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Abstract

Significant performance improvement has been achieved

for fully-supervised video salient object detection with

the pixel-wise labeled training datasets, which are time-

consuming and expensive to obtain. To relieve the bur-

den of data annotation, we present the first weakly super-

vised video salient object detection model based on rela-

beled “fixation guided scribble annotations”. Specifically,

an “Appearance-motion fusion module” and bidirectional

ConvLSTM based framework are proposed to achieve ef-

fective multi-modal learning and long-term temporal con-

text modeling based on our new weak annotations. Fur-

ther, we design a novel foreground-background similarity

loss to further explore the labeling similarity across frames.

A weak annotation boosting strategy is also introduced to

boost our model performance with a new pseudo-label gen-

eration technique. Extensive experimental results on six

benchmark video saliency detection datasets illustrate the

effectiveness of our solution1.

1. Introduction

Video salient object detection (VSOD) models are de-

signed to segment salient objects in both the spatial domain

and the temporal domain. Existing VSOD methods focus

on two different solutions: 1) encoding temporal informa-

tion using a recurrent network [30, 10, 44], e.g. LSTM; and

2) encoding geometric information using the optical flow

constraint [18, 29]. Although considerable performance im-

provements have been achieved, we argue that the huge bur-

den of pixel-wise labeling makes VSOD a much more ex-

pensive task than the RGB image-based saliency detection

task [14, 23, 22, 48, 43].

The standard pipeline to train a deep video saliency

∗Corresponding author: Junwei Han (junweihan2010@gmail.com)
1Our code and data is publicly available at: https://github.

com/wangbo-zhao/WSVSOD.

(a) Image (b) Full Anno. (c) Weak Anno.

(d) Image (e) TENet[29] (f) Ours

Figure 1. Training with our weak annotation (c), we achieve com-

petitive performance (f) compared with TENet[29] (e).

detection model involves two main steps. Firstly, the

network is pre-trained on an existing static RGB image-

based saliency detection training dataset, e.g. DUTS [35] or

MSRA10K [6]. Then, it is fine-tuned on video saliency de-

tection datasets, e.g. DAVSOD [10] and DAVIS [28]. The

main reason for using this strategy is that video saliency

datasets usually have limited scene diversity. Although the

largest DAVSOD dataset [10] has more than 10K frames

for training, the large redundancy across the frames of each

clip makes it still insufficient to effectively train deep video

saliency models. Specifically, DAVSOD has a total of

107 clips for training and validation, which only indicates

around 107 diverse scenes. Hence, directly training with a

VSOD dataset may lead to poor model generalization abil-

ity, as the model may overfit on the highly redundant data.

To obtain an effective video saliency detection model,

existing fully supervised VSOD methods [18, 29, 10] rely

on both RGB image saliency datasets and VSOD training

datasets. The problem behind the above pipeline is the

huge requirement for pixel-wise labeling, which is time-

consuming and expensive to obtain. For example, RGB

image saliency training datasets have more than 10K la-

beled samples [35, 6]. Further, as shown in Tab. 1, widely

used VSOD training datasets (DAVSOD and DAVIS) con-
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Table 1. Details of existing video sod datasets. Dataset: name

of the dataset, Size: number of frames, Annotated size: labeled

frames(per pixel), Training: Frames used for training, /: this

dataset is not split.
Dataset Released Year Size Annotated size Training

DAVSOD[10] 2019 23,938 23,938 12,670

VOS[19] 2018 116,103 7,467 5,927

DAVIS[28] 2016 3,455 3,455 2,079

ViSal[39] 2015 963 193 /

FBMS[26] 2014 13,860 720 353

SegV2[16] 2013 1,065 1,065 /

tain more than 14K pixel-wise labeled frames. Both of them

required large burden to perform data annotations.

To relieve the burden of pixel-wise labeling, one can re-

sort the weakly supervised learning technique [47, 35] to

learn saliency from image scribble or image-level labels.

In this paper, considering the efficiency of scribble anno-

tation, we aim to learn a weakly supervised video saliency

detection network via scribble. However, the main prob-

lem is that the per-image labeled scribble has no tempo-

ral information. To incorporate temporal information into

our weak annotation, we adopt the fixation annotation in

existing VSOD training datasets as guidance, and propose

fixation guided scribble annotation as shown in Fig. 1 (c).

Specifically, we first define the regions that have the peak re-

sponse of fixation as foreground and those without fixation

as background. Then we label both foreground scribble and

background scribble following [47].

