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Abstract

Despite considerable similarities between multiple ob-

ject tracking (MOT) and single object tracking (SOT) tasks,

modern MOT methods have not benefited from the devel-

opment of SOT ones to achieve satisfactory performance.

The major reason for this situation is that it is inappropri-

ate and inefficient to apply multiple SOT models directly to

the MOT task, although advanced SOT methods are of the

strong discriminative power and can run at fast speeds.

In this paper, we propose a novel and end-to-end train-

able MOT architecture that extends CenterNet by adding an

SOT branch for tracking objects in parallel with the exist-

ing branch for object detection, allowing the MOT task to

benefit from the strong discriminative power of SOT meth-

ods in an effective and efficient way. Unlike most existing

SOT methods which learn to distinguish the target object

from its local backgrounds, the added SOT branch trains

a separate SOT model per target online to distinguish the

target from its surrounding targets, assigning SOT models

the novel discrimination. Moreover, similar to the detec-

tion branch, the SOT branch treats objects as points, making

its online learning efficient even if multiple targets are pro-

cessed simultaneously. Without tricks, the proposed tracker

achieves MOTAs of 0.710 and 0.686, IDF1s of 0.719 and

0.714, on MOT17 and MOT20 benchmarks, respectively,

while running at 16 FPS on MOT17.

1. Introduction

Multiple object tracking (MOT), which aims to estimate

trajectories of multiple target objects in a video sequence, is

a long-standing problem with many applications in mobile

robotics, autonomous driving, and video surveillance anal-

yses [26]. This problem is challenging because a successful

method needs to not only detect the objects of interest accu-

rately in each frame, but also associate them throughout the

video. Moreover, fast running speeds are always desired.
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Figure 1: The architecture sketch of the proposed SOTMOT which

extends CenterNet by adding a branch for tracking objects. The

whole network can be trained in an end-to-end manner.

In recent years, many state-of-the-art methods [38, 42,

25] address the MOT problem by exploiting two modules:

detection module to locate the objects of interest by bound-

ing boxes in each frame and Re-ID one to associate each

object to one of the existing trajectories. The latest ones,

JDE [36] and FairMOT [45], integrate the Re-ID module

into a single-shot detector and allow the above two modules

to be learned in a shared model, achieving high accuracy

and fast running speed simultaneously. Despite competitive

performance, it seems that they encounter bottlenecks in ro-

bust object association, especially in crowded scenes. For

instance, the top method, FairMOTv2, still performs rela-

tively poorly on MOT20 [12], 0.673 in IDF1. Therefore,

it may not be the only choice for MOT to associate same

objects in different frames with the Re-ID technique.

It is well known that there are considerable similarities

between MOT and single object tracking (SOT) tasks. They

both are temporal problem and aim to estimate the trajecto-

ries of target objects in videos under the challenges of dis-

tracters, occlusions, and so on. In fact, it is no doubt that a

multiple object tracker can be realized with multiple single

ones [9, 52]. On the other hand, although the key issue of

MOT is usually considered as the object association while

that of SOT not, we argue that if the class of the target were

known and a detector could provide high-recall proposals in

the search region of the target, SOT would also be treated
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Figure 2: Illustration of the samples used to train SOT models

in most existing SOT methods (a) and our method (SOT branch)

(b). The former needs to deal with a large amount of backgrounds,

whereas ours only exploits a small number of foregrounds.

as the problem of the association of proposals. Therefore,

some techniques developed in SOT can be applied to MOT

for the robust association.

Recently, discriminative model based methods [11, 4, 46,

47] have shown top performance in the field of SOT. Nev-

ertheless, if we treat the localization of each target object

in MOT as an SOT task and apply an SOT model directly

to track it (Fig. 2a), the following two problems will arise.

(i) Inappropriate discrimination. Most existing SOT meth-

ods train the discriminative model to distinguish the target

from its local backgrounds, obtaining general discrimina-

tion. However, the MOT task focuses more on the ability

of the discriminative model to distinguish the target from

its surrounding targets, i.e., specific discrimination, because

most backgrounds can be filtered out by the detector. (ii) Al-

though advanced SOT methods can run at a high speed (40
FPS), the time consumption is still unacceptable if dozens

of targets are to be tracked at the same time in MOT.

To solve the above problems, in this paper, we propose

a novel and end-to-end trainable MOT architecture, allow-

ing the MOT task, more specifically, the object association

in MOT, to benefit from the strong discriminative power of

SOT methods in an effective and efficient way. As shown in

Fig. 1, we extend the CenterNet detector [50] by adding an

SOT branch for tracking objects in parallel with the exist-

ing branch for object detection. To obtain the specific dis-

crimination, unlike most existing SOT methods, the added

SOT branch trains a separate SOT model per target online

to distinguish the target from its surrounding targets in the

current frame (Fig. 2b). Afterwards, the trained SOT mod-

els perform the object association (i.e., track the targets) in

the next frame. This way, besides the stronger discrimi-

native power for the MOT task, much more efficient on-

line learning and tracking (i.e., association) than the popular

way of applying multiple SOT models directly to MOT are

achieved, because foregrounds are much fewer than back-

grounds. Moreover, to improve the efficiency further, simi-

lar to the detection branch, the SOT branch treats objects as

points. Specifically, given the center of an object on a fea-

ture map, the object is represented by the feature vector at

the center. Thereby, the SOT branch is able to run efficiently

even though dozens of targets are present at the same time.

