poses a challenging issue. Experiments show that the

proposed label denoising considerably improves the perfor-

mance for hard classes. More importantly, prototypes help

to gradually rectify the incorrect pseudo labels, which we

illustrate using a toy example. As shown in Figure 1(a),

the classifier g, may still give a decision boundary crossing

the target clusters and yields false pseudo labels. Training

against them cannot further improve the classifier. The pro-

totypes, on the other hand, downweight the false pseudo la-

bels near the decision boundary of g as they are far from the

prototypes. In this way, the network improves, and in turn,

makes the prototypes closer to the true cluster centroid.

4.2. Structure learning by enforcing consistency

Pseudo labels can be denoised when the feature extrac-

tor f generates compact target features. However, due to the

domain gap, the generated target distribution is more likely

to be dispersed, as shown in Figure 1(b). In this case, the

prototypes fail to rectify the labels of the data whose fea-

tures lie in the far end of the cluster even when the target

features from the source model are well-separated. A re-

cent work [41] has identified this issue in semi-supervised

learning, but the issue becomes worse in domain adaptation

since a few pseudo labeled data cannot cover the entire dis-

tribution in the target domain.

To this end, we aim to learn the underlying structure of

target domain, and hope to obtain more compact features

that are friendly to the pseudo label refinement. Motivated

by the recent success of unsupervised learning, we perform

simultaneously clustering and representation learning. As

opposed to learning against the prototypical assignment, we

use the prototypical assignment under weak augmentation

to guide the learning for the strong augmented view. Specif-

ically, let T (xt) and T ′(xt) respectively denote the weak

and strong augmented views for xt. We make use of the

momentum encoder f̃ to generate a reliable prototypical as-

signment for T (xt) which is,

z
(i,k)
T =

exp(−‖f̃(T (xt))
(i) − η(k)‖/τ)

∑

k′ exp(−‖f̃(T (xt))(i) − η(k′)‖/τ)
, (8)

where τ = 1 by default. Likewise, the soft assignment zT ′

for T ′(xt) can be obtained in the same manner except that

we use the original trainable feature extractor f . Since zt
is more reliable as the feature is given by a momentum en-

coder f̃ and the input xt suffers from less distortion, we use

it to teach f to produce consistent assignments for T (xt).
Hence, we minimize the Kullback–Leibler (KL) divergence

between the prototypical assignments under two views:

ℓtkl = KL (zT ‖zT ′) . (9)

Intuitively, this equation enforces the network to give con-

sistent prototypical labeling for the adjacent feature points,

which results in more compact feature space in the target

domain.

Similar to the previous works that simultaneously learn

the clustering and representation, the proposed prototypical

consistent learning may suffer from degeneration issue, i.e.,

one cluster becomes empty. To amend this, we use a reg-

ularization term from [76], which encourages the output to

12417



be evenly distributed to different classes,

ℓtreg = −

H×W
∑

i=1

K
∑

j=1

log p
(i,k)
t . (10)

Now equipped with the online label correction and the

prototypical consistent learning, we train the domain adap-

tation network with the following total loss:

ℓtotal = ℓsce + ℓtsce + γ1ℓ
t
kl + γ2ℓ

t
reg. (11)

By default, the weighting coefficients γ1 and γ2 are set to

10, 0.1 respectively.

4.3. Distillation to self­supervised model

After the training with Equation 11 converges, we fur-

ther transfer knowledge from the learned target model to

a student model with the same architecture but pretrained

in a self-supervised manner. To be concrete, we initialize

the feature extractor of the student model h† with Sim-

CLRv2 [11] pretrained weights, and we apply a knowl-

edge distillation (KD) loss, which lets the student mimic

the teacher by minimizing the KL divergence of their pre-

dictions on the unlabeled target images. Besides, following

the self-training paradigm, we rely on the teacher model h
to generate one-hot pseudo labels ξ(pt) so as to teach the

student model. To prevent the model from forgetting the

source domain, the source images are also utilized. Alto-

gether, we train the student model using the following loss,

ℓKD = ℓsce(ps, ys) + ℓtce(p
†
t , ξ(pt)) + βKL(pt‖p

†
t), (12)

where p†t = h†(xt) is the output of the student model, and

we set β = 1. In practice, such self-distillation can be ap-

plied multiple times once the model converges, which helps

the domain adaptation to achieve even higher performance.

