
User-Guided Line Art Flat Filling with Split Filling Mechanism

Lvmin Zhang

Soochow University / Style2Paints Research

China

lvminzhang@acm.org

Chengze Li

The Chinese University of Hong Kong / Style2Paints Research

China

ljsabc@gmail.com

Edgar Simo-Serra

Waseda University / JST PRESTO

Japan

ess@waseda.jp

Yi Ji

Soochow University

China

jiyi@suda.edu.cn

Tien-Tsin Wong

The Chinese University of Hong Kong

China

ttwong@cse.cuhk.edu.hk

Chunping Liu

Soochow University

China

cpliu@suda.edu.cn

Abstract

Flat filling is a critical step in digital artistic content

creation with the objective of filling line arts with flat col-

ors. We present a deep learning framework for user-guided

line art flat filling that can compute the “influence areas”

of the user color scribbles, i.e., the areas where the user

scribbles should propagate and influence. This framework

explicitly controls such scribble influence areas for artists

to manipulate the colors of image details and avoid color

leakage/contamination between scribbles, and simultane-

ously, leverages data-driven color generation to facilitate

content creation. This framework is based on a Split Fill-

ing Mechanism (SFM), which first splits the user scribbles

into individual groups and then independently processes the

colors and influence areas of each group with a Convolu-

tional Neural Network (CNN). Learned from more than a

million illustrations, the framework can estimate the scribble

influence areas in a content-aware manner, and can smartly

generate visually pleasing colors to assist the daily works

of artists. We show that our proposed framework is easy to

use, allowing even amateurs to obtain professional-quality

results on a wide variety of line arts.

1. Introduction

Flat filling is a process to color line arts with fairly flat

colors according to the artists’ specifications. This technique

originates from the on-paper cartoon animation of the 1930s

and remains critical in the digital painting era, as these flat-

colored results exhibit great versatility in a wide variety of

art workflows. Not only these flat colors can be directly

blended with the line arts to create cartoon-like illustrations,

they can also be used as independent foundations without

blending the line arts for further adjustments towards more

sophisticated and plentiful digital paintings.

In computer vision and graphics, two broad paradigms of

user-guided line art colorization exist: traditional user scrib-

ble propagation and learning-based interactive colorization.

In the first paradigm, typical methods like LazyBrush [28]

and Manga Colorization [23] can explicitly and accurately

control the “influence areas” of user scribbles, i.e., the areas

where those scribbles should propagate and influence, by

matching the high-frequency/amplitude image constituents

with hand-defined prior/energy. In professional use cases,

the precise control of scribbles’ influence areas is indispens-

able for artists in editing detailed colors. Ideally, supposing

such influence areas are satisfactorily solved, the coloring

procedure will be free from color leakages, as they only prop-

9889

Figure 1. Split Filling Mechanism (SFM). Given (a) a line art and

(b) some user scribbles, the SFM separate the scribbles into (c)

several groups and estimate (d) the influence area of each group to

accurately control the color segmentation. Afterwards, the SFM

performs (e) data-driven colorization in each group to generate

visually satisfying color combinations to assist artists. The outputs

are merged together to achieve (f) the result. Flower Mouse.

agate color indices without color values contaminating each

other. Besides, as scribble propagation entirely relies on

user inputs, the related workflows are labor-intensive and re-

quire users to have artistic knowledge to obtain professional

results.

In the second paradigm, typical learning-based interac-

tive colorization methods such as PaintsChainer [29] and

Zhang et al. [38] colorize line arts by learning paramet-

ric mappings from sparse lines and user inputs to colorful

illustrations, and they can be post-processed with image

flattening methods (e.g., [4, 37]) to meet the flat filling re-

quirement. With the data-driven nature, these methods can

“smartly” generate visually pleasing color combinations for

in-the-wild line arts while reducing the burden on the artist

and stimulating the artist’s creation aspiration. Given that

these methods do not explicitly control the influence areas

of each scribble, users often need to go through tedious trail-

and-errors when they attempt to control the accurate coloring

on small detailed regions, or when they want to eliminate

the color leakage between multiple adjacent scribbles.

