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Abstract

In this paper, we propose a deep compositional met-

ric learning (DCML) framework for effective and gener-

alizable similarity measurement between images. Conven-

tional deep metric learning methods minimize a discrimi-

native loss to enlarge interclass distances while suppress-

ing intraclass variations, which might lead to inferior gen-

eralization performance since samples even from the same

class may present diverse characteristics. This motivates

the adoption of the ensemble technique to learn a number of

sub-embeddings using different and diverse subtasks. How-

ever, most subtasks impose weaker or contradictory con-

straints, which essentially sacrifices the discrimination abil-

ity of each sub-embedding to improve the generalization

ability of their combination. To achieve a better general-

ization ability without compromising, we propose to sepa-

rate the sub-embeddings from direct supervisions from the

subtasks and apply the losses on different composites of the

sub-embeddings. We employ a set of learnable compositors

to combine the sub-embeddings and use a self-reinforced

loss to train the compositors, which serve as relays to dis-

tribute the diverse training signals to avoid destroying the

discrimination ability. Experimental results on the CUB-

200-2011, Cars196, and Stanford Online Products datasets

demonstrate the superior performance of our framework. 1

1. Introduction

Learning a discriminative and generalizable metric to

compute the distances between images is a long-standing

problem in computer vision, which serves as the founda-

tion to a variety of tasks such as face clustering [18, 60, 66],

person re-identification [6, 7, 72] and image retrival [47, 49,

70]. The objective of metric learning is to compress sam-

ples from the same class and maintain a margin between

different classes in the learned metric space [9, 19, 61].

∗Corresponding author
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Figure 1. Motivation of the proposed DCML framework. “De-”

stands for “remove” where embeddings usually discard intra-class

variations such as pose and color for discriminativeness, while ex-

isting ensemble-based deep metric learning methods learn a set of

sub-embeddings by directly performing different subtasks on them

to capture diverse data characteristics including intraclass varia-

tions such as colors and poses. They generally compromise on the

discriminativeness of the metric to improve the generalization abil-

ity. Differently, we only require a set of adaptive composites of the

sub-embeddings to perform well on subtasks and simultaneously

impose a discriminative constraint on the concatenation of the sub-

embeddings. Our framework can improve the generalization of the

learned metric without sacrificing the discriminativeness.

Recently, deep metric learning (DML) methods achieve

outstanding performance by exploiting the powerful rep-

resentation ability of deep convolutional neural networks

(CNNs) [22, 29, 46, 52] to transform an image to the corre-

sponding embedding, where the distance metric is defined

as the Euclidean distance between embeddings.

Losses in deep metric learning are generally highly

discriminative, which encourage small intraclass varia-

tions and large interclass margins in order to make the

learned metric robust to differentiate samples from differ-
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ent classes [10, 11, 55, 61]. However, samples even from

the same class can show different formations and present

different characteristics, so suppressing the intraclass vari-

ations may in turn undermine the ability of the learned

metric to generalize to unseen classes, as verified by a

number of recent works [43, 65]. To alleviate this issue,

some methods turn to the ensemble technique and employ

a number of learners to map each image to several sub-

embeddings [36, 44, 64]. They train the learners with differ-

ent subtasks which might be contradictory to the discrimi-

native objective of metric learning, e.g., clustering samples

from different classes to learn more general concepts or dis-

tinguishing samples from the same class to preserve more

intraclass details. This essentially sacrifices the discrimina-

tion ability of each sub-embedding for better generalization

ability of their combination, which raises a natural ques-

tion: how can we improve the generalization ability without

compromising on the discrimination ability?

In this work, we provide a deep compositional metric

learning (DCML) framework as a positive solution, as illus-

trated in Figure 1. Instead of directly imposing the contra-

dictory constraints of the subtasks on the sub-embeddings,

we relax the constraints and propose to apply the losses on

different composites of them. We adaptively learn a set of

compositors to effectively re-weight all the sub-embeddings

to obtain the corresponding composites. The compositors

are randomly initialized and trained with a self-reinforced

objective to enlarge the diversity as well as try to make

the composites perform well on the downstream subtasks,

which act as relays to re-balanced the training signals to

better instruct the sub-embeddings towards better general-

ization. We simultaneously impose the discriminative con-

straints of conventional metric learning objective on the

concatenation of sub-embeddings to maintain the discrim-

ination ability. The sub-embeddings remain discriminative

while preserving certain generalizable characteristics to en-

able the composites to complete various tasks. The overall

framework of the proposed DCML can be trained efficiently

in an end-to-end manner, and we directly use the concate-

nation of sub-embeddings to measure the similarity during

testing, which requires no additional resources compared to

conventional methods. We perform extensive experiments

on the widely-used CUB-200-2011, Cars196, and Stanford

Online Products datasets which demonstrate that our frame-

work achieves very competitive performance.

