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Abstract

In this paper, we consider the absorption effect for the

problem of single image reflection removal. We show that

the absorption effect can be numerically approximated by

the average of refractive amplitude coefficient map. We

then reformulate the image formation model and propose a

two-step solution that explicitly takes the absorption effect

into account. The first step estimates the absorption ef-

fect from a reflection-contaminated image, while the second

step recovers the transmission image by taking a reflection-

contaminated image and the estimated absorption effect as

the input. Experimental results on four public datasets show

that our two-step solution not only successfully removes

reflection artifact, but also faithfully restores the intensity

distortion caused by the absorption effect. Our ablation stud-

ies further demonstrate that our method achieves superior

performance on the recovery of overall intensity and has

good model generalization capacity. The code is available

at https://github.com/q-zh/absorption.

1. Introduction

When light interacts with a plate glass surface, it can be

partly absorbed, reflected, and transmitted. A widely used

formation model of a reflection-contaminated image I is

formulated as1

I = ΩT+ΦR, (1)

where Ω and Φ represent refractive and reflective amplitude

coefficient maps, T and R represent transmission and re-

flection images. Recovering transmission image T from a

single reflection-contaminated image I is challenging due to

its ill-posedness [1]. As can be observed from Equation (1),

such ill-posedness is not only caused by unknown content

of T and R, but also by unknown content-free variables of

Ω and Φ. Most existing methods rely on image content for

single image reflection removal, i.e., explicit priors from

image gradients (e.g., [2]) and dictionaries (e.g., [3]), or

∗Corresponding authors.
1As there is no matrix multiplication in this paper, we redefine the matrix

multiplication as the element-wise multiplication for simplicity.

implicit priors from training data (e.g., [4]). The nature of

content-free variables is widely studied to solve the problem

of multi-images reflection removal (e.g., [5, 6]) while they

are seldom considered in the context of single image reflec-

tion removal. Besides, most existing solutions (e.g., single

image [7], multi-images [8]) are based on an ideal image

formation model that does not take the absorption effect (de-

fined in Section 3) into account, i.e., assuming the glass to

be thin enough. A recent work solves for ΩT instead of T

as the absorption effect can significantly darken the transmis-

sion [9].2 Since the absorption effect is independent from

image content while varying with different colors, thick-

nesses, or orientations of glass in the real-world, considering

the absorption effect can help mitigate the ill-posedness of

single image reflection removal.

In this paper, we revisit the formation model of the

reflection-contaminated image by taking the absorption ef-

fect into account (Section 3). According to the results of

Monte Carlo simulation [10], we observe that the absorp-

tion effect can be numerically represented by the average

of refractive amplitude coefficient map, defined as avg(Ω)

(Section 5.1). As the content-free variable avg(Ω) fluctuates

in the simulation, we argue that an accurate estimation of

avg(Ω) can benefit in solving the problem of single image re-

flection removal. To this end, we propose a two-step solution

to first estimate avg(Ω) and then recover the transmission

image T through two neural networks. To obtain an accurate

estimation of avg(Ω) in the first step, we adopt a two-branch

training strategy by taking I and T as inputs. The core idea

is to reduce the influence from image content of transmission

and reflection while propagating discriminative features of

content-free variable avg(Ω) across the layers of our neural

network (Section 4.1). We also constrain the second step

with the Lipschitz condition [11] to increase the generaliza-

tion capacity regarding diverse avg(Ω) (Section 4.2). Our

method achieves a superior performance advantage on public

datasets. In summary, our contributions are as follows,
• We propose the first formulation to consider the absorp-

tion effect in the context of reflection removal. We fur-

ther show that the absorption effect can be numerically

2Please find our experiments of fitting the absorption effect for real data

in the supplementary material.
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approximated by the average of refractive amplitude

coefficient map.

• We propose a two-step solution, with a two-branch train-

ing strategy and the constraint of Lipschitz condition,

to solve the problem of single image reflection removal

with the consideration of absorption effect. We further

analyze how the proposed method facilitates estimating

the absorption effect and recovering the transmission

image from a single reflection-contaminated image.

• We show by experiments that our method not only suc-

cessfully removes reflection artifact, but also faithfully

restores the intensity distortion caused by the absorption

effect. We further demonstrate that our method achieves

a superior performance advantage on the recovery of

overall intensity and has good model generalization

capacity.

