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Abstract

Deep implicit functions (DIFs), as a kind of 3D shape

representation, are becoming more and more popular in the

3D vision community due to their compactness and strong

representation power. However, unlike polygon mesh-based

templates, it remains a challenge to reason dense corre-

spondences or other semantic relationships across shapes

represented by DIFs, which limits its applications in texture

transfer, shape analysis and so on. To overcome this limi-

tation and also make DIFs more interpretable, we propose

Deep Implicit Templates, a new 3D shape representation

that supports explicit correspondence reasoning in deep im-

plicit representations. Our key idea is to formulate DIFs

as conditional deformations of a template implicit function.

To this end, we propose Spatial Warping LSTM, which de-

composes the conditional spatial transformation into mul-

tiple point-wise transformations and guarantees general-

ization capability. Moreover, the training loss is carefully

designed in order to achieve high reconstruction accuracy

while learning a plausible template with accurate corre-

spondences in an unsupervised manner. Experiments show

that our method can not only learn a common implicit tem-

plate for a collection of shapes, but also establish dense

correspondences across all the shapes simultaneously with-

out any supervision.

1. Introduction

Representing 3D objects effectively and efficiently in

neural networks is fundamental for many tasks in computer

vision, including 3D model reconstruction, matching, ma-

nipulation and understanding. In the pioneering studies, re-

searchers have adopted various traditional geometry repre-

sentations, including voxel grids [53, 55, 52, 54, 23, 46],

point clouds [62, 1, 58, 33] and meshes [63, 2, 50, 51, 22,

14, 5]. In the past several years, deep implicit functions

(DIFs) have been proposed as an alternative [40, 38, 11, 18,

20, 56, 26, 9, 24, 47, 15]. Compared to traditional represen-

tations, DIFs show expressive and flexible capacity for rep-

resenting complex shapes and fine geometric details, even

in challenging tasks like human digitization [43].

Unfortunately, the implicit nature of DIFs is also its

Achilles’ Heels: although DIFs are good at approximating

individual shapes, they provide no information about the re-

lationship between two different ones. One can easily estab-

lish vertice-to-vertice correspondences between two shapes

when using mesh templates [21, 50, 14], but that is difficult

in DIFs. The lack of semantic relationship in DIFs poses

significant challenges for using DIFs in downstream appli-

cations such as shape understanding and editing.

To overcome this limitation, we propose Deep Implicit

Templates, a new way to interpret and implement DIFs. The

key idea is to decompose a conditional deep implicit func-

tion into two components: a template implicit function and

a conditional spatial warping function. The template im-

plicit function represents the “mean shape” for a category of

objects, while the spatial warping function deforms the tem-

plate implicit function to form specific object instances. On

one hand, as both the template and the warping field are de-

fined in an implicit manner, the advantages of deep implicit

representations (compactness and efficiency) are preserved.

On the other hand, with the template implicit function as

an intermediate shape, the warping function automatically

establishes dense correspondences across different object.

More recently, some techniques use a set of primitives

to represent 3D shapes in order to capture structure-level

semantics [19, 18, 22, 14]. The primitives can be either

manually defined [19, 22] or learned from data [18, 14].

We emphasize that our method is essentially different from

them in two ways. First, our method decomposes the im-

plicit representations into a template implicit function and

a continuous warping field. Compared to element-based

methods, our decomposition not only provides a complete,

global template for the training data, enabling many appli-

cations such as uv mapping and keypiont labeling, but also

makes the latent shape space more interpretable as we can

inspect how shapes deform. Second, our method directly

builds up accurate correspondences in the whole 3D space,

while element-based methods rely on interpolation or fea-

ture matching to compute dense correspondences. Overall,

our method provides more flexibility and scalability to con-

trol the template and/or its deformation: one can, for exam-

ple, replace the template in our framework with a custom

designed one without losing the representation power, or
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Figure 1: Example results of our representation. Our approach is able to factor out a plausible template (middle) from a set of shapes

(surroundings), and builds up dense correspondences (color-coded) across all the shapes automatically without any supervision.

apply additional semantic constraints on the spatial defor-

mation for specific problems such as dynamic human mod-

eling (Sec.6).