5. Experiments

5.1. Implementation

Training. We use the DeepLabv2 [8] for segmentation

with the backbone ResNet-101 [24]. Following [69, 73],

we utilize [55] that applies adversarial training at the seg-

mentation output as a warm-up. We apply the SGD solver

with the initial learning rate as 1e-4 which is decayed by 0.9

every training epoch, and the training lasts 80 epochs. Dur-

ing the structure learning, the augmentation is composed

of random crop, RandAugment [14] and Cutout [15]. For

knowledge distillation, we utilize the pretrained SimCLRv2

model with the ResNet-101 backbone as well. An extra

batch normalization (BN) layer is introduced after its fea-

ture extraction layer so as to accommodate the activation

magnitude for our task, with the learning rate set to 6e-4 and

6e-3 respectively before and after this BN layer. During the

distillation stage, we use hard pseudo labels with the selec-

tion threshold 0.95. Readers can refer to the supplementary

material for more training details and algorithm flow. We

conduct all the experiments on 4 Tesla V100 GPUs with

PyTorch implementation.

Dataset. For evaluation, we adapt the segmentation from

game scenes, GTA5 [44] and SYNTHIA [45] datasets, to

real scene, the Cityscapes [13] dataset. GTA5 contains

24,966 training images with the resolution of 1914×1052

and we use its 19 categories shared with Cityscapes. SYN-

THIA dataset contains 9,400 1280×760 images and we use

its 16 common categories with Cityscapes. We also report

the results on 13 common categories on this dataset follow-

ing the protocol of some methods. The Cityscapes dataset

contains 2,975 training images and 500 images for valida-

tion with the resolution of 2048×1024. Since its testing set

does not provide ground truth labeling, we conduct evalua-

tions on its validation set.

5.2. Comparisons with state­of­the­art methods

We comprehensively compare our proposed method

with the recent leading approaches. These methods could

be divided into two categories: 1) domain alignment

methods that align the distribution through adversarial

training, which include AdaptSeg [54], CyCADA [26],

CLAN [36], APODA [67], PatchAlign [56], ADVENT [57],

BDL [34] and FADA [60]; 2) self-training approaches, in-

cluding CBST [75], MRKLD [76], Seg-Uncertainty [73],

CAG UDA [69].

Table 1 shows the comparisons of GTA5→ Cicyscapes

adaptation. our ProDA arrives at the state-of-the-art mIoU

score 57.5, outperforming existing methods by a large mar-

gin. Among all the 19 categories, we achieve the best scores

on 15 categories. ProDA shows evident advantage in hard

classes, e.g., fence, terrace, motor, that cannot be well han-

dled in previous works. Indeed, the performance improve-

ment of ProDA mostly comes from these challenging cases,

the small or rare objects, as we regard different categories

equally thanks to the prototypes. Note that this is achieved

without any heuristic class-balance strategies as [75]. Com-

pared with the non-adapted baseline (i.e., the model purely

trained on the source), ProDA offers the mIoU gain by 20.9,

outperforming the second-best method by 52.6%.

In Table 2, we show the adaptation results on SYNTHIA

→ Cityscapes, where ProDA also shows tremendous im-

provement. The proposed ProDA achieves the mIoU score

by 55.5 and 62.0 over the 16 and 13 categories respec-

tively. To be specific, we arrive at the best on 11 out of

16 categories, mostly the hard classes. Relative to the non-

adaptive model, the segmentation model after our adaption

sees the gain by 20.6, surpassing that of the prior leading

approach by 58.4%. While the adaptation from SYNTHIA

is more challenging than that from GTA5, our ProDA per-
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mIoU gain

Source 75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 24.6 70.3 53.8 26.4 49.9 17.2 25.9 6.5 25.3 36.0 36.6 +0.0

AdaptSeg [54] 86.5 25.9 79.8 22.1 20.0 23.6 33.1 21.8 81.8 25.9 75.9 57.3 26.2 76.3 29.8 32.1 7.2 29.5 32.5 41.4 +4.8

