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Abstract

We present Self-Ensembling Single-Stage object Detec-

tor (SE-SSD) for accurate and efficient 3D object detec-

tion in outdoor point clouds. Our key focus is on exploit-

ing both soft and hard targets with our formulated con-

straints to jointly optimize the model, without introducing

extra computation in the inference. Specifically, SE-SSD

contains a pair of teacher and student SSDs, in which we

design an effective IoU-based matching strategy to filter soft

targets from the teacher and formulate a consistency loss to

align student predictions with them. Also, to maximize the

distilled knowledge for ensembling the teacher, we design

a new augmentation scheme to produce shape-aware aug-

mented samples to train the student, aiming to encourage

it to infer complete object shapes. Lastly, to better exploit

hard targets, we design an ODIoU loss to supervise the stu-

dent with constraints on the predicted box centers and ori-

entations. Our SE-SSD attains top performance compared

with all prior published works. Also, it attains top preci-

sions for car detection in the KITTI benchmark (ranked 1st

and 2nd on the BEV and 3D leaderboards1, respectively)

with an ultra-high inference speed. The code is available at

https://github.com/Vegeta2020/SE-SSD.

1. Introduction

To support autonomous driving, 3D point clouds from

LiDAR sensors are often adopted to detect objects near the

vehicle. This is a robust approach, since point clouds are

readily available regardless of the weather (fog vs. sunny)

and time of the day (day vs. night). Hence, various point-

cloud-based 3D detectors have been proposed recently.

To boost the detection precision, an important factor

is the quality of the extracted features. This applies to

both single-stage and two-stage detectors. For example,

the series of works [24, 4, 25, 23] focus on improving

the region-proposal-aligned features for a better refine-

ment with a second-stage network. Also, many meth-

ods [3, 10, 29, 12, 33, 19] try to extract more discrimina-

1On the date of CVPR deadline, i.e., Nov 16, 2020

20 40 60 80 100
Inference time (ms)

70

75

80

3D
 M

od
er

at
e 

A
P

SECOND

PointPillar

TANet

Associate-3Ddet
3DSSD

SASSD

Ours

AVOD

Fast PointRCNN PointRCNN

UberATG-MMF
Part-A2

STD3D-CVF
CLOCs PVCas

PV-RCNN

Real-time

Single-stage
Two-stage

20 40 60 80 100
Inference time (ms)

83

87

91

BE
V

 M
od

er
at

e 
A

P

SECOND

PointPillar TANet

Associate-3Ddet
3DSSD

SASSD
Ours

AVOD

Fast PointRCNN
PointRCNN

UberATG-MMF

Part-A2

STD
3D-CVF CLOCs PVCas

PV-RCNN

Real-time
Single-stage
Two-stage

CIA-SSD

CIA-SSD

Figure 1. Our SE-SSD attains top precisions on both 3D and BEV

car detection in KITTI benchmark [6] with real-time speed (30.56
ms), clearly outperforming all state-of-the-art detectors. Please

refer to Table 1 for a detailed comparison with more methods.

tive multi-modality features by fusing RGB images and 3D

point clouds. For single-stage detectors, Point-GNN [26]

adapts a graph neural network to obtain a more compact

representation of point cloud, while TANet [17] designs a

delicate triple attention module to consider the feature-wise

relation. Though these approaches give significant insights,

the delicate designs are often complex and could slow down

the inference, especially for the two-stage detectors.

To meet the practical need, especially in autonomous

driving, 3D object detection demands high efficiency on top

of high precision. Hence, another stream of works, e.g., SA-

SSD [8] and Associate-3Ddet [5], aim to exploit auxiliary

tasks or further constraints to improve the feature represen-

tation, without introducing additional computational over-

head during the inference. Following this stream of works,

we formulate the Self-Ensembling Single-Stage object De-

tector (SE-SSD) to address the challenging 3D detection

task based only on LiDAR point clouds.
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To boost the detection precision, while striving for high

efficiency, we design the SE-SSD framework with a pair

of teacher SSD and student SSD, as inspired by [27]. The

teacher SSD is ensembled from the student. It produces rel-

atively more precise bounding boxes and confidence, which

serve as soft targets to supervise the student. Compared

with manually-annotated hard targets (labels), soft targets

from the teacher often have higher entropy, thus offering

more information [9] for the student to learn from. Hence,

we exploit both soft and hard targets with our formulated

constraints to jointly optimize the model, while incurring

no extra inference time. To encourage the bounding boxes

and confidence predicted by the student to better align with

the soft targets, we design an effective IoU-based matching

strategy to filter soft targets and pair them with student pre-

dictions, and further formulate a consistency loss to reduce

the misalignment between them.