2. Related Work

Deep Metric Learning: Deep metric learning aims to

construct an effective embedding space to reflect the seman-

tic distances among images. Various methods focus on the

design of a discriminative loss on the embeddings to enlarge

the interclass Euclidean distance and reduce the intraclass

Euclidean distance [5, 12, 17, 45, 47, 49, 57, 58, 67, 67]. For

example, the commonly used triplet loss [8, 45, 56] imposes

a distance ranking between the positive pair and the nega-

tive pair within a triplet and requires a margin between them

to improve robustness. To mine richer relations among sam-

ples, Sohn et al. [47] generalized the triplet loss and con-

sidered an (N+1)-tuple all together to simultaneously push

away multiple samples. Cakir et al. [5] designed a FastAP

loss to directly optimize the average precision over a list of

samples to punish falsely ranked examples.

With the large number of possible tuples in the training

data, sampling for more effective samples has been proven

to be particularly helpful for deep metric learning meth-

ods [13, 14, 16, 31, 32, 35, 50, 63, 69–71]. For example,

hard negative mining improves the performance and con-

vergence speed of the triplet loss by selecting discrimina-

tive negatives that are considered challenging for the cur-

rent metric [16, 21, 24, 45, 68]. Recently, Xuan et al. [65]

observed that the use of easy positive samples can preserve

the intraclass variations and thus improve the generalization

ability of the triplet loss. However, the use of easy positives

constantly under-challenges the metric resulting in a less

discriminative embedding space.

Ensemble Learning: Ensemble learning combines the

outcomes of several weak learners for the final predic-

tion, which has been proven to be effective in a vari-

ety of machine learning tasks such as supervised learn-

ing [36, 39, 39], reinforcement learning [4, 30, 62], and

unsupervised learning [15, 23, 53]. It is based on the ob-

servation that the combination of a set of weak learners

can often achieve better generalization than the best single

learner [20]. Recent methods incorporate ensemble learning

into deep metric learning to boost the generalization perfor-

mance, which instantiate different learners by partitioning

the last layer [1, 33, 36, 64], using features from different

layers [68], or employing different attention modules [27].

They design different subtasks to train each learner to en-

code different characteristics from the images. For exam-

ple, Opitz et al. [36] re-weighted each sample adaptively

based on previous learners so that hard samples receives

a larger weight. Sanakayeu [44] employed a divide-and-

conquer strategy to first divide the embedding space to sev-

eral clusters and use each cluster to train a single learner.

Ensemble-based deep metric learning methods achieve

superior generalization ability by forcing the sub-

embeddings to preserve different characteristics in order to

complete various subtasks. However, explicitly constrain-

ing the embedding to encode more intraclass features in-

evitably reduces the discrimination ability, leading to a met-

ric susceptible to noise. Differently, our framework simulta-

neously learns a set of compositors in a self-reinforced man-

ner and imposes the auxiliary constraints on the composites

of sub-embeddings which can improve the generalization of

the metric without compromising on the discriminativeness.
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Figure 2. Design of the proposed compositor. We concatenate all

the sub-embeddings as input to the compositor to aggregate global

information. The compositor adaptively produces a weight for

each sub-embedding and then computes the weighted average.

3. Proposed Approach

In this section, we first formulate the problem of deep

metric learning and provide a unified view of existing

ensemble-based deep metric learning methods. Then,

we present the learnable re-weighting method of sub-

embeddings and the self-reinforced training scheme of com-

positors to enlarge diversity. Lastly, we elaborate on the

proposed deep compositional metric learning framework.

3.1. Revisit of Ensemble­based DML

Consider an image set X composed of N training sam-

ples x1,x2, · · · ,xN with their corresponding ground truth

labels L = {l1, l2, · · · , lN}, where li ∈ {1, 2, · · · , n} indi-

cates that xi belongs to the lith class. Deep metric learning

exploits the strong representation ability of convolutional

neural networks to transform each image xi to a corre-

sponding embedding f(xi) = yi, where the learned metric

is defined as the Euclidean distance between embeddings:

D(xi,xj) = ||f(xi)− f(xj)||2 = ||yi − yj ||2, (1)

where || · ||2 denotes the L2 norm.