Based on the fixation guided scribble annotation, we de-

sign an appearance-motion fusion module to fuse both ap-

pearance information from the RGB image and motion in-

formation from optical flow as shown in Fig. 2. Further-

more, a bidirectional LSTM [30] based temporal informa-

tion enhanced module is presented to further obtain long-

term temporal information. Note that, we use scribble an-

notation from S-DUTS [35] to pre-train our video saliency

detection network as the conventional way. Build upon both

scribble annotation from the RGB image saliency dataset

and video saliency dataset, our weakly supervised video

saliency detection network leads to a very cheap configura-

tion compared with existing deep video saliency detection

models. Moreover, considering the cross-frame redundancy

of the video saliency dataset, we introduce the foreground-

background similarity loss to fully explore our weak anno-

tation. We also introduce a weak annotation boosting strat-

egy by leveraging our scribble annotation and the saliency

map generated from the off-the-shelf fully-supervised SOD

model. Benefiting from these, our model can achieve com-

parable results with state-of-the-art fully-supervised meth-

ods. e.g. Fig. 1 (f) and (e).

Our main contributions are: 1) We introduce the first

weakly supervised video salient object detection network

based on our fixation guided scribble annotation; 2) We

propose an appearance-motion fusion module and a tempo-

ral information enhance module to effectively fuse appear-

ance and motion features; 3) We present the foreground-

background similarity loss to explore our weak annotation

in adjacent frames; 4) We combine saliency maps generated

from an off-the-shelf saliency model and our scribble anno-

tations to further boost model performance.

2. Related Work

Fully supervised video salient object detection: As the

mainstream of video salient object detection, the fully su-

pervised video saliency detection models mainly focus on

exploring both spatial and temporal information of the train-

ing dataset. Wang et al. [40] models the short-term spatial-

temporal information by taking two adjacent frames as in-

put. To model the longer spatio-temporal information,

[30, 17] adopt ConvLSTM to capture richer spatial and tem-

poral features simultaneously. Some methods also model

the human attention mechanism to select interesting regions

in different frames, e.g. self-attention [12], spatial attention

supervised by human eye fixation data [10, 37]. As objects

with motion in a video are usually salient, li et al. [18] use

optical flow as guidance to find the salient regions. Ren et

al. [29] combine the spatial and temporal information and

present a semi-curriculum learning strategy to reduce the

learning ambiguities.

While these methods show their successes on VSOD,

they heavily rely on the large densely annotated training

datasets. Annotating a high-quality dataset is expensive

and time-consuming. Different from them, depending on

only weak annotations, our method greatly relief the label-

ing burden, which is both cheaper and more accessible.

Weakly/semi/un-supervised video salient object detec-

tion: There are many traditional unsupervised VSOD meth-

ods e.g. [38, 39, 19], most of which exploit handcrafted fea-

tures, which makes them unsatisfactory in the real-world

application. When it comes to the learning-based meth-

ods, although the problem of depending on laborious and

costly pixel-wise dense annotation is obvious and serious,

few methods make an effort to alleviate it. To the best

of our knowledge, there is no previous method to solve

VSOD with totally weakly labeled data. There are only sev-

eral methods that try to use less annotated data. Yan et al.

[44] addresses VSOD in a semi-supervised manner by using

pseudo labels, where the optical flow map serves as guid-

ance for pseudo label generation with the sparsely anno-

tated frames. Tang et al. [33] uses limited manually labeled

data and pseudo labels generated from existing saliency

models to train their model. Recently weakly-supervised

finetuning during testing is also explored. Li et al. [21]

proposes to generate pseudo labels to weakly retrain pre-

trained saliency models during testing. But high-quality la-

beled data is still inevitable to obtain the pseudo labels.

Different from previous methods, which rely on all or
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part of the fully annotated dataset, our model is end-to-end

trainable without using any densely annotated labels.

Video object segmentation: There are two types of

video object segmentation(VOS) models, including Zero-

shot VOS [37, 30, 49] and One-shot VOS [11, 3, 42]. Dur-

ing testing, the former aims at segmenting primary objects

in a video without any help, while the first annotated frame

is given in the later. Since Zero-shot VOS is more similar

to VSOD, we only discuss the related literature in this pa-

per. Among them, Song et al. [30] solve VOS and VSOD

at the same time. Wang et al. [36] builds a fully connected

graph to mine rich and high-order relations between video

frames. Zhou et al. [49] proposes a motion attention block

to leverage motion information to reinforce spatio-temporal

object representation. [25] introduces an encoder-decoder

network consisting entirely of 3D convolutions.

Like VSOD, most of the video segmentation models

are fully supervised, and the weakly-supervised or semi-

supervised counterparts is still under-explored. Until re-

cently, Lu et al. [24] introduces the intrinsic properties of

VOS at multiple granularities to learn from weak supervi-

sion. However, the undesirable performance and slow infer-

ence speed makes it desirable to further explore this task.