Might we be able to get the best of both worlds, con-

trolling the influence areas of user scribbles accurately to

meet professional use cases, while at the same time incor-

porating data-driven color generation capability to inspire

and facilitate content creation? We propose the Split Filling

Mechanism (SFM) to achieve these two goals simultaneously

as shown in Fig. 1. Firstly, to control the influence areas of

scribbles, the SFM splits user scribbles (Fig. 1-(b)) into sev-

eral groups (Fig. 1-(c)) and independently estimates the influ-

ence areas of each group (Fig. 1-(d)), preventing unwanted

color contamination/leakage between scribble groups. Then,

to generate colors for line arts through learning, the SFM

framework learns from one million of illustrations to gener-

ate useful color combinations in each scribble group (Fig. 1-

(e)). In this way, the split filling in these groups can be

merged into the final output (Fig. 1-(f)), where the accurate

control of scribble influence and the data-driven color gener-

ation capability is concurrently achieved, allowing for high

quality line art flat filling.

Most creative tools in content manipulation are defined

either non-parametrically, e.g., as an energy formulation, or

with parametric mechanisms such as a deep learning model.

Behaviors of those tools are therefore entirely conditioned

by either human-defined propositions or machine-learned

knowledge. Our approach differs in that it yields a joint ef-

fect of parametric models and non-parametric rules. Through

SFM, the algorithm may end up with a more satisfactory pro-

cedure for interpreting user indications to flat filling results

than what would be possible for either end-to-end learning

models or human-defined principles.

Our contributions are as follows: (1) We analyze the mer-

its and goals of traditional propagation-based and interactive

learning-based colorization methods, and then motivate the

problem to get the best of both worlds to simultaneously

control the influence areas of user scribbles and generate

plausible color combinations. (2) We propose the Split Fill-

ing Mechanism (SFM) framework consisting of the split

scribble processing and data-driven colorization steps. (3)

We show that the proposed approach can handle a diversity

of complex line drawings, enabling both artists and amateurs

to easily achieve high-quality flat filling results.

2. Related Work

Propagation-based line art colorization. Dating back to

1976 when the first flood-filling algorithm originated in the

“bucket” tool on the first Apple computer, the Apple I [32],

many other methods have also been proposed to fill colors

within a user-defined area. Shaw et al. [25] proposes to speed

up the flat colorization process using an efficient tree search

algorithm. Optimization-based approaches have also been

used to propagate the color from user scribbles in black-and-

white photograph [17], and are further extended to the case

of filling colors in patterned manga screen-tones [23], and

many more. Among those approaches, LazyBrush [28] is

one of the most well-known variants, which manages to fill

9890

Figure 2. Inference pipeline. We visualize the components involved in the inference pipeline of our framework with splitting and merging.

Figure 3. Training data synthesis pipeline. We illustrate the involved components within our dataset synthesis for splitting and merging.

flat colors in line drawings, rough sketches, and even screen-

toned manga. The popular open-source software GIMP uses

an auto-closing algorithm [5] to compute user intended flat

colorization regions in line drawings.

Learning-based line art colorization. The prosperity of

large-scale learning techniques has popularized the initial

researches of monochrome photography colorization [39,

12, 15, 40, 9, 36], and tailored research for illustration col-

orization followed up quickly. Scribbler [24] is proposed to

colorize line drawings confining on bedroom scenes. Ad-

versarial loss [8] has also been proven to be decisive in

the line coloring due to their ability to produce more vivid

and realistic colorizations, as shown in applications such as

Deepcolor [6], Auto-painter [20], Tag2Pix [13], etc. Mul-

tiple solutions for direct sketch colorization have been pro-

posed and widely used, including the commercial product

PaintsChainer [29] and a two-stage solution [38]. Espe-

cially, [38] decomposes the colorization tasks into inde-

pendent stages and achieves improved colorization qual-

ity. Besides learning a sketch-to-illustration mapping di-

rectly, style transfer can also be used for the line colorization

tasks [19, 7, 11, 42, 10, 1]. The reference-based coloring can

also work well on line video sequences, as proposed by [26]

using an attention-based framework. Image stylization meth-

ods [2, 31, 33, 35, 34, 18, 30, 16] translate cartoon images

or artistic drawings from/to photographs or human portraits.

Those approaches tend to produce results with pixel-level

texture learned from their training data, whereas in many

standard line-drawing-based artistic creation workflows (e.g.,

cel-coloring, cel-shading, etc.), artists have the requirement

to fill color in regions, and the colors in each region must be

flat and consistent. It remains a highly desired problem to

ease the line art flat filling task with data-driven approaches.