In offline training, the network receives a pair of images

as its input. In the SOT branch, SOT models are trained

with one image, and tested with the other, as done in [47].

Then, the CenterNet detector and the feature embeddings

for ridge regression based single object tracker [47] are

jointly trained to achieve the optimal feature embeddings

for both detecting target objects and distinguishing a target

object from its surrounding similar ones. In online tracking,

different from JDE and FairMOT, ridge regression based

SOT models, rather than Re-ID features, are used to asso-

ciate the objects. Without tricks, the proposed tracker, SOT-

MOT, achieves MOTAs of 0.710 and 0.686, IDF1s of 0.719

and 0.714, on MOT17 [27] and MOT20 [12] benchmarks,

respectively, while running at 16 FPS on MOT17 (including

detection time). As far as we know, among all trackers that

introduce an SOT method into MOT task, our SOTMOT is

the first to achieve both state-of-the-art accuracy and fast

running speed. We believe that our simple yet effective and

efficient approach will benefit the future research on MOT,

especially on the combination of SOT and MOT.

2. Related Work

MOT Methods. Most modern MOT methods [3, 38, 42,

25, 36, 45, 33, 13, 39] follow the tracking-by-detection

paradigm. A detector [14, 30, 50] first locates all objects

of interest in each frame with bounding boxes. Tracking is

then performed by the object association between frames.

SORT [3] tracks objects using Kalman filter and associates

them based on the maximization of IoU between inter-

frame bounding boxes. DeepSORT [38] augments the IoU-

based association in SORT with deep appearance (Re-ID)

features. Many recent methods focus on increasing the ro-

bustness of object association. POI [42] explores both high-

performance detection and Re-ID features. LMP [33] lever-

ages Re-ID and human pose features. RAN [13] proposes a

novel association strategy based on RNN. Despite compet-

itive accuracy, these trackers are difficult to run efficiently

due to the separation of detection and Re-ID modules. In or-

der to achieve high accuracy and fast running speed simul-

taneously, one-shot MOT methods are presented. JDE [36]

and FairMOT [45] incorporate the Re-ID module into a

single-shot detector, such that the whole network can out-

put detections and Re-ID features simultaneously.

Similar to JDE and FairMOT, our SOTMOT is also an

one-shot and tracking-by-detection based method. The dif-

ference between SOTMOT and them is that SOTMOT does

not use any Re-ID module. Instead, the SOT module, which

is online discriminatively trained, is developed to achieve

the robust object association.

SOT Methods. In recent years, discriminative model based

trackers [11, 46, 34, 4, 47] promote the development of
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Figure 3: Architecture of SOT branch in our SOTMOT. EFAC is the extraction of feature vectors across the channel dimension at the center

of target object. For each target of the training frame, 1) the center-based feature vectors of it and its neighbouring targets are extracted; 2)

a discriminative SOT model, i.e., ridge regression, is trained to distinguish it from its neighbours. Then, the trained SOT model predicts the

labels of the target and its neighbouring targets in the test frame. Finally, the overall prediction loss of all trained SOT models is calculated.

SOT. These methods follow the basic pipeline of training

discriminative model, e.g., ridge regression, in the current

frame to fit the training samples to their labels online and

then evaluating the test samples in the next frame. Dif-

ferent from the previous methods [11, 46] which employ

the features extracted via the ImageNet pre-trained CNNs

to train discriminative models, modern methods [34, 4, 47]

integrate the solver of discriminative model into the offline

training of CNNs to learn the optimal feature embeddings

for the SOT task.

MOT with SOT. There have been several methods [41, 8,

9, 52, 7] proposed to introduce an SOT method into the

MOT task. These methods are mainly dedicated to study-

ing how to combine the localization outputs of SOT and

detection modules to deal with the challenge of tracking

drift caused by occlusions and interactions. Particularly,

the above two modules operate relatively independently and

each SOT model needs to deal with a large amount of back-

grounds as shown in Fig. 2a, resulting in low efficiency. In

addition, it is difficult for the SOT modules in many of them

to benefit from the end-to-end training of CNNs or to keep

the objective of offline training consistent with that of on-

line tracking, limiting the power of the SOT module. As

a result, the latest of these trackers, UMA [41], can only

run at 5 FPS on MOT17 with MOTA of 0.531 and IDF1 of

0.544, and others are all run below 1 FPS.

Our SOTMOT employs the DCFST [47] based SOT

model. In order to apply DCFST to the MOT task in

an effective and efficient way, different from the previous

SOT-based MOT methods, each SOT model of SOTMOT

only exploits the target object and its surrounding ones,

which are regarded as foregrounds by the detector, to train

discriminative model and locate the target. Additionally,

the feature extraction of samples in DCFST and the previ-

ous SOT-based MOT methods is RoI-based, whereas it is

center-based in SOTMOT for the high efficiency. To our

best knowledge, among all trackers that introduce an SOT

method into MOT task, SOTMOT is the first to achieve both

state-of-the-art accuracy and fast running speed (0.710 in

MOTA, 0.719 in IDF1, and 16 FPS on MOT17).