3. Our Method

3.1. Overview

As a weakly supervised video saliency detection frame-

work, we first relabel existing video saliency detection

datasets DAVSOD [10] and DAVIS [28] with scribble la-

bels. Due to a lack of temporal information in the per-

image scribble annotation, we introduce fixation guided

scribble annotation as shown in Fig. 3. Our training dataset

is then defined as T = {X,F, Y }, where X is the RGB

image, F is the optical flow map predicted from [31], Y

is our fixation guided scribble annotation. We first de-

sign a Saliency feature extraction fα to extract features

fα(X) and fα(F ) from RGB images and flow respec-

tively, where α is the network parameter set. Then, we

present the Appearance-Motion Fusion Module (AMFM)

gβ(fα(X), fα(F )) to effectively learn from both appear-

ance information (e.g. the RGB image branch) and motion

information (e.g. the flow branch). Further, we introduce

a Temporal Information Enhanced Module (TIEM) sγ(gβ)
by using ConvLSTM to model the long-term temporal in-

formation between frames. For each frame, we fuse fea-

tures from TIEM in different levels in a top-down manner

to get the final output. To further explore the temporal in-

formation from our fixation guided scribble annotation, we

present a Foreground-background similarity loss as a frame-

wise constraint. Moreover, we present a Saliency boosting

strategy to further improve the performance of our method.

An overview of our network is shown in Fig. 2.

3.2. Fixation guided scribble annotation

The largest video saliency detection dataset, i.e.

DAVSOD [10], is annotated in two steps: 1) an eye tracker

is used to record fixation points, the output of which is then

Gaussian blurred to obtain a dense fixation map; and 2) an-

notators segment the whole scope of the salient foreground

based on the peak response region2. As indicated in [10],

the extra fixation annotation introduces useful temporal in-

formation to the video saliency dataset. Conventionally,

DAVSOD is combined with the DAVIS [28] dataset to train

fully supervised VSOD models. Originally, DAVIS had no

fixation annotation, however, it was added by Wang et al.

[37]. As a weak video saliency detection network, we in-

tend to use the fixation data as guidance to obtain temporal

information, and we then replace the pixel-wise clean anno-

tation with scribble for weakly supervised learning. Given

every frame in our video saliency training dataset, as shown

in Fig. 3 (a), and the corresponding fixation map as shown

in Fig. 3 (b), we annotate the foreground scribble in the ob-

jects with peak response regions, and background scribble

in other region as shown in Fig. 3 (d). In this case, the gen-

erated scribble annotation encodes temporal information,

which is different from [47] where the scribble is totally

image-based, with no temporal information.

3.3. Saliency feature extraction

As shown in Fig. 2, the saliency feature extraction mod-

ule is used to extract the appearance saliency feature fα(X)
from the RGB image X and motion saliency feature fα(F )
from the optical flow map F . We build our architec-

ture upon ResNet-50 [13] and remove the down-sampling

operations in stage four3 to keep the spatial information.

Apart from this, we replace the convolutional layers in

the last layer with dilated convolutions [46] with a dilated

rate of 2. An ASPP [4] module is added after stage four

to extract multi-scale spatial features, which includes one

1 × 1 convolutional layer, and three 3 × 3 dilated convo-

lutional layers with dilation rate of 6, 12, and 18, and a

global average pooling operation. With our saliency fea-

ture extraction module, we obtain the appearance feature

fα(X) = {f1
r , f

2
r , f

3
r , f

4
r } and motion feature fα(F ) =

{f1
m, f2

m, f3
m, f4

m} respectively, where fk
r and fk

m are the

appearance feature and motion feature of the k-th stage of

the network, and k indexes network stages. More details

can be found in Section 4. We also add an extra edge detec-

tion branch to recover the structure information of the final

output, and details of which can be found in [47].

2The peak response region is the region with the densest fixation points.
3We define a group of convolutional layers of the same spatial size as

belonging to the same stage.
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Figure 2. Overview of the proposed model. For simplicity, we do not show the edge detection branch borrowed from [47] here. Details

about TIEM can be found on the right. There is no upsample operation in the first ”F”.”Up”:”Upsample operation; ”C”: concatenation
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(a) Image (b) Fixation (c) Clean GT (d) Our GT

Figure 3. The fixation guided scribble annotation, where we obtain

the sequence of scribble labels(d) with the temporal information

from fixation annotation(b).

3.4. Appearance­motion fusion module

The appearance-motion fusion module aims to effec-

tively fuse the appearance feature fα(X) and motion fea-

ture fα(F ). As shown in Fig. 4, the inputs of the AMFM

are the appearance feature fk
r and the motion featurefk

m of

size C ×W ×H . We use two convolutional layers with a

ReLU activation function to reduce the number of channels

of fk
r and fk

m to C = 32 respectively. Then the concate-

nation operation and a 1× 1 convolutional layer is adopted

to obtain the fused feature gkrm of size C ×W ×H , which

contains the appearance and motion information. We use

grm instead of gkrm in the following for simplicity.