Training deep implicit templates is not straight-forward,

because we have no access to either the ground-truth map-

ping between the templates and shape instances, or dense

correspondence annotations across different shapes. Our

ultimate goal is to make deep implicit templates an effec-

tive representation that can: 1) represent training shapes

accurately, 2) establish plausible correspondences across

shapes and 3) generalize to unseen data. However, with-

out proper design and regularization, the network may not

be able to learn such a representation in an unsupervised

manner. We make several technical contributions to address

these challenges. In terms of network architecture, we pro-

pose Spatial Warping LSTM, which decomposes the con-

ditional spatial warping into multi-step point-wose trans-

formation, guaranteeing the generalization capacity and the

representation power of our warping function. In addition,

we introduce a progressive reconstruction loss for our Spa-

tial Warping LSTM, which further improves the reconstruc-

tion accuracy. Two-level regularization is also proposed to

obtain plausible templates with accurate correspondences

in an unsupervised manner. As shown in the experiments,

our method can learn a plausible implicit template for a set

of shapes, with conditional warping fields that accurately

represent shapes while establishing dense correspondences

among them without any supervision (See Fig.1). Overall,

the proposed Deep Implicit Templates significantly expands

the capability of DIFs without losing its advantages, mak-

ing it a more effective implicit representation for 3D learn-

ing tasks. Code is available at https://github.com/

ZhengZerong/DeepImplicitTemplates.

2. Related Work

Deep Implicit Functions (DIFs). Implicit functions repre-

sent shapes by constructing a continuous volumetric field

and embedding shapes as its iso-surface [7, 45, 49]. In

recent years, implicit functions have been introduced into

neural networks [40, 38, 11, 20, 56, 43, 26, 9, 24, 47, 15]

and show promising results. For example, DeepSDF [40]

proposed to learn an implicit function where the network

output represents the signed distance of the point to its near-

est surface. Other approaches defined the implicit functions

as 3D occupancy probability and turned shape representa-

tion into a point classification problem [38, 11, 56]. Some

latest studies proposed to blend multiple local implicit func-

tions in order to generalize to more complex scenes as well

as to capture more geometric details [26, 9, 47]. The train-

ing loss used in DeepSDF is also improved for more accu-

rate reconstruction [15]. DualSDF [24] extended DeepSDF

by introducing a coarse layer to support shape manipulation.

Occupancy Flow [39], from another aspect, extended 3D

occupancy functions into 4D domains, but this method is

restricted to represent temporally continuous 4D sequences.

Overall, implicit functions are promising for representing

complex shapes and detailed surfaces, but it remains dif-

ficult to reason dense correspondences between different

shapes represented by DIFs. In contrast, our method and

other concurrent works [35, 13] overcomes this limitation

and expands the capability of DIFs by introducing dense

correspondences across shapes into DIFs.

Elementary Structures. Elementary representations,

which aim to describe complex shapes uing a collection of

simple shape elements, have been extensively studied for

many years in computer vision and graphics [27, 34, 44,

25]. In this direction, previous methods usually require

complicated non-convex optimization for primitive fitting.

In order to improve the efficiency and effectiveness, var-

ious deep learning techniques were adopted, such as re-

current networks [64], differential model estimation [32]

and unsupervised training losses [48]. Some recent ap-

proaches introduced more complex shape elements, such

as multiple charts [5], part segmentations [31, 16, 41],

axis-aligned 3D Gaussians [19], local deep implicit func-

tions [18], superquadrics [42], convex decomposition [12],

box-homeomorphic parts [17] or learnable shape primi-

tives [14, 29, 48, 61]. Although elementary representation

is compact, it is challenging to produce consistent fitting

across different shapes. In addition, local elements cannot
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be used in many tasks (e.g., shape completion) due to the

lack of global knowledge.

Template Learning. Fitting global shape templates instead

of local primitives has also attracted a lot of research ef-

forts, as mesh-based templates are able to efficiently rep-

resent similar shapes such as articulated human bodies

[36, 4, 3, 65]. They are very popular in many data-driven

3D reconstruction studies. For example, articulated human

body templates, such as SMPL [36], are now widely used

in a lot of human modeling studies [28, 30, 63, 2]. Ellip-

soid meshes as a much simpler template can also be de-

formed to represent various objects [50, 51]. Given a prede-

fined template, some recent techniques like 3D-Coded [21]

learned to perform shape matching in unsupervised manner.