The objective of deep metric learning generally punishes

large intraclass distances and small interclass distances:

J(y; θ) =
∑

li=lj

p(D(xi,xj))−
∑

li 6=lj

q(D(xi,xj)), (2)

where θ denotes all the parameters in the metric network,

and p, q are two positive monotonically increasing function

which determine the specific loss formulation.

We see the metric objective tends to suppress intraclass

variations and encourage large margins between classes to

make the learned metric more discriminative and robust,

which might simultaneously discard the key features that

enable the metric to generalize well to unseen classes dur-

ing testing. This motivates the ensemble-based deep metric

learning methods to employ K leaners to obtain a set of

sub-embeddings {y1
i = g1(xi),y

2
i = g2(xi), · · · ,y

K
i =

gK(xi)} for an image xi to encode diverse features.

We summarize existing ensemble-based methods as per-

forming various subtasks on different sub-embeddings and

provide a unified view by differentiating them by the design

of learners, the sampling of training data, and the assign-

ment of auxiliary labels. Formally, the overall objective of

ensemble-based methods can be formulated as follows:

J({yk}; θ)=

K∑

k=1

λkJTk
(gk, X̃k, L̃k)+λdiv

K∑

i 6=j=1

Jdiv(gi,gj), (3)

where θ = ∪Kk=1φk with φk denoting the parameters of

the kth learner, JTk
denotes the objective of the kth sub-

task, Jdiv is a loss to encourage diversity among different

sub-embeddings [27, 36, 40], {λk} and λdiv are hyperpa-

rameters to balance the effects of different losses, X̃k is a

re-sampling of the training data, and L̃k is a re-assignment

of the ground truth labels. Note that different learners can

share part of the parameters. After training, they concate-

nate all the sub-embeddings [y1
i

T
,y2
i

T
, · · · ,yKi

T
]T as the

final embedding f(y) for testing.

Most existing methods focus on improving the ensemble

design from one of these aspects. For example, ABE [26]

employs {gk = E(Ak(S))}, where E is a shared fully con-

nected layer, {Ak} is a set of different attention modules,

and S is a shared CNN. D & C [44] uses X̃k = {x|x ∈ Ck}
where Ck denotes the kth cluster obtained by performing

K-means on the concatenated embeddings. DREML [64]

adopts L̃k = {li|li ∼ lr(i)} where r is a random mapping

to {1, 2, · · · , n} to cluster samples from different classes.

3.2. Learning to Compose

We find that all existing ensemble-based methods per-

form subtasks directly on the sub-embeddings, which gen-

erally impose weaker or contradictory constraints compared

to the original objective, leading to a less discriminative

metric. Therefore, they essentially sacrifice the discrimi-

nativeness and robustness for better generalization ability.

It seems that improving the generalization ability of the

embeddings by forcing them to perform well on subtasks

would inevitably reduce the discrimination ability, since the

metric is directly defined over the concatenation of sub-

embeddings. However, we argue that though the subtasks

are needed for preserving diverse properties for better gen-

eralization, the sub-embeddings do not need to explicitly

perform well on them. We deem a set of sub-embeddings

with good generalization if we can extract enough diverse
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Ensemble

Figure 3. An illustration of the proposed DCML framework. We employ a convolutional neural network with a number of learners to

produce an ensemble of sub-embeddings for each image. Instead of directly performing subtasks on the sub-embeddings, we use a set

of compositors to diversely and adaptively re-weight each sub-embeddings to obtain the composites. We then impose the subtask losses

on the composites as well as a discriminative metric loss on the concatenation of the sub-embeddings to train the metric network. The

compositors are trained using a self-reinforced loss to enlarge diversity and the subtask losses to improve the performance of the composites.

The learners and the compositors work together to perform well on various subtasks to learn sub-embeddings with better generalization

ability without compromising on the discrimination ability.

information from them. Motivated by this, we propose to

impose the constraints from subtasks on the combinations

of sub-embeddings and simultaneously apply a discrimina-

tive loss on the sub-embeddings. In other words, the sub-

embeddings can still be discriminative as long as their com-

binations can encode various information.

To achieve this, we propose to employ M compos-

itors {cm} to construct different combinations of sub-

embeddings, where each compositor considers all the sub-

embeddings to produce a weight for each one. We use the

concatenation y of all sub-embeddings as input to the com-

positor and employ a fully connected layer with the softmax

activation function to compute the weighting score tm:

tkm(y) =
exp(wk

m

T
y + bkm)

∑K

k=1 exp(w
k
m
T
y + bkm)

, (4)

where tkm is the kth component of the weighting score tm.