3. Method

Overview. As shown in Fig. 2, the inputs of the framework

are a gray scale line drawing X ∈ R
w×h, with a width w

and a height h, and an user scribble map U ∈ R
w×h×4

with three RGB channels plus an alpha channel, whereas the

output is a flat filling result Y ∈ R
w×h×3. This framework

first split the user scribbles U into N groups, yielding N split

scribble maps Ui ∈ R
w×h×4 with i ∈ {1, ..., N} indicating

the group index. The goal is to estimate the resulting color

Ci ∈ R
w×h×3 and influence area Ii ∈ R

w×h of each group,

so as to merge them together to obtain the result Y .

Splitting user scribbles. We cluster the colors used in the

user scribble map U into N clusters using the k-means color

clustering algorithm, and use the obtained color clusters to

split the user scribble map U into a set of split scribble maps

{U1...N} (Fig. 2-(a)). One notice is that the naive RGB space

k-means algorithm is relatively weak in differing colors with

perceptually distinguishable minor hue/chroma difference,

9891

Figure 4. Scribble problems. We illustrate common problems associated with the user scribbles synthesizing steps that need to be resolved.

Figure 5. Neural network architecture. All convolutional layers

use 3× 3px kernels. We do not use any normalization layers. The

Mean Squared Error is indicated as “MSE”.

thus, we use a color chroma transform to enhance it as

[r, g, b]⊺ 7→

[

β ·
r + g + b

3
,

r

r + g + b
,

g

r + g + b

]⊺

. (1)

Under ideal conditions, i.e., if colors are fully separable

with their intensity (axis 1), red chromaticity (axis 2), and

green chromaticity (axis 3), this transform will perfectly

separate different hue/chroma colors along the second two

axes. While more sophisticated color spaces have been pro-

posed (e.g., [21]), we find that Eq. (1) is sufficient for the

initial splitting. We scale the intensity by β to balance the

importance of the intensity and chromaticity.

Masking scribbles. As shown in Fig. 2-(a), we propose to

compute a scribble mask Mi to ease further learning tasks.

In each mask Mi, the scribble pixels in Ui are marked as

“1”, whereas the remaining scribble pixels in U are marked

as “−1”, and the other pixels are “0”.

Estimating influence areas and resulting colors. We train

a Convolutional Neural Network (CNN) to estimate the in-

fluence areas and resulting colors of each scribble group.

As shown in Fig. 2-(b), the inputs of the neural network

are the line drawing X , split scribble map Ui, and split

scribble mask Mi, whereas the outputs are the predicted

region skeleton map S
′

i, color map C
′

i, and influence map

I
′

i. These color and influence maps serve as a coarse ini-

tialization of the flat filling. The skeleton map is computed

with Zhang and Suen 1984 [41]’s region skeleton intensity

approach, which enables end-to-end region manipulation —

arbitrary discrete regions can be converted to learnable per-

pixel skeleton intensity with the skeleton-from-region trans-

form (Appendix-A), and such skeleton can also reconstruct

the original regions with the region-from-skeleton transform

(Appendix-B).

Interpreting regions. As shown in Fig. 2-(c), we com-

pute the average value of all estimated skeleton maps as

S
′ =

∑N

i=1
S

′

i/N and use the region-from-skeleton trans-

form (Appendix-B) to obtain the regions {Ωi...n}. The final

color map Ci is computed by filling all regions with the

median colors sampled from the predicted color map C
′

i.

Similarly, the final influence map Ii is computed from I
′

i

by setting “1” to the best i-th influence map with the largest

value in each region, and “0” to the others.

Finalizing results. Finally, as shown in Fig. 2-(d), we per-

form a color consistency optimization in each color map

Ci to merge adjacent regions selectively and replace sev-

eral predicted colors with user scribble colors to improve

the color consistency and tool usability. We use the same

optimization approach in both the inference phase and later

dataset synthesis. Afterwards, the final merging output is

computed as

Y =
N∑

i=1

Ci ⊙ Ii . (2)

where ⊙ is the Hadamard product operator. We note that we

apply the same weights to each RGB channel.