Although using mesh-based templates is convenient, mesh-

based templates are unable to deal with topological changes

and require dense vertices to recover surface details [50].

Moreover, when representing shapes that are highly differ-

ent from the template, mesh-based templates suffer from de-

formation artifacts (e.g., triangle intersection, extreme dis-

tortion, etc.) due to large number of degrees of freedom

for mesh vertex coordinates. In contrast, the template in

our method is defined in an implicit manner, thus possess-

ing more powerful representation capacity than mesh-based

templates. To the best of our knowledge, our work is the

first one to learn implicit function-based templates for a col-

lection of shapes.

3. Overview

Our Deep Implicit Template representation is designed

on the basis of DeepSDF [40], which is a popular DIF-based

3D shape representation. In this section, we first review

DeepSDF for clarity and then describe the overall frame-

work of our approach.

3.1. Review of DeepSDF

The DeepSDF representation defines a surface as the

level set of a signed distance field (SDF) F , e.g. F(p) = 0,

where p ∈ R
3 denotes a 3D point and F : R3 7→ R is

a function approximated using a deep neural network. In

practice, in order to represent multiple object instances us-

ing one neural network, the function F also takes a condi-

tion variable c as input and thus can be written as:

F(p, c) = s : p ∈ R
3, c ∈ X , s ∈ R (1)

where c ∈ X is the condition variable that encodes the

shape of a specific object and can be custom designed in

accordance of applications [11, 40, 38, 43]. With this SDF

represented by F , the object surface can be extracted us-

ing Marching Cube [37]. In DeepSDF [40], the condition

variable c is a high-dimensional latent code and each shape

instance has a unique code. All latent codes are firstly ini-

tialized with Gaussian noise and then optimized in parallel

with network training.

3.2. Deep Implicit Templates

In DeepSDF, the shape variance is directly represented

by the changes of SDFs themselves. Different from this

formulation, we think that, given a category of shapes rep-

resented by SDFs, their shape variance can be reflected by

the differences of these SDFs relative to a template SDF that

captures their common structure. This key idea leads to our

formulation of Deep Implicit Templates, which decomposes

the conditional signed distance function F into F = T ◦W ,

i.e.,

F(p, c) = T (W(p, c)) (2)

where W : R3 × X 7→ R
3 maps the coordinate of p to a

new 3D coordinate, while T : R3 7→ R outputs the signed

distance value at this new 3D coordinate.

Intuitively, W is a conditional spatial warping function

that warps the input points according to the latent code c,

while the function T itself is an implicit function represent-

ing a common SDF which is irrelevant to c. Therefore, for a

set of objects, the shape represented by T (·) can be regarded

as their common template SDF; in the following context we

call it an implicit template. To query the signed distance

at p for a specific object defined by c, the spatial warp-

ing function W first transforms p to its canonical position

in the implicit template, followed by T querying its signed

distance. In other words, the implicit template is warped

according to the latent codes to model different SDFs. 1

Compared to the original formulation in Eqn.(1), the

main advantage of the decomposition in Eqn.(2) is that

it naturally induces correspondences between the implicit

template and object instances, and accordingly, correspon-

dences across different object instances. As shown in Sec.6,

this feature offers more possibility for applying deep im-

plicit functions in many applications.

However, implementing and training the decomposed

network is not straight-forward. Specifically, without

proper design and regularization, the network tends to over-

fit to a complicated transformer with an over-simplified im-

plicit template, which further result in inaccurate correspon-

dences. Our goal is to learn an optimal template that can

represent the common structure for a set of objects, to-

gether with a spatial transformer that establishes accurate

dense correspondences between the template and the object

instances. Moreover, the learned Deep Implicit Templates

should also preserve the representation power and the gen-

eralization capacity of DeepSDF, and thus support mesh in-

terpolation and shape completion. In Sec.4 we will discuss

how we achieve these goals.