There exists three sub-modules in our AMFM, namely

the gate module (GM), the channel attention module (CAM)

and the spatial attention module (SAM). The gate module is

designed to control the importance of appearance features

and motion features, and the two attention modules are used

to select the discriminative channels and locations. In GM,

two different gates can be generated from grm, namely the

appearance gate Gr(grm) and motion gate Gm(grm). This

module is designed to control the importance of fr and fm,

which is formulated as:

G = GAP (σ(Conv(grm;β))), (1)

where G = [Gr, Gm], and Gr, Gm are two scalars in the

range [0, 1]. Conv(grm;β) is a 1 × 1 convolutional layer,

which reduces the channels of feature grm from C to 2.

GAP (∗) is the global average pooling layer in the spatial

dimension, and β is the network parameter set. σ(∗) is the

sigmoid function.

The gate module produces two different scalars, repre-

senting the importance of appearance information and mo-

tion information. However, it can not emphasize impor-

tant channels and spatial locations in appearance and mo-

tion features. Based on this, we propose our two attention

modules, namely CAM and SAM, as:

CA = Softmax(FC(MaxPooling(grm);β)), (2)

SA = σ(Conv(grm;β)), (3)

where CA = [cr, cm] are the two channel attention maps of

size C×1×1 for appearance and motion. MaxPooling(∗)
is in the spatial dimensions. FC is a fully connected layer

with 2C output channels. The Softmax function is im-

plemented in every C channels along the channel dimen-

sion. SA = [sr, sm], and sr, sm are two spatial attention

maps of size 1×W ×H . Subsequently, the obtained gates

[Gr, Gm], channel attention tensors [cr, cm], spatial atten-

tion tensors [sr, sm] can be multiplied with fr and fm re-

spectively to achieve both importance reweighting (the gate

module) and attention reweighting (the attention modules).

However, such a simple multiplication approach may lose

some useful information. Inspired by [18, 41], we use the

gated feature in a residual form as:

gr = (Gr ⊗ fr)(1 + sr ⊗ cr), (4)

gm = (Gm ⊗ fm)(1 + sm ⊗ cm), (5)

where ⊗ denotes element-wise multiplication with broad-

cast. Finally, the output will be added to get the fused fea-

ture gAMFM = gr + gm.

3.5. Temporal information enhanced module

Although the appearance-motion fusion module can ef-

fectively fuse appearance information from the RGB image
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Figure 4. Appearance-motion fusion module. GM, CAM and

SAM are the gate module, channel and spatial attention module

respectively. Their outputs are G, CA and SA, respectively.

and motion information from the flow, we still observe un-

desirable prediction when we use it alone. We argue that

this arises due to two reasons: 1) the optical flow map can

only provide temporal information between two adjacent

frames, where no long-term temporal information exists; 2)

as the flow feature is fused with the appearance feature in

AMFM, some lower quality of flow may introduce extra

noise to the network, leading to deteriorated predictions.

In order to solve this problem, we model long-term tem-

poral information in our “Temporal information enhanced

module” (TIEM) by adopting the bidirectional ConvLSTM

[30] to further constrain the cross-frames spatial and tempo-

ral information. Unlike previous methods [10, 44], which

only add the temporal model in the highest level, we add

a TIEM after each AMFM to promote information flow in

each feature level between frames.

With the bidirectional ConvLSTM [30], we obtain hid-

den states H
f
t and Hb

t from both the forward and backward

ConvLSTM units, which can be formulated as:

H
f
t = ConvLSTM(Hf

t−1, g
AMFM
t ; γ), (6)

Hb
t = ConvLSTM(Hb

t+1, H
f
t ; γ), (7)

sTIEM
t = Conv(Cat(Hf

t , H
b
t ); γ), (8)

where gAMFM
t and sTIEM

t represent the features from the

AMFM and TIEM respectively.

3.6. Foreground­background similarity loss

Different from [47] which can learn saliency from in-

dependent static images, our model learns video saliency

with fixation-guided scribbles, where annotation of adja-

cent frames are related. The large redundancy in adjacent

frames makes it possible to re-use scribble annotations of

other frames to supervise the current frame. Further, we

observe that it is difficult for the network to determine the

category of each pixel without per-pixel annotation. Mo-

tivated by [45], we propose our “Foreground-background

similarity loss” to take advantage of limited weakly anno-

tated labels and model the relationship of all points in adja-

cent frames. We argue that the similarity of features of the

same category (both salient or both background) should be

foreground

background
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Figure 5. The illustration of how to get the ground truth of the

similarity map Âi,j . Note that, we do not define the similarity

between unlabeled points and other points in Ai,j .