Color consistency optimization. The overall idea of this

optimization is that we can merge several regions and their

colors, so that the model can learn to smartly and selectively

merge several regions and colorize them with consistent

colors, according to the user scribbles and the input line

drawing context and semantics. In particular, we note that

each split scribble mask Mi indicates a region set Ψi as

Ψi = {Ωj | ∃p ∈ Ωj , (Mi)p = 1} , (3)

implying that the scribble mask Mi value is ”1” for at least

one pixel position p in a sampled region Ωj , i.e., at least one

user scribble is located in the region Ωj . Afterwards, we

9892

estimate the set of region pairs (Ωa,Ωb) that can be merged

{(Ωa,Ωb)|Ωa∈Ψi,Ωb∈N (Ωa)∩Ψi, ||Ωa −Ωb||2<τ},
(4)

where N (Ωi) indicates the set of neighbor regions to Ωi,

the term Ωi is the mean color value of Ωi, the operator

|| · ||2 is the Euclidean distance, and τ is a threshold hyper-

parameter. The pair set {(Ωa,Ωb)} can be solved by brute

force search, and we provide customized search steps and

detailed replication guidelines in the supplementary material.

We merge the region pairs from this set and replace their

colors with the colors of the scribbles covering them to

ensure the color consistency.

Dataset synthesis. As shown in Fig. 3, we synthesize a

dataset to train our model with the paired data of the line

drawing map X , split scribble map Ui, split scribble mask

Mi, skeleton map S, color map C, and the influence map Ii.

The {X,Ui,Mi} are the fed inputs, while the {S,C, Ii}
are the learning objectives. To be specific, we sample one

million illustrations in the Danbooru dataset [3]. Afterwards,

given each illustration, we generate a line drawing map X

with [27] (Fig. 3-(b)), and extract the initial regions {Ωi...n}
with [37] (Fig. 3-(b)). Then, using the skeleton-from-region

transform (Appendix-A), we convert these regions to a skele-

ton map S (Fig. 3-(b)). In parallel, by filling all regions with

the median colors sampled from the illustration, we obtain

the flat color map C (Fig. 3-(b)). Next, we use k-means in

the aforementioned space (Eq. (1)) to cluster the flat color

map C and obtain the influence maps Ii (Fig. 3-(c)). For

each influence map Ii, we synthesize a split scribble map Ui

(Fig. 3-(d)), and these split scribble maps are merged into one

scribble map U (Fig. 3-(e)). Finally, for each split scribble

map Ui, we compute the scribble mask Mi (Fig. 3-(f)).

User scribble simulation. To simulate each split scribble

map Ui, we use straight lines with 3px widths between two

points p1, p2 ∈ R
2. The scribble color is taken from the

value of C at p1, and the endpoints {p1, p2} are randomly

taken from a random region Ωj that belongs to a region set

Φi specified by the current i-th influence map Ii with

Φi = {Ωj | ∀p ∈ Ωj , (Ii)p = 1} , (5)

indicating that the influence map Ii value is ”1” for all pixel

position p in the sampled region Ωj . Next, we observe sev-

eral common user scribbles as shown in Fig. 4 and note three

typical problems. (1) Layer coverage. It is not clear what

regions of the line drawing should be influenced by each

scribble. As shown in Fig. 4-(a), scribbles may be needed to

propagate to only nearby regions, or farther regions depend-

ing on the context and semantics. (2) Scribble reliability.

Users in general will not provide strictly accurate scribbles,

and instead may use conflicting colors for a single region, or

scribbles that go past region boundaries as shown in Fig. 4-

(b). (3) Color uncertainty. It is not clear how the user input

Figure 6. Qualitative results with relatively simple line arts. We

present results with relatively simple and few scribbles. Wolf, Juras-

sic, Tree Roots, Baby, Peony, and Mammoth.

scribble colors should be propagated. As shown in Fig. 4-(c),

in some cases it may be important to give a flat color to

the covered regions, while in others it may be preferable to

generate color variations and transitions.