On the other hand, to enable the student SSD to effec-

tively explore a larger data space, we design a new augmen-

tation scheme on top of conventional augmentation strate-

gies to produce augmented object samples in a shape-aware

manner. By this scheme, we can encourage the model to in-

fer the complete object shape from incomplete information.

It is also a plug-and-play and general module for 3D detec-

tors. Furthermore, hard targets are still essential in the su-

pervised training, as they are the final targets for the model

convergence. To better exploit them, we formulate a new

orientation-aware distance-IoU (ODIoU) loss to supervise

the student with constraints on both the center and orienta-

tion of the predicted bounding boxes. Overall, our SE-SSD

is trained in a fully-supervised manner to best boost the de-

tection performance, in which all the designed modules are

needed only in the training, so there are no extra computa-

tion during the inference.

In summary, our contributions include (i) the Self-

Ensembling Single-Stage object Detector (SE-SSD) frame-

work, optimized by our formulated consistency constraint

to better align predictions with the soft targets; (ii) a

new augmentation scheme to produce shape-aware aug-

mented ground-truth objects; and (iii) an Orientation-aware

Distance-IoU (ODIoU) loss to supervise the detector us-

ing hard targets. Our SE-SSD attains state-of-the-art per-

formance on both 3D and BEV car detection in the KITTI

benchmark [6] and demonstrates ultra-high inference speed

(32 FPS) on commodity CPU-GPU, clearly outperforming

all prior published works, as presented in Figure 1.

2. Related Work

In general, 3D detectors are categorized into two types:

(i) single-stage detectors regress bounding box and confi-

dence directly from features learned from the input, and (ii)

two-stage detectors use a second stage to refine the first-

stage predictions with region-proposal-aligned features. So,

two-stage detectors often attain higher precisions benefited

from the extra stage, whereas single-stage detectors usually

run faster due to simpler network structures. Recent trend

(see Figure 1 and Table 1) reveals that the precisions of

single-stage detectors [8, 31] gradually approach those of

the two-stage detectors [23, 25, 32]. This motivates us to

focus this work on developing a single-stage detector and

aim for both high precision and high speed.

Two-stage Object Detectors Among these two-stage

detectors, PointRCNN [24] uses PointNet [21] to fuse se-

mantic features and raw points from region proposals for

a second-stage refinement. Part-A2 [25] exploits a voxel-

based network to extract region proposal features to avoid

ambiguity and further improve the feature representation.

Similarly, STD [32] converts region-proposal semantic fea-

tures to a compact representation with voxelization and re-

duce the number of anchors to improve the performance.

PV-RCNN [23] utilizes both point-based and voxel-based

networks to extract features from the voxels and raw points

inside the region proposal. 3D-CVF [33] obtains semantics

from multi-view images and fuses them with point features

in both stages, whereas CLOCs PVCas [19] fuses seman-

tic features from images and points to refine the predicted

confidence.

Single-stage Object Detectors VoxelNet [38] proposes

the voxel feature encoding layer to extract features from

point clouds. PointPillar [11] divides a point cloud into

pillars for efficient feature learning. SECOND [30] mod-

ifies the sparse convolution [7, 15] to efficiently extract fea-

tures from sparse voxels. TANet [17] proposes the triple

attention module to consider feature-wise relation in the

feature extraction. Point-GNN [26] exploits a graph neu-

ral network to learn point features. 3DSSD [31] combines

feature- and point-based sampling to improve the classifi-

cation. Associate-3Ddet [5] extracts feature from complete

point clouds to supervise the features learned from incom-

plete point clouds, encouraging the model to infer from in-

complete points. SA-SSD [8] adopts an auxiliary network

in parallel with the backbone to regress box centers and se-

mantic classes to enrich the features. CIA-SSD [8] adopts

a lightweight BEV network for extraction of robust spatial-

semantic features, combined with an IoU-aware confidence

rectification and DI-NMS for better post processing. In-

spired by [27], SESS [34] addresses the detection in indoor

scenes with a semi-supervised strategy to reduce the depen-

dence on manual annotations.

Different from prior works, we aim to exploit both soft

and hard targets to refine features in a fully-supervised man-

ner through our novel constraints and augmentation scheme.