1In the strict sense of the term, a warping of an SDF is not an SDF in

general. However, we adopt two constraints to make sure that the warped

SDF can still approximate the target SDF: (1) we use truncated SDF that

only varies in a small band near the surface, and (2) we normalize all the

meshes into the same scale. Therefore, we loosely use the term "SDF" in

this paper and regard a warping of an SDF as another SDF.
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Figure 2: Method overview. Our method decomposes the DIF representation into a warping function and an implicit template. The warping

function transforms point samples of shape c to their canonical positions, which are then mapped to SDF values by the implicit template.

4. Methodology

4.1. Network Architecture

Similar to DeepSDF [40], we implement our implicit

template, T in Eqn.(2), using a fully-connected network.

For the spatial warping function W , we empirically found

that an MLP implementation leads to unsatisfactory results

(Sec.5.4). To deal with this challenge, we introduce a Spa-

tial Warping LSTM, which decomposes the spatial transfor-

mation for a point p into multi-step point-wise transforma-

tions:

(α(i),β(i),φ(i),ψ(i)) =

LSTMCell(c,p(i−1),φ(i−1),ψ(i−1)),
(3)

where φ and ψ are the output and cell states, α and β

are the transformation parameters, and the superscript (i)
means the results of the i-th step. The position of p is up-

dated as:

p(i) = p(i−1) + (α(i) ⊙ p(i−1) + β(i)). (4)

where ⊙ means element-wise product and p(i) = p. We

iterate this process in Eqn.(3-4) for S steps (in all experi-

ments we set S = 8), and the point coordinate at the final

step yields the output of the warping function W:

W(p, c) = p(S) (5)

This multi-step formulation takes inspiration from the it-

erative error feedback (IEF) loop [8], where progressive

changes are made recurrently to the current estimate. The

difference is that our LSTM implementation allows us to ag-

gregate information from multiple previous steps while IEF

makes independent estimations in each step. The network

architecture is illustrated in Fig.2.

4.2. Network Training

The training loss for our network is composed of two

components, a reconstruction loss and a regularization loss:

L = Lrec + Lreg (6)

Below we will discuss them in details.

s 1 2 3 4 5 6 7 8

ǫs - 0.025 - 0.01 - 0.0025 - 0

λs - 0 - 0.1 - 0.2 - 0.5

Table 1: Parameter settings of the progressive reconstruction loss

for different warping steps. For efficiency, we only construct loss

every other steps.

4.2.1 Progressive Reconstruction Loss

As we decompose the spatial warping field into multiple

steps of point-wise transformation using our Spatial Warp-

ing LSTM, we expect that the network learns a progres-

sive warping function, which starts from obtaining smooth

shape approximations and then gradually strives for more

local details. To this end, we take inspiration from the shape

curriculum in [15] and impose a progressive reconstruction

loss upon the outputs of our network for different numbers

of warping steps, aiming that the network recovers more

geometric details when taking more transformation steps.

Mathematically, the loss term for the outputs with s warp-

ing steps is defined as:

L(s)
rec =

K
∑

k=1

N
∑

i=1

Lǫs,λs

(

T
(

p(s)
)

, vk,i

)

(7)

where p(s) is defined as in Eqn.4, vk,i the ground-truth SDF

value of pi for the k-th shape, N the number of SDF sam-

ples for one shape and K the number of shapes. Lǫ,λ(·, ·)
is a curriculum training loss with ǫ and λ controlling its

smoothness level and hard example weights; please refer

to [15] for detail definition. In Tab.1 we present the param-

eter settings for different warping steps. Our progressive

reconstruction loss is the sum of all levels of L
(s)
rec:

Lrec =
∑

s∈{2,4,6,8}

L(s)
rec (8)

4.2.2 Regularization Loss

Ideally, the spatial warping function is supposed to establish

plausible correspondences between the template and the ob-
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Figure 3: Demonstration of our representation. We manually select several points on the learned templates (middle) and track their traces

when the templates deforms to form different shapes (leftmost and rightmost). Note that the deformation is defined and performed in an

implicit manner; here we visualize the intermediate results by interpolating the warping fields. The selected points and their movements

are rendered as small colored balls.

ject instances, while the implicit field template should cap-

ture the common structure for a set of objects. To achieve

this goal, we introduce two regularization terms on point-

wise and point-pair levels for the warping function.