3. SOTMOT

Our method, SOTMOT, builds on the CenterNet detec-

tor [50]. CenterNet has three parallel branches appended

to its backbone network. For each input image, the three

branches generate the heatmap and offsets of object centers,

and bounding box sizes, respectively. By adding an extra

SOT branch in the CenterNet architecture, we construct the

SOTMOT network. The SOT branch trains a separate SOT

model per target in one frame and locates the targets in an-

other frame (Fig. 3). Similar to the existing branches, the

added SOT branch treats objects as points.

In the rest of this section, we will present the details of

SOTMOT, with special focuses on the training of SOT mod-

els, offline training, and online inference of the SOT branch.

Backbone Network. We adopt a variant of DLA-34 [45]

proposed by FairMOT as backbone for a good tradeoff be-

tween tracking accuracy and speed. Compared to the origi-

nal DLA-34 [43], there are more skip connections between

low-level and high-level features and convolution layers in

all up-sampling modules are replaced by the deformable

convolution [10] in the variant DLA-34. Denote the shape

of an input RGB image as 3×Himg ×Wimg. Then, the out-

put feature map of backbone has the shape of C ×H ×W ,

where H = Himg/4 and W = Wimg/4.

CenterNet. In order to be self-contained, we briefly review
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the CenterNet detector. For the sake of simplicity, we as-

sume that all the objects of interest fall into one category,

which is common in the field of MOT [22, 26, 12]. Tacking

a single image as input, CenterNet produces a set of detec-

tions D = {(ci +△ci, si)}
N

i=1
. Specifically, the heatmap

branch with the output shape of 1 × H × W identifies all

objects through their centers ci ∈ ℜ2. In the heatmap, the

response values at the locations corresponding to the cen-

ters of ground-truth objects are expected to be 1. The off-

set branch with the output shape of 2 × H × W refines

the center of each object from down-sampling accuracy (lo-

cated with the heatmap) to pixel-level one by estimating the

offset △ci ∈ ℜ2 between two accuracies, locating objects

more precisely. The scale branch with the output shape of

2×H ×W estimates the scale (width and height) si ∈ ℜ2

of bounding box for each object. These branches are all

center-based, that is, the information of each object is en-

coded at its center location on the output map. Given an im-

age with a set of annotated objects {(xi, yi, wi, hi)}
N

i=1
, the

heatmap branch uses the focal loss-based training objective

Lheat [21], and the other two branches use the mean square

error-based ones, denoted as Loff and Lsize, respectively.

3.1. SOT Branch

Center-Based Feature Extraction. Given the backbone

feature map of an input image, we pass it through three

convolutional layers to obtain the SOT feature map F of

Csot×H×W . The convolutional kernels are 3×3 with stride

1 × 1 and the convolutional layers are followed by Batch-

Norm and ReLU. Further, given the center c = {xc, yc}
of an object on F, the object is represented by the feature

vector x ≡ F(c) which is extracted from F at c without

extra calculations, and x ∈ ℜCsot . It is easy to see that the

extraction of x is time-saving, even for dozens of objects.

SOT Models Training. Given a training image and the

set of centers N = {(xc
i , y

c
i )}

N

i=1
of its target objects, the

training sample matrix X ≡
[

x⊤
1
; · · · ;x⊤

N

]

∈ ℜN×Csot is

constructed with the extracted feature vectors of all target

objects. Further, a neighbourhood matrix A ∈ {0, 1}
N×N

,

which indicates whether any two centers in N are neigh-

bouring, is constructed by

Ai,j =

{

1 if min
(
∣

∣xc
i − xc

j

∣

∣ ,
∣

∣yci − ycj
∣

∣

)

6 r
0 otherwise

, (1)

where r is the threshold of distance.

For each target object xi, a neighbourhood sample ma-

trix Xi along with its label vector yi are constructed,

where Xi is composed of the feature vectors of the tar-

gets whose centers are neighbours of (xc
i , y

c
i ), that is,

{xj | ∀j : Ai,j = 1}. All components of yi are negative

(0), except that the component which indicates the label of

xi is positive (1). Then, a ridge regression based discrimi-

native model w∗
i is trained to distinguish the target xi from

its neighbouring targets. Specifically, we set

min
wi

‖Xiwi − yi‖
2

2
+ λ ‖wi‖

2

2
, (2)

where λ is the regularization parameter. The optimization

solution of Problem 2 can be expressed as

w∗
i =

(

X⊤
i Xi + λI

)−1

X⊤
i yi. (3)

It is worth mentioning that the number of rows of Xi

depends on how many targets there are around the target

xi, i.e.,
∑

j Ai,j . No matter how
∑

j Ai,j is, X⊤
i Xi and

X⊤
i yi always belong to ℜCsot×Csot and ℜCsot×1, respectively.