Also, compared with all prior single- and two-stage detec-

tors, our SE-SSD attains the highest average precisions for

both 3D and BEV car detection in the KITTI benchmark [6]

and exhibits very high efficiency.
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Figure 2. The framework of our Self-Ensembling Single-Stage object Detector (SE-SSD) with a teacher SSD and a student SSD. To start,

we feed the input point cloud to the teacher to produce relatively precise bounding boxes and confidence, and take these predictions (after

global transformations) as soft targets to supervise the student with our consistency loss (Section 3.2). On the top branch, we apply the

same global transformations to the input, then perform our shape-aware data augmentation (Section 3.4) to generate augmented samples

as inputs to the student. Further, we formulate the Orientation-aware Distance-IoU loss (Section 3.3) to supervise the student with hard

targets, and update the teacher parameters based on the student parameters with the exponential moving average (EMA) strategy. In this

way, the framework can boost the precisions of the detector significantly without incurring extra computation during the inference.

3. Self-Ensembling Single Stage Detector

3.1. Overall Framework

Figure 2 shows the framework of our self-ensembling

single-stage object detector (SE-SSD), which has a teacher

SSD (left) and a student SSD (right). Different from prior

works on outdoor 3D object detection, we simultaneously

employ and train two SSDs (of same architecture), such

that the student can explore a larger data space via the aug-

mented samples and be better optimized with the associated

soft targets predicted by the teacher. To train the whole SE-

SSD, we first initialize both the teacher and student with a

pre-trained SSD model. Then, started from an input point

cloud, our framework has two processing paths:

• In the first path (blue arrows in Figure 2), the teacher

produces relatively precise predictions from the raw

input point cloud. Then, we apply a set of global trans-

formations on the prediction results and take them as

soft targets to supervise the student SSD.

• In the second path (green arrows in Figure 2), we per-

turb the same input by the same global transformations

as in the first path plus our shape-aware data augmen-

tation (Section 3.4). Then, we feed the augmented

input to the student, and train it with (i) our consis-

tency loss (Section 3.2) to align the student predictions

with the soft targets; and (ii) when we augment the

input, we bring along its hard targets (Figure 2 (top

right)) to supervise the student with our orientation-

aware distance-IoU loss (Section 3.3).

In the training, we iteratively update the two SSD mod-

els: optimize the student with the above two losses and up-

date the teacher using only the student parameters by a stan-

dard exponential moving average (EMA). Thus, the teacher

can obtain distilled knowledge from student and produce

soft targets to supervise student. So, we call the final trained

student a self-ensembling single-stage object detector.

Architecture of Teacher & Student SSD The model has

the same structure as [35] to efficiently encode point clouds,

but we remove the Confidence Function and DI-NMS. It has

a sparse convolution network (SPConvNet), a BEV convo-

lution network (BEVConvNet), and a multi-task head (MT-

Head). BEV means bird’s eye view. After point cloud vox-

elization, we find mean 3D coordinates and point density

per voxel as the initial feature, then extract features using

SPConvNet, which has four blocks ({2, 2, 3, 3} subman-

ifold sparse convolution [7] layers) with a sparse convolu-

tion [15] layer at the end. Next, we concatenate the sparse

3D feature along z into 2D dense ones for feature extraction

with the BEVConvNet. Lastly, we use MTHead to regress

bounding boxes and perform classification.
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3.2. Consistency Loss

In 3D object detection, the patterns of point clouds in

pre-defined anchors may vary significantly due to distances

and different forms of object occlusion. Hence, samples of

the same hard target may have very different point patterns

and features. In contrast, soft targets can be more informa-

tive per training sample, and helps to reveal the difference

between data samples of the same class [9]. This motivates

us to treat the relatively more precise teacher predictions as

soft targets and employ them to jointly optimize the student

with hard targets. Accordingly, we formulate a consistency

loss to optimize the student network with soft targets.

We first design an effective IoU-based matching strategy

before calculating the consistency loss, aiming to pair the

non-axis-aligned teacher and student boxes predicted from

the very sparse outdoor point clouds. To obtain high-quality

soft targets from the teacher, we first filter out those pre-

dicted bounding boxes (for both teacher and student) with

confidence less than threshold τc, which helps reduce the

calculation of the consistency loss. Next, we calculate the

IoU between every pair of remaining student and teacher

bounding boxes, and filter out the pairs with IoUs less than

threshold τI , thus avoiding to mislead the student with un-

related soft targets; We denote N and N ′ as the initial and

final number of box pairs, respectively. Thus, we keep

only the highly-overlapping student-teacher pairs. Lastly,

for each student box, we pair it with the teacher bounding

box that has the largest IoU with it, aiming to increase the

confidence of the soft targets. Compared with hard targets,

the filtered soft targets are often closer to the student pre-

dictions, as they are predicted based on similar features. So,

soft targets can better guide the student to fine-tune the pre-

dictions and reduce the gradient variance for better training.