larger than that of different categories. Based on this, we

first calculate the similarity of two feature maps. To be spe-

cific, for the feature map of the i th frame fi and j th frame

fj , we first use a 1×1 convolutional layer to map them into

an embedding space. Subsequently, we reshape them into

C×WH . Then we conduct matrix multiplication followed

the sigmoid activation function σ to get the similarity map

Â of HW ×HW size. It can be formulated as:

Âi,j = σ(Conv(fi)
TConv(fj)) (9)

where Conv(∗) is a 1 × 1 convolutional layer. Âi,j rep-

resents the obtained similarity map between i th frame and

j th frame. Then we need to construct a ground truth map

to supervise Âi,j . Given the weakly annotated label of i th

frame Yi, we first downsample it into the same size as the

feature map fi, so we obtain a smaller label Ỹi. We encode

the foreground part in Ỹi into [1, 0] and the background

part into [0, 1], leading to a tensor Ỹi of size 2 × H × W .

Then, we reshape it into 2 × HW . We do the same oper-

ations to the j-th frame and obtain Ỹj . Then, we conduct

the matrix multiplication again and obtain Ai,j = ỸiỸ
T
j of

size HW ×HW . We visualize this process in Fig. 5. Note

that all operations above are done on labeled points, which

means that we do not define the similarity between unla-

beled points and other points. We use J to represent the set

of points in Ai,j . Then we can adapt partial cross-entropy

loss [32] to supervise the similarity map:

Li,j
s = −

∑

u,v∈J

(Au,v log Âu,v +(1−Au,v) log(1− Âu,v)).

(10)

For each iteration we have T frames, we can calculate

the similarity loss for the current frame with other frames

and itself. So the total similarity loss can be formulated as:

Ls =
T∑

i=1

T∑

j=i

Li,j
s . (11)

3.7. Loss Function

As shown in Fig. 2, we employ both partial cross-entropy

loss Lc and the proposed foreground-background similar-

ity loss Ls to train our model. Apart from this, the gated
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structure-aware loss Lg and edge loss le proposed in [47]

are also used. Note that, we do not show Lg and le in Fig. 2

for simplicity. Both Ls, Lg and le are the loss for learning

from scribble labels of the static image and Ls is the loss

for learning from a series of frames. Following the conven-

tional video saliency detection pipeline, we pretrain with

an RGB saliency dataset. Differently, we use the scribble

annotation based dataset, namely S-DUTS [47]. Then, we

finetine the network with our fixation guided scribble anno-

tation. To pretrain the network, we define the loss as:

Lpretrain = β1 · Lc + β3 · Lg + β4 · Le. (12)

Then we finetune the network with loss function:

Lfine = β1 · Lc + β2 · Ls + β3 · Lg + β4 · Le. (13)

Empirically, we set β1 = β2 = β4 = 1 and β3 = 0.3.

3.8. Saliency boosting strategy

Our model based on the fixation guided scribble anno-

tation leads to competitive performance as shown in Table

2 “Ours”. Furthermore, we notice that some SOD meth-

ods, e.g. [48], can also achieve reasonable results on VSOD

datasets. Inspired by [33], we propose a saliency consis-

tency based pseudo label boosting technique guided by the

SOD model to further refine our annotation.

Specifically, we adopt EGNet [48] to generate the

saliency maps for the RGB images and optical flow of our

video saliency training dataset, which are defined as prgb
and pm respectively. Note that choosing other off-the-shelf

SOD methods is also reasonable. As done in [21], we

choose the intersection of prgb and pm as the fused saliency

map p = prgb ⊙ pm, which captures the consistent salient

regions of prgb and pm. Our basic assumption is that p con-

tains all the foreground scribble, and covers no background

scribble. With this, we define the quality score of p as:

score =
‖T (p)⊙ sfore‖0

‖sfore‖0
· (1−

‖T (p)⊙ sback‖0
‖sback‖0

) (14)

where T (∗) binarizes the saliency map with threshold 0.5.

‖ ∗ ‖0 is the L0 norm. sfore and sback are the foreground

and background scribble respectively as shown in Fig. 3 (d).

The first part of the quality score aims to evaluate the

coverage of foreground scribble over p, while the latter en-

courages no background scribble to overlap p. In this way,

the higher quality score indicates a better saliency map of

p. We then choose saliency maps with quality score larger

than a pre-defined threshold, e.g. Tr = 0.98. For each se-

quence, we can then obtain a set of high-quality pseudo

saliency maps P . If the number of pseudo saliency maps

in P is larger than 10% of the number of frames in cur-

rent sequence, we replace the scribble annotation with the

generated high quality pseudo label. Otherwise, we keep

Image GT Scribble Boosted

Figure 6. Our boosting strategy can refine the partial annotation.

our original fixation guided scribble annotation for the en-

tire sequence. We define the new weak annotation set as our

first stage pseudo label set Db1.