Therefore, given
(

X⊤
i Xi

)

s and
(

X⊤
i yi

)

s, multiple w∗
i s can

be solved simultaneously in a batch way.

Offline Training. As shown in Fig. 3, the proposed network

receives a pair of RGB images, one for training and another

for testing, in offline training, and is trained in the way of

two-stream of sharing parameters [4, 47]. For the training

image, {w∗
i }

N

i=1
can be obtained with Eq.(3). For the test

image, given the set of centers M =
{(

xc
j , y

c
j

)}M

j=1
of tar-

get objects, the test sample matrix Z =
[

z⊤
1
; · · · ; z⊤M

]

∈
ℜM×Csot , neighbourhood sample matrices Zjs along with

their ground-truth label vectors vjs can also be obtained

through the way similar to the above. Afterwards, we rear-

range {w∗
i }

N

i=1
and {Zj}

M

j=1
into {w∗

1
, ...,w∗

k, ...,w
∗
N} and

{Z1, ...,Zk, ...,ZM}, so that for each of the first k pairs of

(w∗
i ,Zi), the positive sample xi which is used to generate

w∗
i and the zi which is the only positive sample in Zi rep-

resent the identical target object. Finally, the training loss is

calculated with

Lsot =
k

∑

i=1

Lreg (vi, v̂i) , (4)

where Lreg (·, ·) is the shrinkage loss proposed in [47] for

alleviating the imbalance of samples and is written as

Lreg (v, v̂) =

∥

∥

∥

∥

exp (v)⊙ (v − v̂)

1 + exp (a · (c− |v − v̂|))

∥

∥

∥

∥

2

2

, (5)

vi is the label vector of Zi, and v̂i = Ziw
∗
i is its prediction.

Because ridge regression model is differentiable and its

solver (Eq. 3) can be integrated into the offline training of

CNNs [2, 47], the SOT branch can be trained in an end-to-

end way following the above, learning the optimal feature

embeddings for the ridge regression model based single ob-

ject tracker which tracks the target object by distinguishing

it from its surrounding similar ones.

Online Inference. The whole online tracking scheme of

our SOTMOT is based on DeepSORT and FairMOT. In par-

ticular, the SOT branch in the scheme is responsible for ini-

tializing new trajectories or updating the existing ones by
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training SOT models online, and associating the detected

target objects in the current frame to the existing trajecto-

ries by calculating matching scores.

Without loss of generality, given frame t and the set of

centers Nt of the targets output by the CenterNet detec-

tor, the sample matrix Xt (Zt) ∈ ℜN×Csot 1 is constructed

as described above (Xt is the X in frame t). Afterwards,

we always need to perform the association between Nt and

the set of center locations Mt of the existing trajectories

{Ti}
M

i=1
first, then update each Ti with the new detections.

Here, each Ti contains at least the estimated center of the

target in the current frame, i.e., the i-th element in Mt, a

sample pool Xi, and an SOT model w∗
i .

For the association, the neighbourhood matrix Bt ∈
{0, 1}

M×N
between Mt and Nt is first constructed in a

manner similar to Eq. 1, where Bt
i,j indicates whether the

i-th center in Mt and the j-th center in Nt are neighbour-

ing. Then, the neighbourhood sample matrices Zt
is are

constructed based on Zt and Bt
i,j , where for each i, Zt

i

is composed of the feature vectors of the targets in Nt

whose centers are neighbours of the center of Ti, that is,
{

ztj | ∀j : B
t
i,j = 1

}

. Finally, the matching scores between

each Ti and its neighbouring targets are calculated using the

SOT model w∗
i of Ti, i.e., v̂t

i = Zt
iw

∗
i .

For the online update, At ∈ {0, 1}
N×N

, Xt
is along with

yt
is are first constructed based on Nt and Xt in the afore-

mentioned way (Xt
i is the Xi in frame t). After associating

with the existing trajectories, any target object xt
i in Xt will

fall into one of the following two situations:

(S1) If xt
i is a new target which does not associate to any

of the existing trajectories, a new trajectory Tk is established

by initializing its sample pool Xk with the batch of training

samples (Xt
i,y

t
i) and training its SOT model w∗

k with Eq. 3.

Here, in order to facilitate a unified expression for both

training and update formulas (Eq. 3 and subsequent Eq. 6),

when we add the (Xt
i,y

t
i) into a sample pool Xk, its sub-

script will be changed to (Xt
k,y

t
k). In other words, in the

sample pool, (Xt
k,y

t
k) is the batch of training samples col-

lected in frame t for trajectory Tk.

(S2) If xt
i is associated with one of the existing trajecto-

ries Tk whose sample pool Xk = {(Xp
k,y

p
k)}

t−1

p=s
, we add

(Xt
i,y

t
i) into Xk and update the SOT model by solving

min
wk

t
∑

p=s

βp ‖Xp
kwk − y

p
k‖

2

2
+ λ ‖wk‖

2

2
, (6)

where s is the start frame of the trajectory Tk and βp

is the weight of the training samples from frame p with

1Different from offline training where the training and test images are

different ones, in online inference, for any input image, we need to perform

both online training for SOT model update and test for object association,

based on the detected target objects. Therefore, Xt =
[

x
t⊤
1

; · · · ;xt⊤

N

]

and Z
t =

[

z
t⊤
1

; · · · ; zt⊤
N

]

are identical in processing frame t.