Point-wise regularization. We assume that all meshes

are normalized to a unit sphere and aligned in a canonical

pose. Therefore, we introduce a point-wise regularization

loss that is used to constrain the position shifting of points

after warping. It is defined as:

Lpw =
K
∑

k=1

N
∑

i=1

h (‖W(pi, ck)− pi‖2) , (9)

where h(·) is the Huber kernel with its hyper-parameter δh.

Point pair regularization. Although spatial distortion

is inevitable during template deformation, extreme distor-

tions should be avoided. To this end, we introduce a novel

regularization loss for the point pairs in each shape:

Lpp =

K
∑

k=1

∑

i 6=j

max

(

‖∆pi −∆pj‖2
‖pi − pj‖2

− ǫ, 0

)

, (10)

where ∆p = W(p, c)− p is the position shift of p and ǫ is

a parameter controlling the distortion tolerance. Intuitively,

if ǫ = 0, Lpp is reduced to a strict smoothness constraint en-

forcing translation consistency on neighboring points. We

set ǫ = 0.5 in our experiments to construct a relaxed for-

mulation of smoothness loss, which is found important to

prevent shape structures from collapsing (Sec.5.4).

Our final regularization loss is defined as:

Lreg = λpwLpw + λppLpp +
1

σ2

K
∑

k=1

‖ck‖
2
2, (11)

where the last term is the same magnitude constraint on the

latent codes as in DeepSDF [40].

5. Experiments

5.1. Experimental Setup

We train Deep Implicit Templates on ShapeNet dataset

[10], following [40] for data pre-processing. In Sec.5.2, we

first show that our model is capable of representing shapes

in high quality with dense correspondences. For compari-

son in Sec.5.3, we select several strong baselines that use

different types of representations: DeepSDF (deep implicit

functions) [40], SIF (structured implicit functions) [19] ,

AtlasNet (mesh parameterization) [22], PointFlow (point

clouds) [57] and DualSDF (two-level implicit functions)

[24]. We mainly evaluate them and our method in terms of

reconstruction, correspondence and interpolation. Finally

we evaluate our technical contributions in Sec.5.4. More

results, experiments and details are presented in the supple-

mental materials.

5.2. Results

We demonstrate some results of our approach in Fig.1,

Fig.3 and Fig.4. In Fig.1, we present the learned template

shapes as well as the dense correspondences between the

templates and object instances. The results show that our

method can learn to abstract a template that captures the

common structure for a collection of shapes, and also estab-

lish plausible dense correspondences that indicates the se-

mantic relationship across different shapes. The results also

show that our representations can deal with large deforma-

tions and describe objects with completely different struc-

tures. In Fig.3, we provide a more clear landscape on how

the templates deforms to describe different objects. Fig.4
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Figure 4: More demonstration of our representation. For objects that show very high structure varieties, like chairs and tables, we can train

individual deep implicit templates for different subclass. The learned templates are rendered in gray background and correspondences are

shown with the same color.

CD Mean CD Median EMD Mean

Model \ Shape Class Airplanes(K) Airplanes Sofas Cars Chairs Airplanes Sofas Chairs Airplanes Sofas Chairs

AtlasNet-Sph [22]∗ - 0.19 0.45 - 0.75 0.079 0.33 0.51 0.038 0.050 0.071

AtlasNet-25 [22]∗ - 0.22 0.41 - 0.37 0.065 0.31 0.28 0.041 0.063 0.064

SIF [19]∗ - 0.44 0.80 1.08 1.54 - - - - - -

DeepSDF [40]† 0.05 0.14 0.12 0.11 0.24 0.061 0.08 0.10 0.035 0.051 0.055

C-DeepSDF [15]† 0.03 0.07 0.11 0.06 0.16 0.033 0.07 0.06 0.026 0.044 0.048

DualSDF [24]† 0.19 0.22 - - 0.45 0.14 - 0.21 0.041 - 0.055

Ours (w/o Prog. Loss)† 0.042 0.104 0.117 0.093 0.23 0.040 0.075 0.113 0.031 0.047 0.055

Ours† 0.025 0.053 0.093 0.052 0.20 0.027 0.061 0.071 0.029 0.046 0.049

Table 2: Reconstruction accuracy of different representations on known (K) shapes and unknown shapes for various object categories.