Although the SFM framework naturally mitigates these

problems, care must be taken when synthesizing the training

scribbles. In order to deal with the layer coverage issue, we

randomly manipulate the region coverage of each scribble,

so that the model can learn to estimate appropriate regions

that are affected by each scribble. To be specific, instead

of sampling from the same region Ωj for p1 and p2, we

allow p2 to be taken from a region that is reachable from p1
within the region set Φi. We implement this by performing

a random walk from Ωj to find a random k-step-neighbor

region Ωk to sample p2 from. We do a k = 3 step random

walk to not obtain regions that are too far away. Next, to

tackle the scribble reliability problem, we not only sample

scribble endpoint positions within fixed region area, but

also from a surrounding area with r pixel radius around the

region (we use r = 15 by default) to simulate the coarse

scribbles outside of the sampled regions. Finally, we perform

the aforementioned color consistency optimization in each

color map Ci to simulate color uncertainty, mimicking real

scribbles that are coarsely drawn by artists.

Training. As shown in Fig. 5, we use a Fully Convolutional

Neural Network (FCNN) with a common encoder and three

decoders to predict a color map C
′

i, an influence map I
′

i , and

a region skeleton map S
′

i, respectively. The loss function

9893

Figure 7. Qualitative results with relatively complicated line arts. We show a break-down of several results with our proposed approach.

More examples are provided in the supplementary material. Pea Princess, Flower with Alice, and Book Girl c© used with artist permission.

can be written as

L = ‖C ′

i −C‖2
2

︸ ︷︷ ︸

Color maps

+ ‖I ′

i − Ii‖
2

2
︸ ︷︷ ︸

Influence maps

+ ‖S′

i − S‖2
2

︸ ︷︷ ︸

Skeleton maps

, (6)

where C is the ground truth color map, Ii is the ground truth

influence map, and S is the ground truth region skeleton. It

is notable that we neither use masked loss nor adversarial

learning. Give that the architecture is fully convolutional,

this model is applicable to images of adjustable resolutions.

4. Evaluation

4.1. Experimental setting

Compared approaches. We test several typical flat fill-

ing methods (or method combinations) of the traditional

optimization-based scribble propagation method (1) Lazy-

Brush [28], (2) Qu 2006 et al. [23], state-of-the-art deep

learning sketch colorization method (3) Zhang et al. [38],

method combinations (4) Zhang et al. [38] + GIMP region

flattening [5] and (5) our framework.

Implementation details. The model is trained using the

Adam optimiser [14] with a learning rate of lr = 10−5,

β = 0.5, a batch size of 16, and 20 epochs. Training is done

with samples that are randomly cropped to be 224 × 224
pixels. LazyBrush [28] is tested with their official software.

Qu 2006 et al. [23] is implemented with official parameters

in their original paper. Zhang et al. [38] is the tested with the

official and up-to-date software Style2Paints V4.5. GIMP

region flattening [5] is from the software GIMP 2.10.22.

Hyper-parameters. We use the default (and recommended)

configuration: β = 0.5, N = 8, and τ = 0.1.

9894

Line art Scribble Zhang [38] Qu [23] L.B. [28] Ours Line art Scribble Zhang [38] GIMP [5] [38]+[5] Ours

Figure 8. Comparison with existing colorization methods. Zoom in to see details. We compare our framework with [38, 23, 28] and the

colorization method [38] combined with the segmentation method [5]. Left: Flower Angel, Comollon, Wisteria Flowers, Poison Skull, and

Megumi; Right: Fountain Angel, Goblin, Robot, and Azalea c© used with artist permission.

Figure Auto region Semi-auto region Manual region

Flower Mouse 513 (46.43%) 510 (46.12%) 82 (7.44%)

Pea Princess 478 (47.31%) 442 (43.73%) 91 (8.96%)

Sky with Alice 551 (55.25%) 315 (31.56%) 132 (13.19%)

Prayer 530 (60.69%) 284 (32.52%) 59 (6.79%)

Flower with Alice 447 (54.56%) 261 (31.83%) 112 (13.62%)

Tree Elves 599 (59.13%) 366 (36.18%) 48 (4.69%)

Anna in Dream 643 (61.68%) 317 (30.42%) 82 (7.90%)

Book Girl 589 (53.80%) 377 (34.45%) 129 (11.75%)

Reading Awake 396 (44.61%) 362 (40.79%) 130 (14.60%)

Overall 53.72% ± 5.98% 36.40% ± 5.44% 9.88% ± 3.30%

Table 1. Scribble analysis. We perform an analysis of the number

of scribbles used for the flat filling of different line drawings.