Different from the IoU loss, Smooth-L1 loss [16] can

evenly treat all dimensions in the predictions, without bias-

ing toward any specific one, so the features corresponding to

different dimensions can also be evenly optimized. Hence,

we adopt it to formulate our consistency loss for bounding

boxes (Lc
box) to minimize the misalignment errors between

each pair of teacher and student bounding boxes:

Lc
box =

1

N ′

N
∑

i=1

✶(IoUi > τI)
∑

e

1

7
Lc
δe

and δe =

{

|es − et| if e ∈ {x, y, z, w, l, h}

|sin(es − et)| if e ∈ {r}

(1)

where {x, y, z}, {w, l, h}, and r denote the center position,

sizes, and orientation of a bounding box, respectively, pre-

dicted by teacher (subscript t) or student (subscript s), Lc
δe

denotes the Smooth-L1 loss of δe, and IoUi denotes the

largest IoU of the i-th student bounding box with all teacher

bounding boxes. Next, we formulate the consistency loss

O1

O2

Bp

Bg

Bp

O2

O1

△r

Bg

A

B

D

C

A

B

D

C

Figure 3. Illustrating axis-aligned bounding boxes (left) and non-

axis-aligned bounding boxes (right) in Bird’s Eye View (BEV),

where the red and green boxes represent the ground truth and pre-

dicted box, respectively. To handle non-axis-aligned bounding

boxes (right), our ODIoU loss impose constraints on both the box

center distance |O1O2| and the orientation difference △r in BEV.

for classification score (Lc
cls) to minimize the difference in

predicted confidence of student and teacher:

Lc
cls =

1

N ′

N
∑

i=1

✶(IoUi > τI)L
c
δc

and δc = |σ(cs)− σ(ct)|

(2)

where Lc
δc

denotes the Smooth-L1 loss of δc, and σ(cs) and

σ(ct) denote the sigmoid classification scores of student and

teacher, respectively. Here, we adopt the sigmoid function

to normalize the two predicted confidences, such that the

deviation between the normalized values can be kept inside

a small range. Combining Eqs (1) and (2), we can obtain

the overall consistency loss as

Lcons = Lc
cls + Lc

box (3)

where we empirically set the same weight for both terms.

3.3. Orientation­Aware Distance­IoU Loss

In supervised training with hard targets, Smooth-L1

loss [16] is often adopted to constrain the bounding box re-

gression. However, due to long distances and occlusion in

outdoor scenes, it is hard to acquire sufficient information

from the sparse points to precisely predict all dimensions of

the bounding boxes. To better exploit hard targets for re-

gressing bounding boxes, we design the Orientation-aware

Distance-IoU loss (ODIoU) to focus more attention on the

alignment of box centers and orientations between the pre-

dicted and ground-truth bounding boxes; see Figure 3.

Inspired by [36], we impose a constraint on the distance

between the 3D centers of the predicted and ground-truth

bounding boxes to minimize the center misalignment. More

importantly, we design a novel orientation constraint on the

predicted BEV angle, aiming to further minimize the ori-

entation difference between the predicted and ground-truth

boxes. In 3D object detection, such a constraint is signifi-

cant for the precise alignment between the non-axis-aligned

boxes in the bird’s eye view (BEV). Also, we empirically
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Figure 4. We formulate the orientation constraint (1− |cos(△r)|)
in the ODIoU loss to precisely minimize the orientation difference

between bounding boxes; note the gradient of the term.

find that this constraint is an important means to further

boost the detection precision. Compared with Smooth-L1

loss, our ODIoU loss enhances the alignment of box cen-

ters and orientations, which are easy to infer from the points

distributed on the object surface, thus leading to a better per-

formance. Overall, our ODIoU loss is formulated as

Ls
box = 1− IoU(Bp, Bg) +

c2

d2
+ γ(1− |cos(△r)|) (4)

where Bp and Bg denote the predicted and ground-truth

bounding boxes, respectively, c denotes the distance be-

tween the 3D centers of the two bounding boxes (see

|O1O2| in Figure 3), d denotes the diagonal length |AC|
of the minimum cuboid that encloses both bounding boxes;

△r denotes the BEV orientation difference between Bp and

Bg; and γ is a hyper-parameter weight.