Lower is better. (Mean and median Chamfer distance multiplied by 10
3). We highlights methods based on auto-decoders (†) from methods

that use an encoder-decoder network architectures (∗).

further presents the representation power of our method

as well as the accurate correspondences established by our

method.

5.3. Comparison

Reconstruction. We report the reconstruction results for

known and unknown shapes (i.e., shapes belonging to the

train and test sets) in Tab.2. We use two metrics for accuracy

measurement, i.e., Chamfer Distance (CD) and Earth Mover

Distance (EMD). As the numeric results show, our method

is able to achieve comparable reconstruction performance

when compared to state-of-the-art methods. Furthermore,

we observe that our method is able to produce slightly better

results for object classes that have a strong template prior

(e.g., cars, airplanes and sofas), but degenerates for objects

that vary enormously in shape structures (e.g., chairs).

Interpolation. Similar to DeepSDF, our learned shape em-

bedding is continuous and supports shape interpolation in

the latent space (Fig.5). Note that unlike DeepSDF that di-

rectly interpolates signed distance fields, our representation

actually interpolates the spatial warping fields because the

Figure 5: Shape interpolation results of DeepSDF and our method.

Given the latent code of different meshes (leftmost and rightmost),

we interpolate the latent codes linearly and generate the corre-

sponding meshes (2nd - 4th colume). Models are rendered using

their surface normals.

template is independent from the latent code. The results

in Fig.5 (bottom row) show that the generative capability of

DeepSDF is well preserved in our representation.

Correspondences. With the dense correspondence pro-

vided by our method, one can perform keypoint detection

on point clouds by transferring the keypoint labels in train-

ing shapes to test ones. Therefore, we use this as a surrogate

to evaluate the accuracy of correspondences, as there is no

large-scale dense correspondence annotation available. We
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Figure 6: Keypoint detection results by our method. Note that

although our network is not trained for keypoint detection, it can

still output accurate detection.

Model \ Shape Class Planes Cars

SIF [19] 0.267 / 0.446 0.262 / 0.402

PointFlow [57] 0.286 / 0.573 0.083 / 0.326

AltasNet-25 [22] 0.411 / 0.628 0.206 / 0.361

Ours (w/o point-pair reg) 0.306 / 0.474 0.305 / 0.480

Ours 0.365 / 0.652 0.345 / 0.530

Table 3: Correspondence accuracy comparison. We report the

PCK scores with threshold of 0.01 / 0.02 for keypoint detection

of different methods. Higher is better.

Figure 7: Interpolation capacity comparison of different architec-

tures for the spatial warping function W . Models are rendered

using their surface normals.

collect keypoint annotations from KeypointNet [60] and use

the percentage of correct keypoints (PCK) [59] as the metric

for our experiments. Tab.3 presents the PCK scores under

different error distance threshold, showing that our method

outperforms other representations. In Fig.6, we can see that,

although our network has no access to the keypoint annota-

tions or correspondence annotations during training, it still

establishes accurate corresponding relationship across dif-

ferent objects in the same category.

Figure 8: Evaluation of our point-pair regularization. Without

the point-pair regularization, the network tends to learn over-

simplified templates for planes and sofas.

5.4. Ablation Study

Spatial Warping LSTM. We evaluate our choice of spa-

tial warping LSTM by replacing it with an MLP-based

implementation. The numbers of the MLP neurons are

(259, 512, 512, 512, 512, 512, 6). The comparison on inter-

polation capacity of different network architectures is pre-

sented in Fig.7. We empirically find that the MLP imple-

mentation is prone to over-fitting and cannot generalize well

for latent space interpolation. We think that it is because the

large non-uniform deformations between the template and

object instances are more easily to learn in a gradual man-

ner, but much harder when an MLP try to learn the transfor-

mation in a single step.