2. Related Work

Multi-images reflection removal methods commonly

leverage constraints from content-free variables to allevi-

ate the ill-posedness of the solution, e.g., polarization an-

gles [8, 5, 12], or reflection disparity [6]. However, priors

from content-free variables are seldom considered in the

context of a single image. Most single image reflection re-

moval methods impose priors from image content and they

can be roughly divided into optimization-based and deep

learning-based methods.

Optimization-based methods. Assumptions have been

made in the literature to make the problem of single image

reflection removal tractable due to its massive ill-posedness.

Optimization-based methods exploit the statistics of natural

images to make explicit assumptions. For example, Levin

and Weiss [13] separate transmission and reflection images

based on an image gradient sparsity prior with manual anno-

tations. Li and Brown [1] utilize a smooth image gradient

prior since reflection images are likely to be out-of-focus

and blurry. Shih et al. [14] remove reflection effect based on

the observation of ghosting cues. Wan et al. [15] perform

edge classification for transmission and reflection images

through multi-scale depth of fields. Arvanitopoulos et al. [2]

suppress the reflection by an ℓ0 penalty on the gradient of

recovered transmission images. Wan et al. [16] employ both

content and image gradient priors to jointly restore missing

content and recover transmission images. Yang et al. [17]

suppress the reflection by solving a partial differential equa-

tion. Optimization-based methods generally produce over-

smooth results and fail to generalize to various types of

reflection in real-world when their assumptions violate.

Deep learning-based methods. Inspired by the unprece-

dented success achieved by deep convolutional neural

networks in versatile low-level vision problems [18], re-

searchers propose several practical data-driven methods to

produce robust predictions for transmission images against

various types of reflection. Different from optimization-

based methods that explicitly transfer the prior knowledge

to the exactly formulated constraints, data-driven methods

attempt to learn such knowledge from data and are expected

to generalize to various types of reflection included in train-

ing data. A recent study has shown that directly training an

image processing neural network between inputs and outputs

can overfit the regression model [19] due to its ill-posedness.

Thus, lots of efforts are made to narrow the solution space

and reduce the ill-posedness during the optimization of neu-

ral networks. Fan et al. [20] estimate edge information to

guide the recovery of transmission images to better preserve

details. Zhang et al. [21] further explicitly utilize percep-

tual information during training to improve the realism of

predictions. Wan et al. [22] jointly optimize an image gradi-

ent estimation network and an image inference network for

the transmission layer and capture real reflection images to

simulate reflection effects for their training data, and they

extend this work by integrating image context information

and considering the image gradient level statistics during

training [23]. Yang et al. [24] use a cascade network struc-

ture to jointly recover transmission images and reflection

images. Wen et al. [7] additionally use a reconstruction error

of the reflection-contaminated image to further constrain the

estimations. Wei et al. [4] restore missing content caused

by strong reflection through context encoding modules and

use an alignment-invariant loss to address the misalignment

in real-world images. Kim et al. [25] adopts physically-

based rendered images for training. Li et al. [26] proposes

a cascaded network to iteratively refines the estimation of

transmission and reflection images.

Reflection-contaminated image formation models. Ac-

cording to the ways of obtaining reflective amplitude coeffi-

cient maps, existing image formation models can be catego-

rized into empirical model [20, 21, 7, 26], spatially-uniform

model [23], and data-driven model [7]. Unfortunately, all

of them assume an ideal image formation model and do

not take the absorption effect into account. Kim et al. [25]

adopts a physically-based rendering method to render the

training data. However, they do not simulate the variation

of absorption effect (i.e., they only consider the attenuation

effect for R instead of T). In this paper, we revisit the for-

mation model of the contaminated-image formation model

by taking the absorption effect into account and develop a

single image reflection removal solution based on it.

3. Modeling Absorption Effect

When taking the absorption effect into account, the re-

fractive and reflective amplitude coefficient maps for a plate

double-surface glass can be formulated as [27, 28]

Ω =
(1−P)2(1−A)

1−P2(1−A)2
, Φ = P+

P(1−P)2(1−A)2

1−P2(1−A)2
. (2)

213396



Figure 1. Overview of our two-step solution. In the first step, network g takes I and OT as inputs, and outputs epre and e′pre, respectively. In

the second step, network h takes the input which is the concatenation of I and spatially-replicated epre, and outputs Tpre. Ψi and Ψ
′

i are

outputs of different hidden layers of network g. Note that two branches of network g share the same weights during training, and the one

with dotted box is not activated in testing. ‘ZC’ and ‘BN’ represent operations of zero-center and batch normalization, respectively.