βs = (1− δ)
t−s

,
∑t

p=s β
p = 1, and βp−1/βp = 1 −

δ (p > s+ 1). In fact, Eq. 6 with such βps is a standard

expression of moving-average based model update which is

commonly used in the field of SOT [48]. The optimization

solution of Problem 6 can be expressed as

w∗
k =

[

t
∑

p=s

βp (Xp
k)

⊤
X

p
k + λI

]−1 [ t
∑

p=s

βp (Xp
k)

⊤
y
p
k

]

.

(7)

3.2. Whole Schemes

Based on the above, we present the whole offline training

and online tracking schemes of the proposed SOTMOT.

Offline Training. Receiving a pair of RGB images as input,

our whole network, including backbone network, detection

branch (the three branches of CenterNet detector), and the

proposed SOT branch, can be jointly trained in an end-to-

end way. For the SOT branch, one of the pair of images

is used as a training image and the other as a test image.

They produce the SOT loss together (Sec. 3.1). For the de-

tection branch, there is no difference between the roles of

the two images. They produce their own detection losses

independently. To deal with the task of multi-task learning,

detection and tracking, we adopt the learning scheme pro-

posed in [18] for automatic loss balancing. Specifically, the

total offline training loss is formulated as

Ltotal =
1

2

(

1

ew1

Ldet +
1

ew2

Lsot + w1 + w2

)

, (8)

where Ldet = L1
det+L2

det contains the detection losses of the

two input images and

Li
det = Li

heat + Li
off + 0.1Li

size i ∈ {1, 2} (9)

where the fixed weights in Li
det are suggested in CenterNet.

Online Tracking. The online tracking scheme of our SOT-

MOT is based on DeepSORT [38] and FairMOT [45]. In

particular, Kalman Filter [37] is used to predict the loca-

tions of the existing trajectories in the current frame, and

motion-based information and IoU of bounding boxes are

employed to assist object association. Since our SOTMOT

is obviously different from the previous SOT-based MOT

methods in terms of both the construction of SOT model

and the problem to be solved by introducing SOT methods

into the MOT task, we outline the main procedure of SOT-

MOT in Algorithm 1 so that readers can have a more de-

tailed understanding of the role of the proposed SOT branch

in the scheme. For simplicity, some operations which are

common in the filed of MOT or completely unrelated to our

SOT-based association are not included. We suggest readers

referring to the released codes of DeepSORT and FairMOT,

or our upcoming one, for more details.
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Algorithm 1 Online Tracking Scheme of SOTMOT.

Inputs:

1. SOT feature map F ∈ ℜCsot×H×W of the current frame;

2. The set of detections D = {ci, si}
N

i=1
output by the Cen-

terNet detector in the current frame. N = {ci}
N

i=1
;

3. The set of existing trajectories T = {Ti}
M

i=1
in which each

Ti contains at least the Kalman state of the target location, a

sample pool Xi, and an SOT model w∗

i ;

Main Processes: (Test: 1 - 8, Train + Update: 9 - 12)

1: Predict the current target locations {ĉi, ŝi}s of all Tis in T

with Kalman Filter [37]. M = {ĉi}
M

i=1
;

2: Construct the neighbourhood matrix B ∈ {0, 1}M×N
be-

tween M and N in a manner similar to Eq. 1;

3: Construct the sample matrix X (Z) based on N and F;

4: Construct the neighbourhood sample matrices Zis based on Z

and B;

5: Calculate the matching scores between each Ti in T and its

neighbouring targets in N, i.e., v̂i = Ziw
∗

i ∀i;
6: Fuse the motion metric into each v̂i, as done in DeepSORT;

7: Perform Hungarian matching between T and D based on v̂is,

then output the matched and unmatched trajectory sets, P and

Q, and the unmatched detection set K;

8: Perform Hungarian matching between Q and K based on the

IoUs between target locations in them, then update P, Q, K;

9: Construct the neighbourhood matrix A ∈ {0, 1}N×N
of N;

10: Construct the neighbourhood sample matrix Xis along with

their label vectors yis based on X and A;

11: Update each Ti in P as mentioned in (S2) and update its

Kalman state with its new location;

12: Initialize new Tis for the detections in K as mentioned in (S1);

13: Deal with the Tis in Q as in FairMOT;

14: Output the new set of trajectories composed of the output ones

from Step 11, 12, and 13 after some common post-processing.

4. Discussions

SOT Model vs. Re-ID Model. As mentioned above, the

main difference between our SOTMOT and FairMOT is

their association models, SOT and Re-ID ones. Formally,

the association model used to distinguish the target object

xi from the others {xj : ∀j 6= i} in Re-ID model and our

constructed SOT model are xi = φreid (xi) and

w∗
i = f

(

(φsot (xi) , 1) , {(φsot (xj) , 0)}j 6=i

)

,

respectively, where φreid (·) and φsot (·) are feature extrac-

tors, and f (·, ·) is a solver of discriminative SOT model.