CyCADA [26] 86.7 35.6 80.1 19.8 17.5 38.0 39.9 41.5 82.7 27.9 73.6 64.9 19.0 65.0 12.0 28.6 4.5 31.1 42.0 42.7 +6.1

CLAN [36] 87.0 27.1 79.6 27.3 23.3 28.3 35.5 24.2 83.6 27.4 74.2 58.6 28.0 76.2 33.1 36.7 6.7 31.9 31.4 43.2 +6.6

APODA [67] 85.6 32.8 79.0 29.5 25.5 26.8 34.6 19.9 83.7 40.6 77.9 59.2 28.3 84.6 34.6 49.2 8.0 32.6 39.6 45.9 +9.3

PatchAlign [56] 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 33.4 46.3 2.2 29.5 32.3 46.5 +9.9

ADVENT [57] 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5 +8.9

BDL [34] 91.0 44.7 84.2 34.6 27.6 30.2 36.0 36.0 85.0 43.6 83.0 58.6 31.6 83.3 35.3 49.7 3.3 28.8 35.6 48.5 +11.9

FADA [60] 91.0 50.6 86.0 43.4 29.8 36.8 43.4 25.0 86.8 38.3 87.4 64.0 38.0 85.2 31.6 46.1 6.5 25.4 37.1 50.1 +13.5

CBST [75] 91.8 53.5 80.5 32.7 21.0 34.0 28.9 20.4 83.9 34.2 80.9 53.1 24.0 82.7 30.3 35.9 16.0 25.9 42.8 45.9 +9.3

MRKLD [76] 91.0 55.4 80.0 33.7 21.4 37.3 32.9 24.5 85.0 34.1 80.8 57.7 24.6 84.1 27.8 30.1 26.9 26.0 42.3 47.1 +10.5

CAG UDA [69] 90.4 51.6 83.8 34.2 27.8 38.4 25.3 48.4 85.4 38.2 78.1 58.6 34.6 84.7 21.9 42.7 41.1 29.3 37.2 50.2 +13.6

Seg-Uncertainty [73] 90.4 31.2 85.1 36.9 25.6 37.5 48.8 48.5 85.3 34.8 81.1 64.4 36.8 86.3 34.9 52.2 1.7 29.0 44.6 50.3 +13.7

ProDA 87.8 56.0 79.7 46.3 44.8 45.6 53.5 53.5 88.6 45.2 82.1 70.7 39.2 88.8 45.5 59.4 1.0 48.9 56.4 57.5 +20.9

Table 1: Comparison results of GTA5→Cityscapes adaptation in terms of mIoU. The best score for each column is high-

lighted.
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mIoU gain mIoU* gain*

Source 64.3 21.3 73.1 2.4 1.1 31.4 7.0 27.7 63.1 67.6 42.2 19.9 73.1 15.3 10.5 38.9 34.9 + 0.0 40.3 +0.0

AdaptSeg [54] 79.2 37.2 78.8 - - - 9.9 10.5 78.2 80.5 53.5 19.6 67.0 29.5 21.6 31.3 - - 45.9 +5.6

PatchAlign [56] 82.4 38.0 78.6 8.7 0.6 26.0 3.9 11.1 75.5 84.6 53.5 21.6 71.4 32.6 19.3 31.7 40.0 +5.1 46.5 +6.2

CLAN [36] 81.3 37.0 80.1 - - - 16.1 13.7 78.2 81.5 53.4 21.2 73.0 32.9 22.6 30.7 - - 47.8 +7.5

APODA [67] 86.4 41.3 79.3 - - - 22.6 17.3 80.3 81.6 56.9 21.0 84.1 49.1 24.6 45.7 - - 53.1 +12.8

ADVENT [57] 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 +6.3 48.0 +7.7

BDL [34] 86.0 46.7 80.3 - - - 14.1 11.6 79.2 81.3 54.1 27.9 73.7 42.2 25.7 45.3 - - 51.4 +11.1

FADA [60] 84.5 40.1 83.1 4.8 0.0 34.3 20.1 27.2 84.8 84.0 53.5 22.6 85.4 43.7 26.8 27.8 45.2 +10.3 52.5 +12.2

CBST [75] 68.0 29.9 76.3 10.8 1.4 33.9 22.8 29.5 77.6 78.3 60.6 28.3 81.6 23.5 18.8 39.8 42.6 +7.7 48.9 +8.6

MRKLD [76] 67.7 32.2 73.9 10.7 1.6 37.4 22.2 31.2 80.8 80.5 60.8 29.1 82.8 25.0 19.4 45.3 43.8 +8.9 50.1 +9.8

CAG UDA [69] 84.7 40.8 81.7 7.8 0.0 35.1 13.3 22.7 84.5 77.6 64.2 27.8 80.9 19.7 22.7 48.3 44.5 +9.6 51.5 +11.2

Seg-Uncertainty [73] 87.6 41.9 83.1 14.7 1.7 36.2 31.3 19.9 81.6 80.6 63.0 21.8 86.2 40.7 23.6 53.1 47.9 +13.0 54.9 +14.6