A is defined as the absorption effect that describes the at-

tenuation of light when travelling through the glass. P is

the reflectivity at the air/glass interface. A and P can be

formulated according to Beer–Lambert law and Fresnel’s

equations, respectively

A = 1− exp(
−kL

cosΘt

),

P =
1

2
((
cosΘ− κ cosΘt

cosΘ+ κ cosΘt

)2 + (
cosΘt − κ cosΘ

cosΘt + κ cosΘ
)2),

(3)

where k is the attenuation coefficient that represents the

color of glass, L is the distance that light travels through the

glass which is determined by the thickness of glass, κ is the

refractive index, Θ is the map of incidence angle regarding

the glass, and Θt = arcsin( 1
κ
sinΘ) according to Snell’s

law. For a common window glass, k ranges from 4 m−1 to

32 m−1 [28] and κ = 1.474 [8]. As introduced in Section 2,

existing image formation models assume A = 0, resulting in

Ω+Φ = 1. This assumption ignores the absorption effect.

For a reflection removal method, the unreliable assumption

of Ω and Φ can degrade its performance, especially for

the accuracy of overall intensity similarity of T (defined

in Equation (17)). In contrast, we consider a more general

formation model with A 6= 0.

Directly solving for A from I is a non-trivial task because

of the matrix form of A and the real-world relationship be-

tween A and I (described by Equation (1)). In this paper, we

assume that reflection occurs over a piece of plate glass [29],

which is homogeneous, isotropic [30], and fills the whole

field of view of the camera (FoV). Based on this assumption,

we show that a scalar e, which is the average of Ω, can be

used to numerically approximate the absorption effect in Sec-

tion 5.1. With such an approximation, Ω can be factorized

into e multiplying a matrix O,

Ω = eO, (4)

where all elements in O tend to be one.

4. Proposed Method

According to the analysis in Section 3, we reformulate

the image formation in Equation (1) as

I = eOT+ΦR. (5)

As the content-free variable e fluctuates in real-world (shown

in Figure 3 (f)), we argue that an accurate estimation of e

can benefit in solving the problem of single image reflection

removal. We then propose our two-step solution

g : I → e,

h1 : (I, e) → OT, h2 : OT → T.
(6)

The first step includes a network g which estimates e from

I. The second step consists of network h1 and h2, where h1

recovers OT from I with the help of e, and h2 recovers T

from OT. Figure 1 illustrates the overview of the framework.

Note that networks h1 and h2 are combined as network h.

4.1. Estimating Absorption Effect e

Since CNNs generally extract features based on the image

content, using network g to estimate content-free variable

e from I is not a trivial task. To this end, network g is

additionally fed by a paired OT to focus on content-free

features during training (dotted box in Figure 1). The idea

is that although OT and I have similar image content of

transmission, they have quite different e, i.e., g(I) should be

e while g(OT) should be 1. Hence, features of content-free

variable e are expected to be learned through a supervised

manner. Although such a simple scheme benefits in isolating

image content features of transmission, it can lead network

g to focus on the image content of reflection (i.e., ΦR).

Because discriminative features between I and OT include

both e and ΦR. In the following, we show how to mitigate

the influence from image content of reflection and focus on

e via the design of network g and the loss function LΨ.

Figure 2 shows two tuples of (I,T,ΦR) of real data. As

can be observed: 1) Strong reflection dominates in sparse
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Figure 2. Illustration of data from SIR2 [31]. From left to right: I,

T, and ΦR. Strong/weak reflection are marked by red/blue boxes.

regions, and the intensity of these regions in I is much larger

than that in T (red boxes). 2) The remaining weak reflection

continuously spreads, and the intensity difference in these

regions between I and T tends to have close and small values

(blue boxes). Based on these observations, the network g is

designed as: 1) ReLU6 [32] instead of ReLU [33] is used as

the activation function to cut off large values produced by

strong reflection. 2) Zero-center (ZC) operation [34] is used

to subtract the uniform impact caused by the weak reflection.