For sequences with high quality pseudo labels, we train

them individually with the corresponding annotation in

Db1. After K4 iterations of training, we perform inference

using the trained model to obtain the second stage pseudo

label set Db2. Note that the model to train each sequence is

introduced in Section 4.2 as the ablation study “B”. Then,

we treat Db2 as our boosted annotation, and train our whole

model with Db2. During training, if a frame has a generated

pseudo label, we directly use it as supervision. Otherwise,

we use our scribble annotation to supervise. In Fig. 6 we

show the boosted annotation “Boosted”, which clearly show

the effectiveness of our boosting strategy.

4. Experimental Results

Dataset: Similar to the conventional VSOD learning

pipeline, our model is pre-trained on the scribble based

image saliency dataset S-DUTS [47] and then fine-tuned

on our fixation guided scribble annotations, namely the

DAVIS-S and DAVSOD-S datasets. We evaluate the pro-

posed method on six public datasets: VOS[19], DAVIS[28],

DAVSOD[10], FBMS[26], SegV2[16] and ViSal[39]. The

details of those datasets are shown in Table 1.

Implementation details: As shown in Fig 2, our network

takes image and flow as input. We first adopt an off-the-

shelf optical flow estimation method [31] to compute the

flow map from the previous frame to the current frame. For

the S-DUTS dataset, we just take the output from [31] as

the flow map of the static image by inputting the two same

images into it. We take ResNet-50 [13] pretrained on Im-

ageNet [8] as the backbone. Note that during pretraining,

there is no TIEM in our network. We resize all the frames

to same spatial size of 256 × 256 before we feed them to

the network. Random flipping and cropping are also added

to avoid over-fitting. The optimization algorithm is Adam

[15] and the learning rate is 1e-4. We pre-train and fine-

tune for 30 epochs and 20 epochs respectively. The batch

size is set to one, and the length of frames per batch is set

to four due to computation resource limitations. The whole

pre-training and fine-tuning takes about four hours and nine

hours respectively on a PC with an NVIDIA GeForce RTX

2080Ti GPU. During test, our average processing time for

one frame of a sequence is 0.035s.

4K = 8× the size of the current sequence.
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Table 2. Benchmarking results. Bold numbers represent the best performance. ↑ & ↓ denote larger and smaller is better, respectively.

Ours* means our method with the proposed boosting strategy. We use red and blue to indicate the two best scores.
Fully Sup. Models Weakly/unsup. Models

Metric EGNet SCRN PoolNet SCOM MBNM FCNS PDB FGRN MGA RCRNet SSAV PCSA TENet SSOD GF SAG Ours Ours*

[48] [43] [22] [5] [20] [40] [30] [17] [18] [44] [10] [12] [29] [47] [39] [38]

VOS

Sα ↑ 0.793 0.825 0.773 0.712 0.742 0.760 0.818 0.715 0.791 0.873 0.786 0.828 0.845 0.682 0.615 0.619 0.750 0.765

Fβ ↑ 0.698 0.749 0.709 0.690 0.670 0.675 0.742 0.669 0.734 0.833 0.704 0.747 0.781 0.648 0.506 0.482 0.666 0.702

M ↓ 0.082 0.067 0.082 0.162 0.099 0.099 0.078 0.097 0.075 0.051 0.091 0.065 0.052 0.106 0.162 0.172 0.091 0.089

DAVIS

Sα ↑ 0.829 0.879 0.854 0.832 0.887 0.794 0.882 0.838 0.910 0.886 0.892 0.902 0.905 0.795 0.688 0.676 0.828 0.846

Fβ ↑ 0.768 0.847 0.815 0.783 0.861 0.708 0.855 0.783 0.892 0.848 0.860 0.880 0.881 0.734 0.569 0.515 0.779 0.793

M ↓ 0.057 0.029 0.038 0.048 0.031 0.061 0.028 0.043 0.023 0.027 0.028 0.022 0.017 0.044 0.100 0.103 0.037 0.038

DAVSOD

Sα ↑ 0.719 0.745 0.702 0.599 0.637 0.657 0.698 0.693 0.741 0.741 0.755 0.741 0.779 0.672 0.553 0.565 0.705 0.694

Fβ ↑ 0.604 0.652 0.592 0.464 0.520 0.521 0.572 0.573 0.643 0.654 0.659 0.656 0.697 0.556 0.334 0.370 0.605 0.593

M ↓ 0.101 0.085 0.089 0.220 0.159 0.129 0.116 0.098 0.083 0.087 0.084 0.086 0.070 0.101 0.167 0.184 0.103 0.115

FBMS

Sα ↑ 0.878 0.876 0.839 0.794 0.857 0.794 0.851 0.809 0.908 0.872 0.879 0.868 0.916 0.747 0.651 0.659 0.778 0.803