Testing samples. The tested images are Pixiv [22] and Dan-

booru [3] line arts, and original line arts from invited artists.

We make sure that no similar line arts exists in the training

dataset by removing the nearest line arts from the dataset

with Mean Absolute Error (MAE) metric.

4.2. Qualitative results

Simple line arts. We first show some results on relatively

simple line arts in Fig. 6. These results are obtained from

non-artist amateur users with our framework. We can see

that the line arts are flat-filled with plausible visual quality

and can be directly used in many real-life artistic content

creation workflows.

Complicated line arts. We show some qualitative results

and layer break-downs of complicated line arts in Fig. 7. In

particular, we visualize the input line are X , scribble U , and

the output split scribble Ui, color map Ci, influence map Ii,

and the final result Y . We can see how the proposed frame-

work is applicable for line drawings with a large diversity

and complexity to obtain high-quality results. More details

and results are provided in the supplementary material.

Comparison to previous methods. We compare the pro-

posed framework with existing deep learning and traditional

algorithms in Fig. 8. We can see from the results that

Zhang et al. [38] is unable to perform flat colorizations,

while LazyBrush [28] and Qu 2006 et al. [23] are relatively

weak in our specific illustration flat filling problem. The

SFM approach is able to produce a detailed segmentation

with satisfying flat coloring. We also compare our proposed

approach with method combinations. Despite using the com-

bination of two leading algorithms Zhang et al. [38] and

GIMP region flattening [5], the obtained results are not as

convincing as our proposed approach. We hypothesis that

this is due to the fact we are not only learning to colorize, but

also learning to perform a region segmentation and merging

9895

Line art Scribble W/o SFM W/ SFM

Figure 9. Significance of Split Filling Mechanism (SFM). We

compare the results obtained from our neural architecture with (w/)

or without (w/o) the SFM. One Leaf Knows Autumn c© used with

artist permission.

that improves the flat filling jointly.

4.3. User study

Participants. We first test this framework with 9 non-artist

amateur users and 3 professional artists. Those amateurs are

college students without artistic knowledge.

Setups. As we found that the amateur users may have trou-

ble with picking appropriate colors, we have added auxiliary

color tables purchased from a professional cartoon studio

with some examples shown in the supplementary material.

By browsing the color tables, which will be made publicly

available, amateur users are able to get quick inspiration for

their scribble colors.

User guidelines. The users are asked to try best to color the

given line arts. We do not give hard requirements and users

can paint according to their perception.

Evaluation metrics. We calculate how many regions are

filled manually by user scribbles, or filled automatically

by our framework. In particular, we divide all colorized

regions into three categories: (1) Automatic regions. (2)

Manual regions. (3) Semi-automatic regions. Please see

supplementary materials for detailed descriptions.

Results. As reported in Table 1, we can see that most of

the regions are automatically or semi-automatically colored,

with only roughly 10% of the regions being manually col-

ored. This highlights how satisfactory results can be obtained

with a relatively small amount of effort.

4.4. Ablative study

Significance of Split Filling Mechanism (SFM). We com-

pare our framework with a cloned version but without the

SFM processing. To be specific, we train our neural archi-

tecture (Fig. 5) with non-split data to directly estimate the

final coloring and regions. In this setting, the training inputs

become the line drawing X and non-split original user scrib-

ble map U , whereas the outputs are the region skeleton map

Line art Scribble τ = 0.01 τ = 0.1

Figure 10. Analysis of the τ parameter. The parameter τ controls

how the framework merges adjacent regions. For higher values

of τ , more regions will be merged. Different use cases may need

different values of τ . Alice’s Night c© used with artist permission.

S
′ and color map C

′. We directly use the estimated S
′ to

compute regions and flatten C
′ to get the final flat filling.

All parameters and pipelines, including the color consistency

optimization, remain same. The results are shown in Fig. 9.

We can see that the SFM processing is an indispensable part

of our framework. In absence of this processing, the outputs

degenerate significantly yielding hardly usable flat filling.

Influence of parameters. As shown in Fig. 10, larger values

of τ lead to more regions being merged, while low values

can conserve too many details and lead to non-flat fillings.