We also design network g (and h) as a bias-free convolution

neural network [35] to better propagate e from the input I.

We then further show how these designs help achieve

our objective. Specifically, with the approximation of

ReLU6(ax+ y) ≈ aReLU6(x) + ReLU6(y), where a is a

scalar in the scope of [0.7, 1]3, x and y are two tensors, our

designs bring the following approximation

Ψi ≈ eΨ′

i +∆i, ∀i = 1, 2, 3, 4, 5, (7)

where Ψ is the output of hidden layers as shown in Figure 1,

∆i is defined as

∆i =

{

ΦR, i = 0
ZC(ReLU6(w ∗∆i−1)), i = 1, 2, 3, 4, 5,

(8)

where w is the learned convolution kernel. ReLU6 [32]

cuts off large values (against sparse strong reflection with

large intensity values) and ZC [34] subtracts average values

(against dense weak reflection with uniform intensity values),

thus ∆i tends to be zero with increasing i. As ∆i carries

information from ΦR as shown in Equation (8), the image

content of reflection is mitigated with ∆i approaching zero

in deep layers. Besides, Equation (7) suggests that e can be

successfully propagated to deep layers.

To better enforce ∆i to be zero during training, we further

constrain Ψ by loss function Li
Ψ

LΨ =
5

∑

i=1

λiL
i
Ψ

=
5

∑

i=1

λi‖BCE(Ψi ⊘Ψ′

i, egt)‖, (9)

where ⊘ is the element-wise division operation, BCE(·, ·)
represents the binary cross-entropy loss function [36] applied

to each element of matrix Ψi ⊘Ψ′

i and scalar egt
4, and λi

3The scope is determined based on the simulation results in Figure 3 (d).
4We have tried to use L1/L2 loss function (e.g., ‖Ψi − eΨ′

i‖), however,

the network tends to produce all-zeros feature maps.

is the weight. We set weight {λi} with increasing numbers

{0.2, 0.8, 2, 3, 4} as ∆i tends to be zero with increasing i.

In summary, the two-branch training strategy facilitates

isolating image content features from transmission. The

proposed architecture of network g and the loss function LΨ

help mitigate the influence from image content of reflection.

These designs help propagate e across the layers of network

g and contribute to the accurate estimation of e.

4.2. Recovering Transmission T

Network h1 is optimized to make equation h1(I, e) =
OT hold. Since variable e distributes in a continuous space

(i.e., e ∈ E), we further constrain

∀e ∈ E, h1(I, e) = OT, s.t. I = fI(e) = eOT+ΦR (10)

As this constraint ensures a range of e ∈ E instead of a

single value e0 to satisfy h1(I, e) = OT, it is expected to

help generalize priors learned from limited training data to

real data with diverse absorption effects. In the following,

we show that applying the constraint in Equation (10) can

be achieved by guaranteeing function ‘s(e) = fI(e), e ∈ E’

to be the unique solution of the initial value problem [11]
{

h1(s(e), e) =
ds
de

,

I0 = s(e0),
(11)

where (I0, e0) is from training data.

If network h1 is trained such that fI(e) is the unique solu-

tion to the initial value problem in Equation (11), we have
ds
de

= OT. The constraint in Equation (10) is ensured to be

held. Otherwise, the derivative of function s(e) is not guar-

anteed to be unique and h1(s(e), e) or h1(I, e) is not neces-

sarily equal to OT. Thus, the constraint in Equation (10)

is not ensured to be satisfied. Obviously, fI(e) is one of the

solutions to the initial value problem in Equation (11) since

we train h1 with data that satisfy fI(e). Therefore, the key

to ensure the constraint in Equation (10) is to ensure the

uniqueness of the solution fI(e).
According to Cauchy-Lipschitz theorem [11] (also called

Picard-Lindelöf theorem or Picard existence theorem), only

if h1 satisfies the constraint of Lipschitz condition [37], the

uniqueness of solution can be achieved. Suppose I ∈ U, the

constraint of Lipschitz condition can be expressed as [37]

|h1(I1, e)− h1(I2, e)| ≤ M |I1 − I2|, ∀(I1, e), (I2, e) ∈ U× E,

(12)

where M is referred to as a Lipschitz constant. Function

h1 is called as an M -Lipschitz function if it satisfies the

constraint in Equation (12). Similar to [38], we set M to 1 in

this paper. Recent works realize the constraint of Lipschitz

condition for a deep neural network model using gradient

penalty [39, 38]. Gulrajani et al. [38] prove that a differen-

tiable function is 1-Lipschitz if and only if it has gradients

with the norm at most 1 everywhere. They directly constrain

the gradient norm of the output of a deep neural network for

its input and enforce a soft version of the constraint with a
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penalty on the gradient norm for random samples. Details

about the prove and implementation can be found in [38].