Fβ ↑ 0.848 0.861 0.830 0.797 0.816 0.759 0.821 0.767 0.903 0.859 0.865 0.837 0.915 0.727 0.571 0.564 0.786 0.792

M ↓ 0.044 0.039 0.060 0.079 0.047 0.091 0.064 0.088 0.027 0.053 0.040 0.040 0.024 0.083 0.160 0.161 0.072 0.073

SegV2

Sα ↑ 0.845 0.817 0.782 0.815 0.809 * 0.864 * 0.880 0.843 0.849 0.866 0.868 0.733 0.699 0.719 0.804 0.819

Fβ ↑ 0.774 0.760 0.704 0.764 0.716 * 0.808 * 0.829 0.782 0.797 0.811 0.810 0.664 0.592 0.634 0.738 0.762

M ↓ 0.024 0.025 0.025 0.030 0.026 * 0.024 * 0.027 0.035 0.023 0.024 0.025 0.039 0.091 0.081 0.033 0.033

ViSal

Sα ↑ 0.946 0.948 0.902 0.762 0.898 0.881 0.907 0.861 0.940 0.922 0.942 0.946 0.949 0.853 0.757 0.749 0.857 0.883

Fβ ↑ 0.941 0.946 0.891 0.831 0.883 0.852 0.888 0.848 0.936 0.907 0.938 0.941 0.949 0.831 0.683 0.688 0.831 0.875

M ↓ 0.015 0.017 0.025 0.122 0.020 0.048 0.032 0.045 0.017 0.026 0.021 0.017 0.012 0.038 0.107 0.105 0.041 0.035

Competing methods: We compare our method with 16

state-of-the-art image/video saliency methods as shown in

Table 2. Since SSOD [47] is the only scribble based

saliency model, we finetune it with our scribble DAVSOD

dataset for a fair comparison.

Evaluation metrics: We use three criteria to evaluate the

performance of our method and competing methods, includ-

ing Mean Absolute Error (MAE), F-measure [1] (Fβ), and

the structure measure S-measure [9] (Sα).

4.1. Comparison with the state­of­the­art

Quantitative Comparison: In Table 2, we show the results

of our method and the competing methods. We can observe

that our method can outperform all other weakly supervised

or unsupervised method on six datasets. Comparing with

the only scribble base method SSOD [47], although it has

been finetuned on DAVIS-S and DAVOSD-S, we still can

surpasses it by a large margin. That is mainly because

our method can take advantage of the motion and tempo-

ral information between frames. Moreover, our method

can also achieve competitive performance with some fully-

supervised methods, e.g., FCNS [40], FGRN [17], SCOM

[5] and MBNM [20].

Qualitative Comparison: We select four representative

frames from four sequences in the testset of DAVSOD in

Fig. 7. We compare our method with the five best fully-

supervised methods MGA [18], RCRNet [44], SSAV [10],

PSCA [12], and TENet [29] and two weakly/unsupervised

methods SSOD [47] and GF [39]. More qualitative

comparison can be found in the supplementary materi-

als. Benefiting from motion and temporal information, our

method can locate salient objects more accurately than other

weakly/unsupervised methods. Our method also shows

comparable performance with fully-supervised methods on

sequences with complex scenes (row 1), quick motion (row

2), multiple objects (row 3) and slow motion (row4).

Table 3. Performance of our ablation study related experiments.

Method
DAVSOD FBMS

Sα ↑ Fβ ↑ M ↓ Sα ↑ Fβ ↑ M ↓

B 0.670 0.543 0.116 0.749 0.707 0.085

B(G) 0.578 0.424 0.222 0.631 0.568 0.196

B-Fc 0.669 0.538 0.123 0.769 0.743 0.081

B-Fa 0.678 0.556 0.119 0.763 0.735 0.084

B-Fo 0.682 0.562 0.112 0.775 0.763 0.08

B-Fo-Th 0.681 0.556 0.121 0.780 0.769 0.076

B-Fo-Ta 0.694 0.585 0.108 0.781 0.781 0.074

B-Fo-Ta-L 0.705 0.605 0.103 0.778 0.786 0.072

4.2. Ablation study

We thoroughly analyze the proposed framework and pro-

vide extra experiments as shown in Table 3.

Scribble annotation based baseline: We employ the pro-

posed DAVSOD-S and DAVIS-S to finetune the base model,

which has been pretrained on S-DUTS. The base model is

constructed by removing all TIEM and replacing all AMFM

with convolutional layers. It only takes RGB images as in-

put. The performance is marked as “B”. We also conduct an

experiment by leveraging GraphCut [2] to generate masks

given scribble annotations and directly adopting them to

train “B”. This model is denoted as “B(G)”. The result in

Table. 3 showers inferior performance of “B(G)”. The main

reason is graph-based algorithms can not generate accurate

masks from simple scribble annotations, which further ex-

plains superior performance of the proposed solution.