We simultaneously employ another fully connected layer

with tanh as the activation function and adopt a sign func-

tion to produce the sign score sm:

skm(y) = sgn(tanh(ŵk
m
Ty + b̂km)), (5)

where sgn(x) is the sign function which outputs 1 if x > 0
and -1 otherwise, and skm is the kth component of the sign

score sm. For backpropagation, we customize the gradient

of the sign function to directly pass the training signals to

the tanh function similar to the straight-through estimator

(STE) [2]. This is reasonable since tanh is a soft approxi-

mation of the sign function.

We then obtain the weights for each sub-embedding by

multiplying the weighting scores and the sign scores, i.e.,

ckm(y) = tkm(y) · skm(y), where ckm is the kth component

of the compositor cm. The weighting score determines the

contribution of each sub-embedding and the sign score de-

termines the direction of the training signal. We illustrate

the design of the proposed compositor in Figure 2.

We use the compositor to re-weight each individual sub-

embedding to obtain a composite zm:

zm = hm(x) =

K∑

k=1

ckm(y)gk(x), (6)

which is then used to perform one subtask. Note that the

absolute weights for all the sub-embeddings add up to 1, so

the compositors serve as relays to allocate the training sig-

nals from the subtasks for better generalization. The num-

ber of compositors M is not necessarily equal to K, which

introduces more flexibility to the use of different subtasks.

The key to improve the generalization ability for

ensemble-based methods lies in the diversity among the en-

sembles, and existing methods usually employ a diversity

loss to push sub-embeddings of the same sample away from

each other [27, 36, 40]. However, we think increasing the

distances among sub-embeddings alter the training signal

of the sub-tasks and might further reduce the discrimina-

tion ability. So instead of directly manipulating the sub-

embeddings, we propose a self-reinforced training scheme

to guide the compositors towards larger diversity. We ran-

domly initialize each compositor and then progressively re-
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inforce its current selection of sub-embeddings:

Jreinf (cm;ψm) = − log(max
k

({ckm})), (7)

where ψm = {wk
m, b

k
m, ŵ

k
m, b̂

k
m} denotes the learnable pa-

rameters of cm.

Jreinf aims to increase the largest weight produced by

each compositor, which progressively reinforce the current

focus of sub-embeddings. As the compositors are randomly

initialized, they assign the largest weights to different sub-

embeddings at the start. Jreinf then constantly guides them

towards different directions to promote diversity. The self-

reinforced training scheme enables the set of compositors

to constantly enlarge diversity and produce different com-

binations of sub-embeddings without directly affecting the

relations among sub-embeddings.

3.3. Deep Compositional Metric Learning

We present the formulation of the our DCML frame-

work, which is comprised of a set of learners {gk} to obtain

K sub-embeddings and a set of compositors {cm} to pro-

duce M composites for subtasks, as illustrated in Figure 3.

We perform various subtasks on the composites and use

the corresponding subtask losses {JTm
} to train the learners

to encourage them to encoder more diverse features for bet-

ter generalization. We additionally impose JTm
on the com-

positor so that it can better combine the sub-embeddings to

extract meaningful information. To maintain the discrim-

inativeness of the metric, we further apply a discrimina-

tive metric objective Jdis on the concatenation of the sub-

embeddings. The overall objective of the proposed DCML

framework can be formulated as follows:

min
θ,ψ

J(θ, ψ) = min
θ
Jdis(y; θ) + λrmin

ψ

M∑

m=1

Jreinf (cm;ψm)

+min
θ,ψ

M∑

m=1

λmJTm
(zm; θ, ψm), (8)

where λr and {λm} are pre-defined parameters to balance

the contributions of different losses and ψ = ∪Mm=1ψm in-

cludes the parameters of all compositors.

We simultaneously train the learners {gk} and the com-

positors {cm}. Though the compositors take as input the

concatenation of all the sub-embeddings, we only back-

propagate JTm
through gk(x) (the embeddings) but not

ckm(y) (the compositors) to prevent the learners to ma-

nipulate the weights themselves. This forces the learners

{gk} to focus on learning sub-embeddings that capture di-

verse image characteristics, while the compositors aim to

diversely combine the sub-embeddings to perform well on

downstream subtasks. The learners and the compositors

work together to improve the generalization ability of the

metric as well as preserving the discrimination ability.