We adopt a similar strategy to that in [38] to constrain

h2 as a 1-Lipschitz differentiable function, i.e., a gradient

penalty loss function which penalizes the gradient norm to

be 1 for random reflection-contaminated image Î

LCon = (‖∇
Î
h1 (̂I, ê)‖ − 1)2, ∀Î ∈ U, ∀ê ∈ E. (13)

U represents a subspace where reflection-contaminated im-

ages distribute. We construct Î = I + ǫ1OT, where

ǫ1 ∼ U[−0.1, 0.1] and U represents the uniform distribu-

tion. That is, we regard Î = (ǫ1 + e)OT + ΦR as a

reflection-contaminated image with absorption effect ǫ1 + e.

Therefore, we have Î ∈ U. We construct E = {ê|ê =
ǫ2egt + (1 − ǫ2epre)}, where ǫ2 ∼ U[0, 1]. This construc-

tion is similar to that in [38], i.e., uniformly sampling along

straight lines between data sampled from distributions of

ground truth and estimation.

Combining h1 and h2. We combine h1 and h2 as network

h and apply the gradient penalty loss function to h to ap-

proximately applying that to h1. Such an approximation is

reasonable because once the gradient of h is penalized, that

of h1 (a component of h) is expected to be penalized.

The gradient penalty loss function guarantees the unique

solution to the initial value problem of Equation (11) and en-

sures the constraint in Equation (10), which helps generalize

priors learned from limited training data to real data that are

with diverse absorption effects and a variety of scenarios.

4.3. Loss Functions

We use an alternating optimization scheme to train g and

h iteratively. We update g once after updating h five times

for the better consideration of absorption effect estimation.

Loss functions of g and h are as follows

Lg = LT + λe(Le + L′

e) +
5

∑

i=1

λiL
i
Ψ
,

Lh = LT + λgpLgp.

(14)

LT is the reconstruction loss function and Le is the binary

cross-entropy loss function [36]

LT = D(Tpre,Tgt), Le = BCE(epre, egt), L′

e = BCE(e′pre, egt),
(15)

where Tpre = h(I, epre), epre = g(I), D is a pre-defined

metric that measures the similarity of images Tpre and Tgt

D(Tpre,Tgt) =ℓper − λpsnrℓPSNR − ℓSSIM − ℓSI, (16)

where λpsnr is set as 1

40
to balance the values of ℓSSIM and ℓSI.

Pre-defined metric D jointly considers commonly adopted

metrics in reflection removal. We use a similar implementa-

tion of perceptual loss ℓper as that in [40, 21], which is from

the pre-trained VGG-16 [41] models trained on the ImageNet

dataset [42]. The Peak Signal-to-Noise Ratio (PSNR) [43]

and the Structural SIMilarity (SSIM) [44] are two widely

used metrics to measure differences between images. The

SSIM is defined with default parameters as those in [44].

The intensity-variant structural SImilarity (SI) [45] focuses

only on the structural similarity [31].

Implementation details. Figure 1 shows the network ar-

chitectures of g and h. We adopt a similar network archi-

tecture to that in [46, 47] for h due to its excellent image

generation ability. The batch sizes are set to 16. We set

λe = 0.5, λgp = 10 for all experiments. Both of neural net-

works are trained using Adam solver [48] with β1 = 0.5 and

β2 = 0.999. We set the learning rates for g and h to 0.0001
for the first 100 epochs and decay to 0.00005 for the next 100
epochs. Except where explicitly stated, all our experiments

in this paper use the same setup described above.

5. Experiments

Testing data. We use four real datasets for evaluation. As

the absorption effect is relevant to factors of glass thick-

ness, orientation, and color (introduced in Section 3), we

highlight these factors in the testing datasets5. SIR2 [31]

contains 454 testing samples and 120 of them are captured

with three different glass thicknesses. We thereby take this

subset of SIR2 [31] as SIR2-THICK [31] for evaluation.