The purpose of the Re-ID task is to learn a feature em-

bedding φreid (·) with which the distance between objects of

the same label is smaller than those of different labels, dis-

tinguishing different instances of the same object from all

other different objects. Given a video sequence in online

tracking, the generalization of the learned φreid (·) will be

sufficient for some of the target objects, whereas may be in-

sufficient for others because the generalization of a Re-ID
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Figure 4: The average time consumption per model when training

multiple 128-dimensional ridge regression models in a batch way.

system is always limited due to the limited offline training

data. The larger the number of target objects appearing in an

identical frame, the higher the possibility of failure in gen-

eralization and tracking. This is the main reason why Fair-

MOT performs well on MOT17 (sparse scene) but poorly

on MOT20 (crowded scene).

Different from the Re-ID model, in our approach, given

a video sequence, each SOT model learns to distinguish a

unique target from its surrounding targets in an online adap-

tive way, treating a few objects only in each frame. On the

contrast, the Re-ID model has to deal with several of count-

less objects by only resorting to the generalization ability

obtained through offline learning. Obviously, the challeng-

ing of generalization Re-ID model faces is much larger than

SOT model does in each frame. Consider that the motion of

objects is continuous in a video, the local discrimination of

SOT model is almost enough in most videos. According to

the above, the possibility of generalization failure in SOT

model is much lower than that in Re-ID one. Therefore,

our SOTMOT performs well on not only MOT17 but also

MOT20. It seems that the SOT-based association model in

our novel method is more robust for the MOT task than the

current Re-ID-based ones.

Efficiency of Training SOT Models. Now that the pro-

posed SOT branch needs to train a separate ridge regression

(RR) model per target online, and the time cost of training

a RR model is usually not negligible, naturally there is the

concern on the efficiency of the above online training pro-

cess when dozens of targets are present at the same time.

Fortunately, as our mentioned above, multiple RR models

can be trained simultaneously in a batch way. We show that

this property can greatly alleviate the above concern by ex-

ploiting the parallel computation of GPU. Fig. 4 shows how

the average time consumption varies with the increase of the

number of RR models. It is seen that adding a target, i.e.,

adding a RR model, adds very little to the overall training

time of all RR models when the number of targets beyond

20. This characteristic allows SOTMOT to track dozens of

targets at the same time efficiently in principle.
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5. Experiments

Our SOTMOT is implemented in Python using PyTorch.

On a single RTX 2080Ti GPU, it achieves the average run-

ning speed of 16 FPS (including the time consumption of

both detection and tracking) on MOT17 [27] without delib-

erate optimization. Code will be made available.

5.1. Implementation Details

Training Dataset. As suggested in JDE [36], performing

experiments on small datasets may lead to biased results

and conclusions may not hold when applying the same al-

gorithm to large-scale datasets. Both modern tracking-by-

detection based one-shot MOT methods, JDE and our base-

line FairMOT [45], use the large-scale training set made by

JDE, denoted as JDE dataset, to train their networks. For a

fair comparison with them, we also employ JDE dataset in

offline training. During network training, each pair of train-

ing and test images is sampled from a video snippet within

the nearest 100 frames or from still images (in this case, the

SOT branch is not trained). The detailed training pipelines

for video images and still images are shown in the supple-

mentary material, respectively.

Training Setting. We use the model pre-trained on COCO

[24] to initialize the weights of backbone network and fine-

tune them during offline training. The weights of our head

networks are randomly initialized with zero-mean Gaussian

distributions. We train the whole network for 50 epochs

with 3.6k iterations per epoch and 12 pairs of images per

batch. The ADAM [20] optimizer is used with initial learn-

ing rate of 10−4, using a factor 0.1 decay at 30-th epoch.

Parameters Setting. The parameters in our method are set

in a common way. The size of input image is Himg×Wimg =
736× 1280. Thereby, H ×W = 184× 320. The r in Eq. 1

is set to 75. The Csot is set to 128. The λ in Eq. 2 is set to

0.1. The a and c in Eq. 5 are set to 10 and 0.2, respectively,

as in DCFST [47]. The δ of β in Eq. 6 is set to 0.1.

5.2. Datasets and Evaluation Metrics

We demonstrate the tracking performance of SOTMOT

on three public benchmarks, MOT16 [26], MOT17 [27],

and MOT20 [12], focusing on pedestrian tracking, and com-

pare it against many state-of-the-art methods. Note that, dif-

ferent from MOT16 and MOT17, MOT20 pays more atten-

tion to the MOT in crowded scenes with higher requirement

for the robustness of object association.

We use the official evaluation metrics in the MOT chal-

lenge where Multiple Object Tracking Accuracy (MOTA)

and ID F1 Score (IDF1) are mainly reported which quantify

two of the main aspects a MOT method, namely, object cov-

erage and identity. All results of our method and others on

the test sets of the above benchmarks are directly obtained

from the official evaluation server of MOT challenge.