Progressive Reconstruction Loss. We evaluate the effect

of our progressive reconstruction loss in terms of recon-

struction accuracy in Tab.2 (last two rows). To construct the

evaluate baseline, we replace the progressive reconstruction

loss with the original ℓ1 loss in [40] and only apply super-

vision on the final output in Eqn.5. The numeric results

show that Note that we use the same settings of shape cur-

riculum as [15]; interestingly, we find that our method can

even outperform [15] on some object categories although

we add additional regularization that may adversely impact

the reconstruction. We speculate that this is because we fix

the network structure during training and apply multi-level

supervision simultaneously, while [15] gradually increases

the network depth and changes loss parameters as training

proceeds, which may lead to some extent of instability for

network training.

Point-pair Regularization. To evaluate our point-pair reg-

ularization loss, we train a baseline network without it. As

shown in Fig.8, without the point-pair regularization, the

networks tends to learn over-simplified templates. Although

this phenomenon has no impact on the reconstruct accuracy,

it leads to inaccurate correspondences since the detailed

structures like plane wings and sofa backrests collapse into

tiny regions on the templates, as proven in Tab.3 (last two

rows). Therefore, the proposed two-level regularization is

essential in our representation of deep implicit templates.

6. Extensions and Applications

6.1. Extensions

To prove the flexibility and the potential of our Deep Im-

plicit Templates, we show how our method can be easily

extended when more constraints are available.
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Figure 9: Results on clothed humans. With SMPL model as the

manually specified template (leftmost), our method can learn to

generate human models in various clothes.

Figure 10: Human model animation. The dense correspondences

between the SMPL template and the clothed human models allows

automatic calculation of skining weights.

User-defined templates. For example, we can replace the

learned template in our method with a manually-specified

one. In this case, we just need to construct an additional

loss to train the template implicit function T . Specifically,

the loss is defined as:

Ltemp =

N
∑

i=1

|T (pi)− si|, (12)

where (pi, si) are the SDF training pairs extracted from the

specified template model. In Fig.9, we demonstrate an ex-

ample where we specify SMPL model [36] as the template

and train our network to model various clothed humans.

With the correspondences we can transfer skinning weights

from SMPL model to clothed humans, allowing animation

for various clothed human models as in Fig.10.

Correspondence annotations. Furthermore, although our

method is designed to learn dense correspondence with-

out any supervision, our method can incorporate with

sparse/dense correspondence annotations when provided.

To this end, we just need to introduce an additional loss

to enforce the known correspondences:

Lcorr =
∑

1≤k,l≤K
k 6=l

∑

(p,q)∈Ck,l

‖W(p, ck)−W(q, cl)‖
2
2, (13)

where Ck,l is the correspondence set of the k-th and l-th

objects. Fig.11 demonstrate the qualitative and quantitative

results of using the correspondence loss when training our

network on D-FAUST dataset [6].

6.2. Applications

To show the effectiveness and practicability of our

method, we investigate how Deep Implicit Templates can

be used in applications. With the dense correspondences be-

tween the template and the object instances, we can transfer

(a) Reconstruction results.

Without Lcorr With Lcorr

Error 0.337 0.085

(b) Correpsondence error [39]. Low is better.

Figure 11: Results with the correspondence loss. If correspon-

dence annotations are available, our method can learn to recon-

struct human models with more accurate correspondences.

(a) Texture transfer.

(b) Shape manipulation.

Figure 12: Our representation can be used in various applications.

Please zoom in for better views.

mesh attributes, such as texture (Fig.12(a)), or mesh stretch-

ing operation (Fig.12(b)) to multiple objects. Our method

can also be used in the applications that have been demon-

strated in DeepSDF [40] such as shape completion.

7. Conclusion

We have presented Deep Implicit Templates, a new 3D

shape representation that factors out implicit templates from

deep implicit functions. To the best of our knowledge, this

is the first method that explicitly interprets the latent space

for a class of objects as a meaningful pair: an implicit tem-

plate with its conditional deformations. Several technical

contributions on network architectures and training losses

are proposed to not only recover accurate dense correspon-

dences without losing the properties of deep implicit func-

tions, but also learn a plausible template capturing common

geometry structures. The experiments further demonstrate

some promising applications of Deep Implicit Templates.

To conclude, we have demonstrated that a semantic inter-

pretation of deep implicit functions leads to a more power-

ful representation, which we believe is an inspiring direc-

tion for future research.
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