5. Conclusion

We present a deep learning framework for user-guided

line art flat filling. This framework can explicitly com-

pute the influence areas of user scribbles, enabling users

to edit the colors of image details and eliminate color leak-

age/contamination between scribbles. Different from tradi-

tional hand-crafted filling algorithms, the Split Filling Mech-

anism (SFM) is proposed to directly estimates the result col-

ors and influence areas of scribbles, learned from a million

illustrations. Results show that our SFM-based flat filling

framework is able to handle diverse contents with compli-

cated patterns and obtain reliable high-quality colorizations.

6. Acknowledgement

This technique is presented by Style2Paints Research.

This work is supported by National Natural Science Founda-

tion of China Nos 61972059, 61773272, 61602332; Natural

Science Foundation of the Jiangsu Higher Education Institu-

tions of China No 19KJA230001, Key Laboratory of Sym-

bolic Computation and Knowledge Engineering of Ministry

of Education, Jilin University No93K172016K08; the Prior-

ity Academic Program Development of Jiangsu Higher Edu-

cation Institutions (PAPD). This work is also supported by

JST PRESTO (Simo-Serra, Grant Number: JP-MJPR1756).

9896

References

[1] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu, and Gang

Hua. Stylebank: An explicit representation for neural image

style transfer. In CVPR, volume 1, page 4, 2017.

[2] Yang Chen, Yu-Kun Lai, and Yong-Jin Liu. CartoonGAN:

Generative adversarial networks for photo cartoonization. In

2018 IEEE/CVF Conference on Computer Vision and Pattern

Recognition. IEEE, jun 2018.

[3] DanbooruCommunity. Danbooru2017: A large-scale crowd-

sourced and tagged anime illustration dataset, 2018.

[4] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. Efficient

graph-based image segmentation. IJCV, 2004.

[5] Sbastien Fourey, David Tschumperle, and David Revoy. A

fast and efficient semi-guided algorithm for flat coloring line-

arts. EUROGRAPHICS, 2018.

[6] Kevin Frans. Outline colorization through tandem adversarial

networks. In Arxiv, 2017.

[7] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

Image style transfer using convolutional neural networks. In

CVPR, pages 2414–2423, 2016.

[8] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial networks. NIPS,

3:2672–2680, 2014.

[9] Mingming He, Dongdong Chen, Jing Liao, Pedro V Sander,

and Lu Yuan. Deep exemplar-based colorization. ACM Trans-

actions on Graphics, 2018.

[10] Mingming He, Jing Liao, Lu Yuan, and Pedro V Sander.

Neural color transfer between images. ArXiv, 2017.

[11] Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu,

Phillip Isola, Kate Saenko, Alexei A Efros, and Trevor Darrell.

Cycada: Cycle-consistent adversarial domain adaptation. In

ICML, 2018.

[12] Satoshi Iizuka, Edgar Simo-Serra, and Hiroshi Ishikawa. Let

there be Color!: Joint End-to-end Learning of Global and

Local Image Priors for Automatic Image Colorization with

Simultaneous Classification. ACM Transactions on Graphics,

35(4), 2016.

[13] Hyunsu Kim, Ho Young Jhoo, Eunhyeok Park, and Sungjoo

Yoo. Tag2pix: Line art colorization using text tag with secat

and changing loss. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision (ICCV), October

2019.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. Computer Science, 2014.

[15] Gustav Larsson, Michael Maire, and Gregory Shakhnarovich.

Learning representations for automatic colorization. In ECCV,

pages 577–593. Springer, 2016.

[16] Junsoo Lee, Eungyeup Kim, Yunsung Lee, Dongjun Kim, Jae-

hyuk Chang, and Jaegul Choo. Reference-based sketch image

colorization using augmented-self reference and dense seman-

tic correspondence. In Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2020.

[17] Anat Levin, Dani Lischinski, and Yair Weiss. Colorization

using optimization. In ACM Transactions on Graphics, 2004.

[18] Yijun Li, Chen Fang, Aaron Hertzmann, Eli Shechtman, and

Ming-Hsuan Yang. Im2pencil: Controllable pencil illustration

from photographs. In IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[19] Jing Liao, Yuan Yao, Lu Yuan, Gang Hua, and Sing Bing

Kang. Visual attribute transfer through deep image analogy.

ACM Transactions on Graphics, 36(4):1–15, jul 2017.

[20] Yifan Liu, Zengchang Qin, Zhenbo Luo, and Hua Wang.