In our ODIoU loss formula, (1 − |cos(△r)|) is an im-

portant term we designed specifically to encourage the pre-

dicted bounding box to rotate to the nearest direction that

is parallel to the ground-truth orientation. When △r equals
π
2 or −π

2 , i.e., the orientations of the two boxes are perpen-

dicular to each other, so the term attains its maxima. When

△r equals 0, π, or −π, the term attains its minima, which is

zero. As shown in Figure 4, we can further look at the gra-

dient of (1 − |cos(△r)|). When the training process min-

imizes the term, its gradient will help to bring △r to 0, π,

or −π, which is the nearest location to minimize the loss. It

is because the gradient magnitude is positively correlated to

the angle difference, thus promoting fast convergence and

smooth fine-tuning in different training stages.

Besides, we use the Focal loss [14] and cross-entropy

loss for the bounding box classification (Ls
cls) and direction

classification (Ls
dir), respectively. Hence, the overall loss to

train the student SSD is

Lstudent = Ls
cls + ω1L

s
box + ω2L

s
dir + µt(L

c
cls + Lc

box) (5)

where Ls
box is the ODIoU loss for regressing the boxes,

and the loss weights ω1, ω2, and µt are hyperparameters.

Futher, our SSD can be pre-trained with the same settings as

SE-SSD but without the consistency loss and teacher SSD.

3.4. Shape­Aware Data Augmentation

Data augmentation is important to improve a model’s

generalizability. To enable the student SSD to explore a

dropout

swap

sparsify

Input Object
Another

Input Object

Figure 5. Illustrating how the shape-aware data augmentation

scheme works on a ground-truth object. We divide the object’s

point cloud into six pyramidal subsets (one for each face of the ob-

ject’s bounding box), and then independently augment each subset

by random dropout, swap, and/or sparsify operations.

larger data space, we design a new shape-aware data aug-

mentation scheme to boost the performance of our detector.

Our insight comes from the observation that the point cloud

patterns of ground-truth objects could vary significantly due

to occlusions, changes in distance, and diversity of object

shapes in practice. So, we design the shape-aware data aug-

mentation scheme to mimic how point clouds are affected

by these factors when augmenting the data samples.

By design, our shape-aware data augmentation scheme

is a plug-and-play module. To start, for each object in a

point cloud, we find its ground-truth bounding box centroid

and connect the centroid with the box faces to form pyra-

midal volumes that divide the object points into six sub-

sets. Observing that LiDAR points are distributed mainly on

object surfaces, the division is like an object disassembly,

and our augmentation scheme efficiently augments each ob-

ject’s point cloud by manipulating these divided point sub-

sets like disassembled parts.

In details, our scheme performs the following three op-

erations with randomized probabilities p1, p2, and p3, re-

spectively: (i) random dropout removes all points (blue) in

a randomly-chosen pyramid (Figure 5 (top-left)), mimick-

ing a partial object occlusion to help the network to infer a

complete shape from the remained points. (ii) random swap

randomly selects another input object in the current scene

and swap a point subset (green) with the point subset (yel-

low) in the same pyramid of the other input object (Figure 5

(middle)), thus increasing the diversity of object samples

by exploiting the surface similarity across objects. (iii) ran-

dom sparsifying subsamples points in a randomly-chosen

pyramid using farthest point sampling [22], mimicking the

sparsity variation of points due to changes in distance from

LiDAR camera; see the sparsified points (red) in Figure 5.

Furthermore, before the shape-aware augmentation, we

perform a set of global transformations on the input point

cloud, including a random translation, flipping, and scaling;

see “global transformations” in Figure 2.
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Figure 6. Snapshots of our 3D and BEV detection results on the KITTI validation set. We render the predicted and ground-truth bounding

boxes in green and red, respectively, and project them back onto the color images for visualization.

4. Experiments

We evaluate our SE-SSD on the KITTI 3D and BEV ob-

ject detection benchmark [6]. This widely-used dataset con-

tains 7,481 training samples and 7,518 test samples. Fol-

lowing the common protocol, we further divide the training

samples into a training set (3,712 samples) and a validation

set (3,769 samples). Our experiments are mainly conducted

on the most commonly-used car category and evaluated by

the average precision with an IoU threshold 0.7. Also, the

benchmark has three difficulty levels in the evaluation: easy,

moderate, and hard, based on the object size, occlusion, and

truncation levels, in which the moderate average precision

is the official ranking metric for both 3D and BEV detection

on the KITTI website. We will release our code on GitHub

upon the publication of this work.

Figure 6 shows 3D bounding boxes (2nd & 5th rows) and

BEV bounding boxes (3rd & 6th rows) predicted by our SE-

SSD model for six different inputs, demonstrating its high-

quality prediction results. Also, for a better visualization of

the results, we project and overlay the 3D predictions onto

the corresponding images (1st & 4th rows). Please refer to

the supplemental material for more experimental results.