Table 1: Ablation studies on the validation set of MOT17 bench-

mark. (a) Comparisons of different backbone networks. (b) Com-

parisons of SOT models with different discriminant attributes.

(a) Backbone Networks.

Backbone MOTA↑ IDF1↑ FPS↑

ResNet34-FPN 66.3 70.9 21

DLA-34 70.2 73.5 16

(b) Discriminant Attributes.

Attribute IDF1↑ ID Sw.↓ FPS↑

General Discri. 71.2 621 9

Specific Discri. 73.5 504 16

5.3. Ablation Studies

Backbone Network. Any deep convolutional networks that

provide multi-scale features can be used in our framework.

In particular, we compare the tracking performance of the

DLA-34 network chosen in this work and the other clas-

sic one, ResNet34-FPN [23], in our SOTMOT. Table 1a

shows the results. It is seen that the running speed of us-

ing ResNet34-FPN in SOTMOT is slightly faster than that

of using DLA-34, whereas the accuracy of using DLA-34 is

obviously higher than that of using ResNet34-FPN.

Discriminant Attribute. To demonstrate our core claim,

that is to achieve the robust and efficient object association,

the discriminative SOT models in our SOTMOT should be

trained to obtain the specific discrimination (SD) (Fig. 2(b))

rather than the general discrimination (GD) (Fig. 2(a)),

we conduct experiments to show the performance gap be-

tween training each SOT model with the surrounding tar-

gets (SOT-SD) and with the local backgrounds (SOT-GD)

of the target in our approach. Table 1b shows the results. It

is not surprising that SOT-SD outperforms SOT-GD in both

tracking accuracy and speed. To this, we give the following

two analyses: (1) The main reason for the FPS of SOT-GD

being much lower than that of SOT-SD is that the number

of training samples for SOT models in SOT-GD is far more

than that in SOT-SD, leading to a significant drop in the run-

ning speed naturally. (2) The detector has filtered out most

backgrounds before the SOT-based association. Therefore,

the main task of each SOT model is to distinguish the target

from its surrounding targets. This is exactly what SOT-SD

does. Compared to SOT-SD, SOT-GD introduces a large

amount of backgrounds into the training of SOT models,

weakening the discriminative power it actually needs.

5.4. State­of­the­art Comparisons

Private Detections. Since our SOTMOT employs the de-

tections output by the trained CenterNet detector in on-

line tracking, we first compare it with the recent methods

which also employ private detections. Table 2 shows the

results. It is seen that: 1) SOTMOT achieves a good bal-

ance between tracking accuracy and speed. 2) SOTMOT

outperforms the strong baseline method FairMOT 2 on all

2FairMOTv2 is an improved version of FairMOT by introducing self-

supervised learning and the extra large-scale dataset, CrowdHuman [32]

which is 1.7 times larger than the JDE dataset in terms of bounding box
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Table 2: State-of-the-art comparisons on the test sets of MOT16,

MOT17, and MOT20 under the ”private detections”. The FPS con-

siders the total running time (detection and tracking) of a method.

The best three results of MOTA, IDF1, and FPS are shown in red,

blue, and orange, respectively. The proposed SOTMOT achieves

competitive results with other trackers. It outperforms its baseline,

FairMOT, with large margins in terms of MOTA and IDF1.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ ID Sw.↓ FPS↑