ZC20-ORIEN [50] contains 160 samples captured with five

different glass orientations. LY20-DATA [26] contains 220
samples and part of them are captured with two different

glass thicknesses and two different glass orientations. ZN18-

DATA [21] contains 109 testing samples and part of them are

captured with two different glass orientations.

Comparison methods. Seven state-of-the-art single image

reflection removal methods, including an optimization-based

method, i.e., YM19 [17], and six deep learning-based meth-

ods, i.e., ZN18 [21], WS19 [23], WY19 [4], WT19 [7],

KH20 [25], LY20 [26], are compared with our method.

Quantitative metrics. We use SSIM [44] and PSNR [43]

as error metrics. Besides, we introduce the metric of IS (av-

erage of Intensity Similarity index) to evaluate the accuracy

of overall intensity similarity. Because one of the key differ-

ences between our method and others is the estimation of e,

which helps the recovery of T’s overall intensity (according

to Equation (5)). The Intensity Similarity index focuses on

the intensity similarity between two images x and y, which

is defined as a factor of the SSIM index [44]

IS(x,y) =
2µxµy + c

µ2
x + µ2

y + c
, (17)

where µx and µy are the averages of x and y, c is a constant

which is set as the default value as that in [44].

5Since there is no existing dataset with a variation of glass color, we

synthesize BLD-COLOR dataset using the physically-based rendering en-

gine Cycles [49]. The proposed method achieves the best performance as

compared with other state-of-the-art methods. Details of data synthesizing

and results can be found in our supplementary material.
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Figure 3. (a) The camera model of Monte Carlo simulation. (b) Distributions and units (i.e., degree, meter, meter−1, and millimeter) of

input variables for Monte Carlo simulation. (c) Curves of function a = fA(θ, k, L), where a is the element of A, θ is the corresponding

angle of incidence, and L = 9 mm. (d) and (e) Distributions of 10000 randomly generated η, mean, standard deviations of Ω and Φ. (f)

The result of correlation analysis between absorption proxy η and e (or avg(Ω)).

5.1. Synthesizing Training Data

We synthesize our training data based on Equation (1),

with 18224 T from Places365 [51]6, 5552 R from [22],

and 18224 {Ω,Φ} generated according to Monte Carlo

simulation [10]. The camera model is displayed in Fig-

ure 3 (a). A recent work [50] shows that Ω and Φ

are jointly determined by the horizontal FoV of cam-

era pf (assuming an input size with ratio 2 : 3), re-

fractive index κ, and the orientation of glass (repre-

sented by (sin po1 sin po2, sin po1 cos po2, cos po1)). Differ-

ent from [50] that assumes A = 0, we take the simulation of

A into account. Specifically, we further consider factors of

glass width pw, the distance between camera and glass pd,

glass thickness pt, and glass attenuation coefficient k. These

inputs of the Monte Carlo simulation [10] are generated

based on uniform distributions7. Figure 3 (b) shows ranges

of these variables used in this paper. They are set according

to observations in our daily life, e.g., the horizontal FoV is

set according to a digital camera (i.e., Canon EOS 5D Mark

III), when photographing a glass, the photographer may not

stand too close (< 0.2m) or too far (> 5m).

Numerical approximation. To show that the absorption

effect can be numerically represented by the average of Ω,

we additionally generate 10000 {Ω, Φ, A} for analysis. We

observe that all elements of A tend to be uniform regarding

different angles of incidence according to its formulation

in Equation (3). This observation can be validated by the

curve of a = fA(θ, k, L) regarding the variable of θ as

shown in Figure 3 (c), where a is an element of A and θ

is the corresponding angle of incidence, k and L are fixed

for a given I (assuming a piece of plate glass [29])8. The

6These images are from four scenes, OFFICE, PARKING_GARAGE-

INDOOR, RESTAURANT_PATIO and STREET, as glass reflection is more

likely to occur in these scenarios. Note that 1776 gray images are excluded.
7Normal distributions provide similar observations in following analysis.
8As L and k contribute equally to a according to Equation (3), how a

Table 1. Average SSIM [44] differences (×10−3) between re- and

pre-trained models. Positive numbers represent improvement is

achieved by the re-trained models. ‘/’ represents the pre-trained

model of an indicated method is trained using an indicated dataset.