4.1. Implementation Details

Data preprocessing We only use LiDAR point clouds

as input and voxelize all points in ranges [0, 70.4], [-40,

40], and [-3, 1] meters into a grid of resolution [0.05, 0.05,

0.1] along x, y, and z, respectively. We empirically set

hyperparameters p1=0.25, p2=0.05, and p3=0.1 (see Sec-

tion 3.4). Besides shape-aware data augmentation, we adopt

three types of common data augmentation: (i) mix-up [30],

which randomly samples ground-truth objects from other

scenes and add them into the current scene; (ii) local aug-

mentation on points of individual ground-truth object, e.g.,

random rotation and translation; and (iii) global augmenta-

tion on the whole scene, including random rotation, transla-

tion, and flipping. The former two are for preprocessing the

inputs to both teacher and student SSDs.

Training details We adopt the ADAM optimizer and co-

sine annealing learning rate [18] with a batch size of four for

60 epochs. We follow [27] to ramp up µt (Eq. (5)) from 0

to 1 in the first 15 epoches using a sigmoid-shaped function

e−5(1−x)2 . We set τc and τI (Section 3.2) as 0.3 and 0.7, re-

spectively, ω1 and ω2 (Eq. (5)) as 2.0 and 0.2, respectively,

the EMA decay weight as 0.999, and γ (Eq. (4)) as 1.25.
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Method Reference Modality
3D BEV

Time (ms)
Easy Mod Hard mAP Easy Mod Hard mAP

T
w

o
-s

ta
g

e

MV3D [3] CVPR 2017 LiDAR+RGB 74.97 63.63 54.00 64.2 86.62 78.93 69.80 78.45 360

F-PointNet [20] CVPR 2018 LiDAR+RGB 82.19 69.79 60.59 70.86 91.17 84.67 74.77 83.54 170

AVOD [10] IROS 2018 LiDAR+RGB 83.07 71.76 65.73 73.52 89.75 84.95 78.32 84.34 100

PointRCNN [24] CVPR 2019 LiDAR 86.96 75.64 70.70 77.77 92.13 87.39 82.72 87.41 100

F-ConvNet [28] IROS 2019 LiDAR+RGB 87.36 76.39 66.69 76.81 91.51 85.84 76.11 84.49 470*

3D IoU Loss [37] 3DV 2019 LiDAR 86.16 76.50 71.39 78.02 91.36 86.22 81.20 86.26 80*

Fast PointRCNN [4] ICCV 2019 LiDAR 85.29 77.40 70.24 77.64 90.87 87.84 80.52 86.41 65

UberATG-MMF [12] CVPR 2019 LiDAR+RGB 88.40 77.43 70.22 78.68 93.67 88.21 81.99 87.96 80

Part-A2 [25] TPAMI 2020 LiDAR 87.81 78.49 73.51 79.94 91.70 87.79 84.61 88.03 80

STD [32] ICCV 2019 LiDAR 87.95 79.71 75.09 80.92 94.74 89.19 86.42 90.12 80

3D-CVF [33] ECCV 2020 LiDAR+RGB 89.20 80.05 73.11 80.79 93.52 89.56 82.45 88.51 75

CLOCs PVCas [19] IROS 2020 LiDAR+RGB 88.94 80.67 77.15 82.25 93.05 89.80 86.57 89.81 100*

PV-RCNN [23] CVPR 2020 LiDAR 90.25 81.43 76.82 82.83 94.98 90.65 86.14 90.59 80*

De-PV-RCNN [1] ECCVW 2020 LiDAR 88.25 81.46 76.96 82.22 92.42 90.13 85.93 89.49 80*

O
n

e-
st

ag
e

VoxelNet [38] CVPR 2018 LiDAR 77.82 64.17 57.51 66.5 87.95 78.39 71.29 79.21 220

ContFuse [13] ECCV 2018 LiDAR+RGB 83.68 68.78 61.67 71.38 94.07 85.35 75.88 85.1 60

SECOND [30] Sensors 2018 LiDAR 83.34 72.55 65.82 73.9 89.39 83.77 78.59 83.92 50

PointPillars [11] CVPR 2019 LiDAR 82.58 74.31 68.99 75.29 90.07 86.56 82.81 86.48 23.6

TANet [17] AAAI 2020 LiDAR 84.39 75.94 68.82 76.38 91.58 86.54 81.19 86.44 34.75

Associate-3Ddet [5] CVPR 2020 LiDAR 85.99 77.40 70.53 77.97 91.40 88.09 82.96 87.48 60