M
O

T
1
6

EAMTT [31] 52.5 53.3 19.0 34.9 4407 81223 910 <5.5

SORT [3] 59.8 53.8 25.4 22.7 8698 63245 1423 <8.6

DeepSORTv2 [38] 61.4 62.2 32.8 18.2 12852 56668 781 <8.0

RAR16 [13] 63.0 63.8 39.9 22.1 13663 53248 482 <1.5

VMaxx [35] 62.6 49.2 32.7 21.1 10604 56182 1389 <3.9

TubeTK [28] 64.0 59.4 33.5 19.4 10962 53626 1117 1.0

JDE [36] 64.4 55.8 35.4 20.0 - - 1544 22.2

TAP [51] 64.8 73.5 38.5 21.6 12980 50635 571 <8.0

CNNMTT [25] 65.2 62.2 32.4 21.3 6578 55896 946 <5.3

POI [42] 66.1 65.1 34.0 20.8 5061 55914 805 <5.0

CTracker [29] 67.6 57.2 32.9 23.1 8934 48305 1897 6.8

LMP [33] 71.0 70.1 46.9 21.9 7880 44564 434 0.5

FairMOT [45] 69.3 72.3 40.3 16.7 13501 41653 815 25.9

FairMOTv2 [45] 74.9 72.8 44.7 15.9 10163 34484 1074 25.9

SOTMOT (ours) 72.1 72.3 44.0 13.2 14344 34784 1681 16.0

M
O

T
1
7

SST [6] 52.4 49.5 21.4 30.7 - - 8431 <3.9

TubeTK [28] 63.0 58.6 31.2 19.9 27060 177483 4137 3.0

CTracker [29] 66.6 57.4 32.2 24.2 22284 160491 5529 6.8

CenterTrack [49] 67.8 64.7 34.6 24.6 18498 160332 3039 17.5

FairMOT [45] 67.5 69.8 37.7 20.8 - - 2868 25.9

FairMOTv2 [45] 73.7 72.3 43.2 17.3 27507 117477 3303 25.9

SOTMOT (ours) 71.0 71.9 42.7 15.3 39537 118983 5184 16.0

M
O

T
2
0 FairMOT [45] 58.7 63.7 66.3 8.5 - - 6013 13.2

FairMOTv2 [45] 61.8 67.3 68.8 7.6 103440 88901 5243 13.2

SOTMOT (ours) 68.6 71.4 64.9 9.7 57064 101154 4209 8.5

the three benchmarks in terms of tracking accuracy, i.e.,

MOTA and IDF. This confirms the robustness of our pro-

posed SOT model-based object association method, since

the main difference between SOTMOT and FairMOT lies

on their association models. 3) Although FairMOTv2 takes

advantage of self-supervised learning and much more train-

ing data, SOTMOT still outperforms it with large margins

in tracking accuracy on MOT20. This further confirms that

the proposed SOT-based association method is also robust

even for MOT in crowded scenes which is challenging for

most modern methods. 4) The ID switches of SOTMOT

on MOT16 and MOT17 are remarkably higher than those

of FairMOT and FairMOTv2, whereas lower than those of

FairMOT and FairMOTv2 on MOT20. We analyse the rea-

sons for this phenomenon in the supplementary material.

5) The running speed of SOTMOT is slightly lower than

those of some modern one-shot MOT methods, FairMOT,

CenterTrack, and JDE. We believe that this issue can be ad-

dressed by exploiting more efficient backbone networks or

SOT models into the proposed framework in the near future.

Public Detections. We also evaluate our SOTMOT with the

public detections provided by the official MOT challenge

and compare it with many state-of-the-art MOT methods.

annotation, in offline training. Our SOTMOT does not take advantage of

the above improvements. Therefore, FairMOT rather than FairMOTv2 is

the baseline method of SOTMOT.

Table 3: State-of-the-art comparisons on the test set of MOT17 un-

der the ”public detections”. +D means adding the detection time.

The proposed SOTMOT achieves a good balance between tracking

accuracy and speed.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ ID Sw.↓ FPS↑

S
O

T
-B

as
ed DMAN [52] 48.2 55.7 19.3 38.3 26218 263608 2194 <0.3

FAMNet [8] 52.0 48.7 19.1 33.4 14138 253616 3072 <0.6

LSST [15] 52.7 57.9 17.9 36.6 22512 241936 2167 <1.7

UMA [41] 53.1 54.4 21.5 31.8 22893 239534 2251 <4.2

P
u
b
li

c
D

et
ec

ti
o
n
s

Tracktorv2 [1] 56.3 55.1 21.1 35.3 8866 235449 3763 <1.4

DeepMOT [40] 53.7 53.8 19.4 36.6 11731 247447 1947 <4.1

TT17 [44] 54.9 63.1 24.4 38.1 20236 233295 1088 <2.3

MPNTrack [5] 58.8 61.7 28.8 33.5 17413 213594 1185 <5.2

STRN [39] 50.9 56.5 20.1 37.0 27532 246924 2593 <8.9

jCC [19] 51.2 54.5 20.9 37.0 25937 247822 1802 <1.7

LifT [16] 60.5 65.6 27.0 33.6 14966 206619 1189 <0.5

UnsupTrack [17] 61.7 58.1 27.2 32.4 16872 197632 1864 <1.9

CenterTrack [49] 61.5 59.6 26.4 31.9 14076 200672 2583 17.5+D

SOTMOT (ours) 62.8 67.4 24.4 33.0 6556 201319 2017 16.0+D

In this experiment, we follow the public-detection config-

uration used in CenterTrack [49] to deal with the bound-

ing boxes output by the CenterNet detector. The com-

pared methods are divided into two categories according to

whether they exploit SOT models or not. Table 3 shows the

results. It is seen that SOTMOT surpasses all SOT-based

MOT methods with large margins in both tracking accuracy

and speed. This confirms that the way SOTMOT exploits

SOT models is more effective and efficient than the previ-

ous methods’ did. Moreover, SOTMOT outperforms Cen-

terTrack in IDF1 with a large margin, although their MO-

TAs are relatively close. This confirms that SOTMOT is

more robust than CenterTrack on the object association.

6. Conclusion

Through extending the CenterNet detector with an SOT

branch, a novel and state-of-the-art multiple object tracker

SOTMOT is proposed. Instead of the commonly used Re-

ID models, SOT model is introduced into the MOT task to

achieve the robust object association. Moreover, benefiting

from the one-shot framework and center-based feature ex-

traction, SOTMOT is able to track dozens of targets at the

same time in a fast speed. Experiments demonstrate that

SOTMOT can track targets robustly and efficiently even in

crowded scenes. We thus believe that our simple yet effec-

tive and efficient approach will benefit the future research

on MOT, especially on combination of SOT and MOT.
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