Our DCML framework is compatible with a variety of

loss formulations and sampling strategies. For example, we

can instantiate Jdis with the margin loss and use the DWS

strategy [63] to select uniform examples for training:

Jdis(y; θ) =
∑

li=lj

[Dij − α]+ −
∑

li 6=lj

I(p(Dij))[β −Dij ]+, (9)

where [·]+ = max(·, 0), Dij = D(xi,xj), α and β are two

pre-defined margins, I(p) is a random variable which has

a probability of p to be 1 and outputs 0 otherwise, p(d) =

min(γ, d2−n[1− 1
4d

2]
3−n
2 ), and γ is a positive constant.

We can apply our framework to various existing

ensemble-based methods by performing the corresponding

subtasks [33, 40, 44, 64] on the composites. For example,

by using the discriminative metric objective on the com-

posites, our method can be viewed as a soft version of the

D & C [44] method which employs non-overlaping samples

to train the learners. Differently, our method can automati-

cally learn diverse data distributions to train different learn-

ers by using the compositors to distribute the gradients from

a training sample, so that each leaner can see all the training

data only with different weights.

Note that we can perform the same task and employ the

same loss on several different composites without render-

ing the same trivial composites. This is because the self-

reinforced training scheme of the compositors encourages

diversity among the composites, which helps further disen-

tangle the features learned from the same task.

Though the constraints from subtasks might still be con-

tradictory to the discriminative objective of metric learning,

we employ a set of compositors to distribute the training sig-

nals and only require the combinations of sub-embeddings

to perform well on the subtasks, which produces a weaker

effect on the discrimination ability of the learned embed-

dings. Compared to existing ensemble-based methods, our

DCML framework can improve the generalization ability of

the metric without compromising on the discriminativeness.

4. Experiments

In this section, we conducted various experiments to

evaluate the image retrieval and clustering performance

of the proposed DCML framework on three widely-used

benchmark datasets: CUB-200-2011 [54], Cars196 [28],

and Stanford Online Products [49]. For fair comparisons

with existing methods, we partitioned each dataset into the

training and test subset with disjoint classes to evaluate the

performance of our framework under a zero-shot setting.

The CUB-200-2011 dataset [54] contains 200 bird species

of 11,788 images. We used the first 100 species of 5,864 im-

ages for training and the rest 100 species of 5,924 images

for testing. The Cars196 dataset [28] contains 196 car mod-

els of 16,185 images. We used the first 98 models of 8,054
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images for training and the rest 98 models of 8,131 images

for testing. The Stanford Online Products dataset [49]

contains 22,634 products of 120,053 images. We used the

first 11,318 products of 59,551 images for training and the

rest 11,316 products of 60,502 images for testing.

4.1. Evaluation Metrics

We evaluated our framework on both image retrieval

and clustering tasks following previous works [47, 58, 70].

For clustering, we computed the normalized mutual infor-

mation (NMI), which is defined as the mutual informa-

tion normalized by the average of the entropies of clusters

and actual classes, i.e., NMI(Ω,C) = 2I(Ω;C)
H(Ω)+H(C) . Ω =

{ω1, · · · , ωK} is the set of clusters and C = {c1, · · · , cK}
indicates the set of ground truth classes, where ωi denotes

the samples with the cluster label i, and cj denotes the sam-

ples with the ground truth label j. For retrieval, we com-

puted the Recall@Ks defined as the percentages of valid

samples, where each sample is deemed valid if at least one

positive sample is retrieved among its K nearest neighbors.

4.2. Implementation Details

We employed the PyTorch [37] framework to conduct all

the experiments. We adopted the ImageNet [42] pretrained

ResNet-50 [22] as the base CNN model and added 4 ran-

domly initialized fully connected layers with the output di-

mension of 128 as the learners. We resized all images to

256 × 256 as inputs to the metric model. During training,

we used 8 compositors and randomly initialized them with

standard normal distribution. For fair comparisons, we in-

stantiated each subtask as a simple discriminative task with

the corresponding metric objective (i.e., JTm
= Jdis), but

more diverse tasks could be used to further improve the per-

formance. We set all the λms to 1.0 and λr to 0.05. We aug-

mented the training images with random resized cropping to

224 × 224 and random horizontal flipping with 50% prob-

ability. We fixed the batch size to 112 and used the Adam

optimizer with learning rates of 10−6 for the base CNN, all

the learners, and all the compositors. We concatenated the

four 128-dimension sub-embeddings for testing.