HotSpotNet [2] ECCV 2020 LiDAR 87.60 78.31 73.34 79.75 94.06 88.09 83.24 88.46 40*

Point-GNN [26] CVPR 2020 LiDAR 88.33 79.47 72.29 80.03 93.11 89.17 83.90 88.73 643

3DSSD [31] CVPR 2020 LiDAR 88.36 79.57 74.55 80.83 92.66 89.02 85.86 89.18 38

SA-SSD [8] CVPR 2020 LiDAR 88.75 79.79 74.16 80.90 95.03 91.03 85.96 90.67 40.1

CIA-SSD [35] AAAI 2021 LiDAR 89.59 80.28 72.87 80.91 93.74 89.84 82.39 88.66 30.76

SE-SSD (ours) - LiDAR 91.49 82.54 77.15 83.73 95.68 91.84 86.72 91.41 30.56

Table 1. Comparison with the state-of-the-art methods on the KITTI test set for car detection, with 3D and BEV average precisions of 40

sampling recall points evaluated on the KITTI server. Our SE-SSD attains the highest precisions for all difficulty levels with a very fast

inference speed, outperforming all prior detectors. “*” means the runtime is cited from the submission on the KITTI website.

Method
3DR40 BEVR40 3DR11

Easy Moderate Hard Easy Moderate Hard Moderate

3DSSD [31] - - - - - - 79.45

SA-SSD [8] 92.23 84.30 81.36 - - - 79.91

De-PV-RCNN [1] - 84.71 - - - - 83.30

PV-RCNN [23] 92.57 84.83 82.69 95.76 91.11 88.93 83.90

SE-SSE (ours) 93.19 86.12 83.31 96.59 92.28 89.72 85.71

Table 2. Comparison with latest best two single- and two-stage

detectors on KITTI val split for car detection, in which “R40” and

“R11” mean 40 and 11 sampling recall points for AP, respectively.

4.2. Comparison with State­of­the­Arts

By submitting our prediction results to the KITTI server

for evaluation, we obtain the 3D and BEV average preci-

sions of our model on the KITTI test set and compare them

with the state-of-the-art methods listed in Table 1.

As shown in the table, our model ranks the 1st place

among all state-of-the-art methods for both 3D and BEV

detections in all three difficulty levels. Also, the inference

speed of our model ranks the 2nd place among all meth-

ods, about 2.6 times faster than the latest best two-stage

detector Deformable PV-RCNN [1]. In 3D detection, our

one-stage model attains a significant improvement of 1.1

points on moderate AP compared with PV-RCNN [1] and

Deformable PV-RCNN [23]. For single-stage detectors, our

model also outperforms all prior works by a large margin,

outperforming the previous one-stage detector SA-SSD [8]

by an average of 2.8 points for all three difficulty levels and

with shorter inference time (reduced by ∼25%). Our large

improvement in APs comes mainly from a better model op-

timization by exploiting both soft and hard targets, and the

high efficiency of our model is mainly due to the nature of

our proposed methods, i.e., we refine features in SSD with-

out incurring extra computation in the inference.

In BEV detection, our model also leads the best single-

and two-stage detectors by around 0.8 points on average.

Besides, we calculate the mean average precision (mAP)

of three difficulty levels for comparison. Our higher mAPs

indicate that SE-SSD attains a more balanced performance

compared with others, so our method is more promising to

address various cases more consistently in practice. Further,

we compare our SE-SSD with latest best two single- and

two-stage methods on KITTI val split. As shown in Table 2,

our 3D and BEV moderate APs with 11 or 40 recall points

both outperform these prior methods.

4.3. Ablation Study

Next, we present ablation studies to analyze the effec-

tiveness of our proposed modules in SE-SSD on KITTI val

split. Table 3 summarizes the ablation results on our con-

sistency loss (“Cons loss”), ODIoU loss (“ODIoU”), and

shape-aware data augmentation (“SA-DA”). For ODIoU

loss, we replace it with the Smooth-L1 loss in this ablation
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Cons loss ODIoU SA-DA Easy Moderate Hard

- - - 92.58 83.22 80.15

- - X 93.02 83.70 80.68

- X - 93.07 83.85 80.78

X - - 93.13 84.15 81.17

X X - 93.17 85.81 83.01

X X X 93.19 86.12 83.31

Table 3. Ablation study on our designed modules. We report

the 3D average precisions of 40 sampling recall points on KITTI

val. split for car detection. Cons Loss and SA-DA denote our con-

sistency loss and shape-aware data augmentation, respectively.

study, since we cannot simply remove it like Cons loss and

SA-DA. All reported APs are with 40 recall points.