ProDA 87.8 45.7 84.6 37.1 0.6 44.0 54.6 37.0 88.1 84.4 74.2 24.3 88.2 51.1 40.5 45.6 55.5 +20.6 62.0 +21.7

Table 2: Comparison results of SYNTHIA→Cityscapes adaptation in terms of mIoU. The best score for each column is

highlighted. mIoU and mIoU* denote the averaged scores across 16 and 13 categories respectively.

forms equally well on both datasets.

5.3. Discussion

The effectiveness of pseudo label denoising. In Table 3,

the non-adapted source model only gives 36.6 mIoU on the

target domain. After the model warm-up, we get a 5.0 mIoU

increase. Initialized with the warm-up, the baseline model,

i.e., the vanilla self-training, which is trained using the of-

fline pseudo labels, improves the mIoU to 45.2. Adding

symmetric cross-entropy (SCE) brings +0.4 mIoU gain. By

contrast, we are able to update the pseudo labels on-the-

fly and the training with the denoised pseudo labels signifi-

cantly boosts the performance to 52.3. The model with this

component alone sets the state-of-the-art, outperforming the

prior best score by 2.0.

Figure 2 illustrates how the pseudo labels progress as the

training proceeds. In the early phase, false pseudo labels are

likely to occur and fail to recognize the tiny objects, e.g.,

the poles and traffic signs. As the training goes on, pseudo

labels get denoised by virtue of the prototypes, and tiny ob-

jects can be gradually identified in the refined pseudo labels.

The training after 40k iterations can already correct most of

the incorrect labels. In Figure 3, we further quantify the

mIoU score of the pseudo labels during the whole training

process. While convention self-training only updates the

pseudo labels after each stage and leads to step-wise mIoU

increase, the pseudo labels given by ProDA can quickly at-

tain a high quality, showing a distinct advantage over the
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road sidewalk building wall fence pole traffic light traffic sign vegetation n/a.

terrain sky person rider car truck bus train motorcycle bike

Figure 2: ProDA online refines the pseudo labels throughout the training. The first column is the segmentation input. The

2nd to 4th columns illustrate the pseudo labels after 1k, 10k, and 40k iterations.

components mIoU gain

initialization
source 36.6

warm up 41.6 +5.0

stage 1

self

training
sce

prototypical

denoising

structure

learning
mIoU gain

X 45.2 +8.6

X X 45.6 +9.0

X X X 52.3 +15.7

X X X 47.6 +11.0

X X X X 53.7 +17.1

stage 2

self

distill.

stage 1

init.

supervised

init.

self-supervised

init.
mIoU gain

X 55.8 +19.2

X X 56.3 +19.7

X X 55.7 +19.1

X X 56.9 +20.3

stage 3 X X 57.5 +20.9

Table 3: Ablation study of each proposed component. The

whole training involves three stages, where knowledge dis-

tillation can be applied in the last two stages.
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Figure 3: The mean accuracy and mean IoU score of the

pseudo labels throughout the training. Comparing to the

conventional self-training that updates pseudo labels only

after the training stage, the pseudo labels in our method

steadily improves as the training proceeds.

vanilla self-training of multiple training stages.

How to prevent degenerate solution? Simultaneously
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Figure 4: The training curves of different label reweighting

schemes when online updating the labels. Adopting fixed

pt,0 labels avoid the trivial solutions that plague the training

with non-fixed pseudo labels pt. The dotted line denotes the

performance of conventional self-training.