Different appearance-motion fusion strategy: In order to

add the motion information, we introduce the optical flow

map into the base model and add the AMFM module into

“B”. This model is named “B-Fo”. To demonstrate the ef-

fectiveness of the proposed appearance-motion fusion strat-

egy, we also compare it with two simple fusion strategies:

element-wise addition and concatenation. They are denoted

as “B-Fa” and “B-Fc” respectively. As shown in Tab. 3, our

method surpasses “B-Fa” by 0.4% on Sα and 0.6% on Fβ

on DAVSOD. The improvement on FBMS is much larger,

compared with “B-Fc” and “B-Fa” the Fβ is increased by
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(a) Image (b) GT (c) MGA (d) RCRNet (e) SSAV (f) PSCA (g) TENet (h) SSOD (i) GF (j) Ours

Figure 7. Qualitative comparison with state-of-the-art video salient object detection methods.

2% and 2.8%, respectively.

Temporal information enhanced module: We add TIEM

to “B-Fo” to explore the effectiveness of long-term tempo-

ral information. Specifically, we propose two different so-

lutions. Firstly, we only use the temporal model at the high-

est level of the network (Block 4 in Fig. 2), which leads to

“B-Fo-Th”. Secondly, we introduce TIEM to every level of

our network as in Fig. 2, which is “B-Fo-Ta”. Experiments

show that “B-Fo-Ta” works better than “B-Fo-Th”. Espe-

cially on DAVSOD, we observe significant performance im-

provement of “B-Fo-Ta”, which achieves M of 0.108, far

better than “B-Fo-Th” with M of 0.121.

Foreground-background similarity loss: We add the

foreground-background similarity loss to “B-Fo-Ta” to co-

operate with binary cross-entropy loss. The performance is

indicated as “B-Fo-T-L”. Compared with “B-Fo-Ta”, since

the proposed loss can provide extra frame-wise supervision,

we obtain better performance with less training ambiguity.

Boosting strategy: We perform the boosting strategy to

our method in Tab. 2 “Ours”, and achieve “Ours*”. We

observe that this strategy can generally improve model per-

formance, which clearly shows the effectiveness of the pro-

posed boosting strategy. Further, we notice decreased per-

formance of “Ours*” compared with “Ours” on DAVSOD

dataset. We then analyse the generated pseudo labels from

the boosting strategy, and find that there exist some low

quality pseudo labels, which mainly come from the incon-

sistent performance of EGNet [48] on our training dataset.

This inspires us to explore further on boosting strategy. De-

signing a strategy to avoid the accumulated error due to

boosting by taking both labels before and after the boost-

ing strategy into consideration is a potential solution.

5. Zero-shot Video Object Segmentation

Similar to video salient object detection, the zero-shot

video object segmentation aims to segment the primary ob-

ject in a video sequence, which is usually the salient ob-

ject. To evaluate generalization ability of the proposed

method, we test on the validation set of DAVIS, which is

Table 4. Performance of video object segmentation on DAVIS.
Fully Sup. Models Weakly/Un sup. Models

Metric PDB AGNN MATNet MM TSN COSE MuG Ours

[30] [36] [49] [27] [7] [34] [24]

DAVIS
J ↑ 77.2 80.7 82.4 48.9 31.2 52.8 61.2 63.8

F ↑ 74.5 79.1 80.7 39.1 32.2 49.3 56.1 52.4

widely used for zero-shot video object segmentation evalu-

ation. We compare our method with three fully-supervised

methods (PDB [30], AGNN [36], MATNet [49]) and four

weakly/unsupervised methods (MM [27], TSN [7], COSE

[34], MuG [24]) on mean Jaccard index J and mean con-

tour accuracy F . As shown in Table 4, our method out-

performs other weakly/unsupervised video segmentation

methods on J , with slightly decreased F compared with

Mug[24]. Note that Mug [24] is trained with more than 1.5

million frames, which is 100 times larger than our training

dataset. Furthermore, its inference time is 0.6 seconds per

frame, and ours is 0.011 seconds per frame. Both the de-

creased amount of training data and the efficient inference

time indicate that the proposed weakly-supervised strategy

has the potential to be applied to video object segmentation.

6. Conclusion

We propose a novel weakly-supervised VSOD network

trained on the proposed fixation guided scribble datasets,

namely DAVIS-S and DAVSOD-S. We introduce multi-

modality learning and a temporal constraint to effectively

model spatio-temporal information. Furthermore, we pro-

pose a novel similarity loss and fully explore the limited

weakly annotations. A saliency boosting strategy is also in-

troduced to leverage off-the-shelf SOD methods. Extensive

experiments on VSOD and VOS illustrate that our method

is effective and general. Moreover, we are the first to use a

weakly-supervised setting and achieve comparable results,

which we hope may be inspiring for future work.
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