4.3. Results and Analysis

Diversity of the Compositors: The diversity of the

learners is a crucial factor for the generalization perfor-

mance of ensemble-based methods, as verified by a number

of works [3, 27, 36, 64]. The proposed DCML framework

achieves diversity by the self-reinforced training of the com-

positors which adaptively and diversely distribute the train-

ing signals from various subtasks. To study the diversity of

the compositors, we conducted an experiment on the CUB-

200-2011 dataset and analyzed the absolute weights of each

compositor for the learners averaged by all the samples in

the training dataset, as shown in Figure 4.

Figure 4. Weight analysis of compositors on CUB-200-2011.

Figure 5. Analysis of different numbers of learners and composi-

tors on CUB-200-2011.

Table 1. Results with different model settings on CUB-200-2011.

Method R@1 R@2 R@4 R@8 NMI

DCML (w/o compositors) 66.2 76.9 85.8 91.3 70.1

DCML (w/o Jreinf ) 67.2 77.1 85.6 91.6 71.2

DCML (w/o ĴT ) 67.4 77.2 85.6 91.5 71.4

DCML (w/o Jdis) 68.2 77.8 86.0 91.4 71.7

DCML-MDW 68.4 77.9 86.1 91.7 71.8

Table 2. Results using different compositors on CUB-200-2011.

Method R@1 R@2 R@4 R@8 NMI

Direcly using an FC layer 64.8 75.7 84.9 90.9 68.9

Exp → ReLU 67.1 77.4 86.0 91.6 71.1

W/o tanh 67.9 77.8 86.2 91.8 71.7

DCML-MDW 68.4 77.9 86.1 91.7 71.8

We observe that different compositors learn to concen-

trate on diverse learners and each learner is at least densely

selected by one compositor. We also observe that each com-

positor mainly focuses on one learner but produces different

weights for other learners, which is consistent with the self-

reinforced training scheme of the compositors. Note that

the weights are averaged by all the training samples, and

each compositor can emphasize different learners for differ-

ent samples. We further computed the average normalized

distance between each of the sub-embeddings as 0.823 and

0.534 with and without Jreinf , respectively, which verifies

the diversity of the ensemble.

Effect of the Numbers of Learners and Compositors:

We conducted experiments on the CUB-200-2011 dataset

to analyze the effect of different numbers of learners and

compositors in our DCML framework with the margin loss.
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Table 3. Experimental results (%) on the CUB-200-2011 dataset

compared with state-of-the-art methods.

Methods Size R@1 R@2 R@4 R@8 NMI

Lifted [47] 64 43.6 56.6 68.6 79.6 56.5

Clustering [48] 64 48.2 61.4 71.8 81.9 59.2

N-Pair [47] 512 50.1 63.3 74.3 83.2 60.4

DVML [31] 512 52.7 65.1 75.5 84.3 61.4

Angular [57] 512 53.6 65.0 75.3 83.7 61.0

HDML [70] 512 53.7 65.7 76.7 85.7 62.6

HTL [16] 512 57.1 68.8 78.7 86.5 -

RLL-H [59] 512 57.4 69.7 79.2 86.9 63.6

HTG [69] 512 59.5 71.8 81.3 88.2 -

Margin [63] 128 63.6 74.4 83.1 90.0 69.0

SoftTriple [38] 512 65.4 76.4 84.5 90.4 69.3

Multi-Sim [58] 512 65.7 77.0 86.3 91.2 -

MIC [40] 128 66.1 76.8 85.6 - 69.7

DR [34] 512 66.1 77.0 85.1 91.1 -

CircleLoss [51] 512 66.7 77.4 86.2 91.2 -

RankMI [25] 128 66.7 77.2 85.1 91.0 71.3

PADS [41] 128 67.3 78.0 85.9 - 69.9

Ensemble-based methods:

HDC [68] 384 53.6 65.7 77.0 85.6 -

A-BIER [36] 512 57.5 68.7 78.3 86.2 -

ABE-8 [27] 512 60.6 71.5 79.8 87.4 -

Ranked [59] 1536 61.3 72.7 82.7 89.4 66.1

DREML [64] 9216 63.9 75.0 83.1 89.7 67.8

D & C [44] 128 65.9 76.6 84.4 90.6 69.6

Triplet-R [56] 512 59.5 71.8 81.8 88.7 65.6

DCML-TR 512 62.0 73.9 82.9 89.9 66.8

Triplet-SH [45] 512 62.1 74.0 83.5 89.9 67.1

DCML-TSH 512 64.8 75.8 84.2 90.3 67.9

ProxyNCA [35] 512 64.2 75.5 83.9 89.8 67.9

DCML-PN 512 65.2 76.4 84.8 90.7 68.8

Margin-DW [63] 512 66.2 77.2 86.0 91.3 69.7

DCML-MDW 512 68.4 77.9 86.1 91.7 71.8

We first fix the number of compositors M to 4 and used

2, 4, 6, 8, 10 learners to instantiate the metric. The green and

blue lines in Figure 5 show the experimental results in the

retrieval and clustering tasks, respectively. We see that us-

ing more learners do not necessarily produce better results,

and using 4 learners achieve similar performance with using

8 learners. This is because the 4 compositors cannot fully

instruct the training of all the learners when K > 4, since

each compositor usually focuses on one learner.

Similarly, we fix the number of learners K to 4 with var-

ious numbers M = 1, 2, 4, 8, 10 of compositors and eval-

uated the retrieval and clustering performance, as shown

by the red and yellow lines in Figure 5, respectively. We

observe that the performance generally improves as more

compositors are deployed. This demonstrates the effective-

ness of the proposed compositor which can exploit more

information for training by adaptively combining the sub-

embeddings to construct diverse composites. Note that the

proposed framework can achieve better performance with

more compositors even when M > 4. This further shows

the use of compositors is not trivial and essentially different

from directly performing subtasks on the sub-embeddings.

Table 4. Experimental results (%) on the Cars196 dataset com-

pared with state-of-the-art methods.

Methods Size R@1 R@2 R@4 R@8 NMI

Lifted [47] 64 53.0 65.7 76.0 84.3 56.9

Clustering [48] 64 58.1 70.6 80.3 87.8 59.0

N-Pair [47] 512 71.1 79.7 86.5 91.6 64.0

Angular [57] 512 71.3 80.7 87.0 91.8 62.4

RLL-H [59] 512 74.0 83.6 90.1 94.1 65.4

HTG [69] 512 76.5 84.7 90.4 94.0 -

HDML [70] 512 79.1 87.1 92.1 95.5 69.7

Margin [63] 128 79.6 86.5 91.9 95.1 69.1

HTL [16] 512 81.4 88.0 92.7 95.7 -

DVML [31] 512 82.0 88.4 93.3 96.3 67.6

MIC [40] 128 82.6 89.1 93.2 - 68.4

RankMI [25] 128 83.3 89.8 93.8 96.5 69.4

CircleLoss [51] 512 83.4 89.8 94.1 96.5 -

PADS [41] 128 83.5 89.7 93.8 - 68.8

Multi-Sim [58] 512 84.1 90.4 94.0 96.5 -

SoftTriple [38] 512 84.5 90.7 94.5 96.9 70.1

DR [34] 512 85.0 90.5 94.1 96.4 -

Ensemble-based methods:

HDC [68] 384 73.7 83.2 89.5 93.8 -

A-BIER [36] 512 82.0 89.0 93.2 96.1 -

Ranked [59] 1536 82.1 89.3 93.7 96.7 71.8

D & C [44] 128 84.6 90.7 94.1 96.5 70.3

ABE-8 [27] 512 85.2 90.5 94.0 96.1 -

DREML [64] 9216 86.0 91.7 95.0 97.2 76.4

Triplet-R [56] 512 76.1 85.2 91.2 95.4 67.1

DCML-TR 512 79.2 87.9 93.1 96.3 68.5

Triplet-SH [45] 512 80.4 88.6 93.8 96.9 70.8

DCML-TSH 512 82.5 90.6 95.1 97.6 72.2

ProxyNCA [35] 512 79.8 88.7 93.8 97.1 69.3

DCML-PN 512 81.2 89.8 94.6 97.2 70.9

Margin-DW [63] 512 82.9 89.6 94.7 97.3 71.0

DCML-MDW 512 85.2 91.8 96.0 98.0 73.9

Ablation Studies: We conducted an ablation study on

the major components of our DCML framework as showed

in Table 1, where DCML (w/o compositors) means we di-

rectly perform sub-tasks on the sub-embeddings without the

compositors, and DCML (w/o ĴT ) means we do not employ

JT to train the compositor. Experimental results verify the

effectiveness of each component of our framework.

The objective of the compositors is to distribute the train-

ing signals from different sub-tasks and two important com-

ponents are the magnitudes and signs of the signals, which

we use the softmax module and the tanh module to pro-

duce, respectively. We also conducted an ablation study of

the design of the compositor as shown in Table 2. Still, we

acknowledge that other choices are possible as long as they

can produce normalized weights and signs.