learning the feature and updating the labels during self-

training derives degenerate solutions. The key to avoiding

such degeneration is to adopt a fixed soft label pt,0 as the

boilerplate upon which we apply the weight ωt for rectifi-

cation (Equation 3). To explain this, we investigate different

variants for the online label updating in Figure 4, where the

labels for self-training can be dynamic pt or fixed pt,0, and

the modulation weight can be the network prediction pt or

the confidence wt estimated according to prototypes. In ad-

dition, we investigate the benefit of using hard labels (ξ(·)).
Figure 4 shows that the performance climbs up for a while

and then starts to drop significantly when using non-fixed

soft predictions (pt and its variants), whereas the learning

with the fixed ones (pt,0 and its variants) steadily improves

throughout the training and surpasses the conventional self-

training. We conjecture that fixing pt,0 makes the refined

pseudo labels hardly deviate from this initial prediction,

thus avoiding the trivial solution. Moreover, in contrast to

using pt for reweighting, prototypical reweighting improves
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(a) w/o domain adaptation (b) conventional self-training (c) w/ prototypical denoising (1st stage) (d) our full model

Figure 5: The visualization of feature space, where we map features to 2D space with UMAP [37]. For a clear illustration,

we only show four categories, i.e., blue for building, gray for traffic sign, orange for pole, and green for vegetation.

the mIoU by more than 5.0, corroborating the importance of

using prototypes for label denoising. Besides, we observe

slight improvement (∼0.2) using hard labels over the soft

ones.

The effectiveness of target structure learning. We pro-

pose to cultivate the intrinsic knowledge for the target do-

main and learns its underlying structure. As shown in Ta-

ble 3, without the label denoising, the structure learning im-

proves the performance from 45.6 to 47.6. Note that this

is also competitive among self-training approaches, but we

do not need to carefully choose the threshold for selecting

the confident pseudo labels. The target structure learning

assists the pseudo label denoising by forming compact fea-

ture clusters and brings the performance gain by 1.4.

The effectiveness of distilling to self-supervised model.

At the second training stage, we apply knowledge distilla-

tion and transfer the dark knowledge of the 1st stage model

to the current phase. Table 3 also compares different ini-

tialization strategies for this stage. Compared to resum-

ing the last stage training, the initialization from a self-

supervised pretrained model (i.e., SimCLRv2) improves the

mIoU by 0.6, whereas the initialization with the supervised

pretraining degrades the performance. This is because the

self-supervised pretraining possesses stronger transferabil-

ity and can benefit a broad of downstream tasks. The ini-

tialization in this way helps the model escape from the local

optima in the last stage. Table 3 also proves the effective-

ness of the knowledge distillation: ablating this component

drops the mIoU by 1.1. It is surprising to see that the third

stage with the knowledge distillation further improves the

performance by 0.6, attaining the 20.9 mIoU improvement

relative to the model without domain adaptation.

The UMAP visualization of target features. To bet-

ter develop intuition, we visualize the learned features for

ProDA in Figure 5. The model before the domain adapta-

tion mixes the features of the same class. The conventional

self-training could produce more separated feature space,

yet it is still hard for linear classification. When we apply

prototypical pseudo label denoising, features among differ-

threshold 0.0 0.2 0.4 0.6 0.8 0.9 0.95

mIoU 53.7 53.8 53.7 53.7 53.8 53.7 53.3

Table 4: The effect of threshold in pseudo label selection

during the prototypical label denoising.

momentum 0.99 0.999 0.9999 0.99999

mIoU 53.5 53.6 53.7 52.3

Table 5: The effect of prototype momentum during the pro-

totype online update.

ent classes are better separated, though the distribution is

still dispersed. In comparison, the full model gives the most

compact feature clusters that are amenable to classification.

5.4. Parameter sensitivity analysis.

To showcase that ProDA is robust to the hyper-parameter

selection, we analyze the impact of parameters. In Table 4,

we use different threshold values to select the pseudo labels

and the performance is not sensitive to this threshold as op-

posed to the conventional self-training. Hence, ProDA does

not apply thresholding for convenient usage. We also study

the effect of momentum value when online computing the

prototypes, and ProDA is robust to a wide numerical range

as shown in Table 5.

6. Conclusions

In this paper, we propose ProDA which resorts to proto-

types to online denoise the pseudo labels and learn the com-

pact feature space for the target domain. Knowledge distil-

lation to a self-supervised pretrained model further boosts

the performance. The proposed method outperforms state-

of-the-art methods by a large margin, greatly reducing the

gap with supervised learning. We will make the code pub-

licly available. We believe the proposed method is a general

amelioration to the self-training and we hope to explore its

capability in other tasks in the future.
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