Auto-painter: Cartoon image generation from sketch by using

conditional generative adversarial networks. In Arxiv, 2017.

[21] I. Omer and M. Werman. Color lines: image specific color

representation. In Proceedings of the 2004 IEEE Computer

Society Conference on Computer Vision and Pattern Recogni-

tion, 2004. CVPR 2004. IEEE, 2004.

[22] pixiv.net. pixiv. pixiv, 2007.

[23] Yingge Qu, Tien-Tsin Wong, and Pheng-Ann Heng. Manga

colorization. ACM Transactions on Graphics, 25(3):1214–

1220, July 2006.

[24] Patsorn Sangkloy, Jingwan Lu, Chen Fang, Fisher Yu, and

James Hays. Scribbler: Controlling deep image synthesis

with sketch and color. CVPR, 2017.

[25] John R. Shaw. Quickfill: An efficient flood fill algorithm.

codeproject, 2004.

[26] Min Shi, Jia-Qi Zhang, Shu-Yu Chen, Lin Gao, Yu-Kun Lai,

and Fang-Lue Zhang. Deep line art video colorization with a

few references. Arxiv, 2020.

[27] Edgar Simo-Serra, Satoshi Iizuka, and Hiroshi Ishikawa. Mas-

tering Sketching: Adversarial Augmentation for Structured

Prediction. ACM Transactions on Graphics, 37(1), 2018.

[28] Daniel Sykora, John Dingliana, and Steven Collins. Lazy-

Brush: Flexible painting tool for hand-drawn cartoons. Com-

puter Graphics Forum, 28(2), 2009.

[29] TaiZan. Paintschainer tanpopo. PreferredNetwork, 2016.

[30] Matteo Tomei, Marcella Cornia, Lorenzo Baraldi, and Rita

Cucchiara. Art2Real: Unfolding the Reality of Artworks via

Semantically-Aware Image-to-Image Translation. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2019.

[31] Xinrui Wang and Jinze Yu. Learning to cartoonize using

white-box cartoon representations. In IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), June

2020.

[32] Stephen Gary Wozniak. The apple i computer. Apple, 1976.

[33] Ran Yi, Yong-Jin Liu, Yu-Kun Lai, and Paul L. Rosin. AP-

DrawingGAN: Generating artistic portrait drawings from face

photos with hierarchical GANs. In 2019 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

IEEE, jun 2019.

[34] Ran Yi, Yong-Jin Liu, Yu-Kun Lai, and Paul L Rosin. Un-

paired portrait drawing generation via asymmetric cycle map-

ping. In IEEE Conference on Computer Vision and Pattern

Recognition (CVPR ’20), 2020.

[35] Ran Yi, Mengfei Xia, Yong-Jin Liu, Yu-Kun Lai, and Paul L.

Rosin. Line drawings for face portraits from photos using

global and local structure based GANs. IEEE Transactions on

Pattern Analysis and Machine Intelligence, pages 1–1, 2020.

9897

[36] B. Zhang, M. He, J. Liao, P. V. Sander, L. Yuan, A. Bermak,

and D. Chen. Deep exemplar-based video colorization. In

2019 IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 8044–8053, 2019.

[37] Lvmin Zhang, Yi JI, and Chunping Liu. Danbooregion: An

illustration region dataset. In European Conference on Com-

puter Vision (ECCV), 2020.

[38] Lvmin Zhang, Chengze Li, Tien-Tsin Wong, Yi Ji, and Chun-

ping Liu. Two-stage sketch colorization. In ACM Transac-

tions on Graphics, 2018.

[39] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful

image colorization. In ECCV, 2016.

[40] Richard Zhang, Jun-Yan Zhu, Phillip Isola, Xinyang Geng,

Angela S Lin, Tianhe Yu, and Alexei A Efros. Real-time user-

guided image colorization with learned deep priors. ACM

Transactions on Graphics, 9(4), 2017.

[41] T. Y. Zhang and C. Y. Suen. A fast parallel algorithm for

thinning digital patterns. Communications of the ACM, 1984.

[42] Jun-Yan Zhu, Richard Zhang, Deepak Pathak, Trevor Darrell,

Alexei A Efros, Oliver Wang, and Eli Shechtman. Toward

multimodal image-to-image translation. In NIPS, 2017.

9898