Comparisons with State-of-the-art Methods: We

compared the proposed DCML framework with state-of-

the-art deep metric learning methods including ensemble-

based methods on both image retrieval and clustering tasks.

We instantiated our framework with various loss formula-

tions and sampling strategies, including the triplet loss with

random sampling (Triplet-R), the triplet loss with semi-hard
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Table 5. Experimental results (%) on the Stanford Online Products

dataset compared with state-of-the-art methods.

Methods Size R@1 R@10 R@100 NMI

Lifted [47] 64 62.5 80.8 91.9 88.7

Clustering [48] 64 67.0 83.7 93.2 89.5

N-Pair [47] 512 67.7 83.8 93.0 88.1

Angular [57] 512 67.9 83.2 92.2 87.8

HDML [70] 512 68.7 83.2 92.4 89.3

DVML [31] 512 70.2 85.2 93.8 90.8

Margin [63] 128 72.7 86.2 93.8 90.7

RankMI [25] 128 74.3 87.9 94.9 90.5

HTL [16] 512 74.8 88.3 94.8 -

RLL-H [59] 512 76.1 89.1 95.4 89.7

FastAP [5] 512 76.4 89.1 95.4 -

PADS [41] 128 76.5 89.0 95.4 89.9

MIC [40] 128 77.2 89.4 95.6 90.0

Multi-Sim [58] 512 78.2 90.5 96.0 -

SoftTriple [38] 512 78.3 90.3 95.9 92.0

CircleLoss [51] 512 78.3 90.5 96.1 -

Ensemble-based methods:

HDC [68] 384 70.1 84.9 93.2 -

A-BIER [36] 512 74.2 86.9 94.0 -

D & C [44] 128 75.9 88.4 94.9 90.2

ABE-8 [27] 512 76.3 88.4 94.8 -

Ranked [59] 1536 79.8 91.3 96.3 90.4

Triplet-R [56] 512 70.3 84.2 92.7 88.5

DCML-TR 512 71.9 85.4 92.8 89.4

Triplet-SH [45] 512 75.1 87.7 94.3 89.3

DCML-TSH 512 76.0 88.5 94.5 90.1

Margin-DW [63] 512 78.4 90.2 95.4 90.3

DCML-MDW 512 79.8 90.8 95.8 90.8

sampling (Triplet-SH), the ProxyNCA loss, and the mar-

gin loss with distance-weighted sampling (Margin-DW).

Tables 3, 4, and 5 shows the experimental results on the

widely used CUB-200-2011, Cars196, and Stanford Online

Products datasets, respectively. We indicate the best results

using red colors and the second best results using blue col-

ors. We use bold numbers to highlight the improvement of

our framework over the original method.

We observe a constant performance boost to different

losses and sampling strategies with the proposed DCML

framework. In particular, our framework combined with

the margin loss with distance-weighted sampling achieves

the best or second best results for both tasks on on all the

datasets. Note that some ensemble-based methods obtain

the best results by using a larger embedding size, but our

method can still achieve comparable or even better perfor-

mance with a relatively constrained embedding size. This is

because the use of various compositors enables the embed-

dings to encode more diverse characteristics which can take

better advantage of the embedding capacity.

Qualitative Results: We qualitatively demonstrate sev-

eral retrieved examples from the CUB-200-2011, Cars196,

and Stanford Online Products datasets in Figure 6. We see

that our method can successfully retrieve positive samples

despite various poses, backgrounds, colors, and viewpoints.

Query

(a)

Top-5 Retrieved Samples

(b)

(c)

Figure 6. Qualitative retrieval results of the proposed DCML-

MDW method on (a) CUB-200-2011, (b) Cars196, and (c) Stan-

ford Online Products datasets. The green and red color at the bor-

der denotes a successful and failed retrieved sample, respectively.

5. Conclusion

In this paper, we have presented a deep compositional

metric learning (DCML) framework to improve the gener-

alization of the metric without compromising on the dis-

criminativeness. We use an ensemble of sub-embeddings to

represent an image and employ a set of compositors to di-

versely and adaptively combine the sub-embeddings to ob-

tain composites, on which we impose auxiliary constraints

to preserve more generalizable characteristics. We have per-

formed experiments on three widely used datasets to ana-

lyze the effectiveness of our framework, which have demon-

strated a constant performance boost to various losses and

sampling strategies. It is interesting to employ the proposed

compositional scheme in other directions such as deep hash-

ing and self-supervised learning as future works.
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