Effect of consistency loss As first and fourth rows in Ta-

ble 3 show, our consistency loss boosts the moderate AP by

about 0.9 point. This large improvement shows that using

the more informative soft targets can contribute to a better

model optimization. For the slight increase in easy AP, we

think that the predictions of the baseline on the easy sub-

set are already very precise and thus are very close to the

hard targets already. Importantly, by combining hard labels

with the ODIoU loss in the optimization, our SE-SSD fur-

ther boosts the moderate and hard APs by about 2.6 points,

as shown in the fifth row in Table 3. This demonstrates the

effectiveness of jointly optimizing the model by leveraging

both hard and soft targets with our designed constraints.

Further, we analyze the effect of the consistency loss for

bounding boxes (“reg”) and confidence (“cls”) separately to

show the effectiveness of the loss on both terms. As Table 4

shows, the gain in AP from the confidence term is larger,

we argue that the confidence optimization may be more ef-

fective to alleviate the misalignment between the localiza-

tion accuracy and classification confidence. Also, we evalu-

ate the box and confidence constraints [34] designed on the

box-centers distance matching strategy and obtain a much

lower AP (“dist”), we think that the underlying reason is re-

lated to their design, which is to address axis-aligned boxes

and so is not suitable for our task.

Effect of ODIoU loss As first and third rows in Table 3

show, our ODIoU loss improves the moderate AP by about

0.6 points compared with the Smooth-L1 loss. This gain

in AP is larger than the one with the SA-DA module, thus

showing the effectiveness of the constraints on both the box-

centers distance and orientation difference in the ODIoU

loss. Also, the gain in AP on the hard subset is larger than

others, which is consistent with our expectation that even

sparse points on the object surface could provide sufficient

information to regress the box centers and orientations.

Effect of shape-aware data augmentation In Table 3,

the first two rows indicate that our shape-aware data aug-

mentation (SA-DA) scheme brings an average improvement

of about 0.5 points on the baseline model. Based on the

pre-trained SSD, SA-DA further improves the moderate and

Type baseline dist reg only cls only cls + reg

Moderate AP 83.22 80.38 83.65 83.83 84.15

Table 4. Ablation study on our consistency loss, in which “cls”

and “reg” mean our consistency loss on confidence and bounding

boxes, respectively, and “dist” means the box and confidence con-

straints based on a box-centers distance matching strategy.

Type baseline nms filter gt filter stu filter

Moderate AP 83.22 83.49 80.73 84.15

Table 5. Ablation study on our IoU-based matching strategy, in

which “nms”, “gt”, and “stu” mean that we filter soft targets with

NMS, ground truths, and student predictions, respectively.

hard APs of SE-SSD by about 0.3 points, as indicated in the

last two rows in Table 3. These gains in AP show the ef-

fectiveness of our SA-DA on boosting the performance by

enhancing the object diversity and model generalizability.

IoU-Based Matching Strategy Also, we compare dif-

ferent ways of filtering soft targets, i.e., removing soft tar-

gets that (i) overlap with each other using NMS (“nms fil-

ter”), (ii) do not overlap with any ground truth (“gt filter”),

and (iii) do not overlap with student boxes for less than an

IoU threshold (“stu filter”). We can see from Table 5 that

our proposed “stu filter” attains the largest gain in AP, as it

keeps the most related and informative soft targets for the

student predictions, compared with other strategies.

4.4. Runtime Analysis

The overall inference time of SE-SSD is only 30.56ms,

including 2.84ms for data preprocessing, 24.33ms for net-

work forwarding, and 3.39ms for post-processing and pro-

ducing the final predictions. All evaluations were done on

an Intel Xeon Silver CPU and a single TITAN Xp GPU.

Our method attains a faster inference speed compared with

SA-SSD [8], as our BEVConvNet structure is simpler and

we further optimized our voxelization code.

5. Conclusion

This paper presents a novel self-ensembling single-stage

object detector for outdoor 3D point clouds. The main

contributions include the SE-SSD framework optimized by

our formulated consistency constraint with soft targets, the

ODIoU loss to supervise the network with hard targets, and

the shape-aware data augmentation scheme to enlarge the

diversity of training samples. The series of experiments

demonstrate the effectiveness of SE-SSD and each proposed

module, and show the advantage of high efficiency. Over-

all, our SE-SSD outperforms all state-of-the-art methods for

both 3D and BEV car detection in the KITTI benchmark

and attains an ultra-high inference speed.
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