Datasets ZN18 WS19 WT19 WY19 KH20 LY20

SIR2-THICK 11.0 5.20 63.0 13.8 9.08 13.8

ZC20-ORIEN 1.97 28.2 24.7 7.20 16.9 7.02

LY20-DATA 6.13 2.77 65.4 58.4 5.60 /

SIR2 22.9 -12.4 58.7 -6.02 4.26 11.8

ZN18-DATA / -13.3 38.7 / 20.0 10.1

absorption effect A hence can be approximately represented

by its average η and we define η as the absorption proxy,

i.e., ηdef= avg(A). We investigate the relationship between

η and {Ω, Φ} by plotting the 10000 simulation results of

{η, avg(Ω), std(Ω), avg(Φ), std(Φ)}9. Figure 3 (d) and

(e) plot the simulation results. The broad distribution of

η indicates the fluctuation of absorption effect in the real-

world. In contrast, the narrow distributions of avg(Φ) and

std(Φ) indicate the weaker relevance between η and Φ. All

elements of Ω tend to be uniform because of the narrow

distribution and small values of std(Ω). We thereby define

edef= avg(Ω) and focus on the relationship between e and η.

Figure 3 (f) displays the result of their correlation analysis.

Motivated by the one-to-one mapping relationship of e and η,

we use e as a numerical approximation to absorption effect.

5.2. Validation for Image Formation Model

We re-train comparison learning-based methods using

the same training data as our method, and compare their

performance with their pre-trained models on each testing

dataset. As training data used by the re-trained models are

generated based on our image formation model, while those

used by the pre-trained models are generated by other im-

age formation models (i.e., WT19 [7] adopts the model in

varies depending L can be found by how a varies depending k.
9‘avg’ and ‘std’ output the mean and the standard deviation of a matrix.
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Table 2. Comparisons of quantitative results in terms of SSIM, IS, and PSNR on SIR2-THICK [31], ZC20-ORIEN [50], LY20-DATA [26],

SIR2 [31], and ZN18-DATA [21] for reflection removal. We mark the best and second-best performing methods in red and blue respectively.

Dataset(size) Metric Ours One-branch w/o-Con ZN18[21] YM19[17] WS19[23] WT19[7] WY19[4] KH20[25] LY20[26]

SIR2-

THICK

(120)[31]

SSIM 0.8965 0.8877 0.8940 0.8494 0.8598 0.8751 0.8687 0.8864 0.8869 0.8641

IS 0.9773 0.9711 0.9752 0.9275 0.9520 0.9532 0.9630 0.9646 0.9696 0.9598

PSNR 24.05 22.85 23.59 18.91 21.85 20.63 22.03 23.00 23.46 22.02

ZC20-

ORIEN

(160)[50]

SSIM 0.8790 0.8638 0.8663 0.8673 0.8660 0.8244 0.8644 0.8616 0.8757 0.8743

IS 0.9722 0.9598 0.9720 0.9670 0.9660 0.9142 0.9594 0.9646 0.9712 0.9681

PSNR 23.93 20.42 23.69 22.61 23.68 19.26 21.40 23.84 23.48 23.56

LY20-

DATA

(220)[26]

SSIM 0.8732 0.8568 0.8673 0.8354 0.8531 0.8420 0.8244 0.8254 0.8480 0.8568

IS 0.9552 0.9428 0.9503 0.9410 0.9458 0.9401 0.9368 0.9499 0.9490 0.9414

PSNR 23.97 22.23 23.72 23.13 21.93 21.35 20.73 22.41 22.85 23.61

SIR2

(454)[31]

SSIM 0.9003 0.8906 0.8934 0.8703 0.8680 0.8961 0.8746 0.8906 0.8916 0.8945

IS 0.9756 0.9688 0.9733 0.9267 0.9503 0.9500 0.9594 0.9593 0.9666 0.9589

PSNR 24.34 23.06 23.90 19.24 22.20 20.93 22.05 23.35 23.64 22.76

ZN18-

DATA

(109)[21]

SSIM 0.7783 0.7653 0.7669 0.7671 0.7395 0.7663 0.6844 0.7668 0.7507 0.7691

IS 0.8970 0.8846 0.8966 0.8843 0.8703 0.8956 0.8678 0.8727 0.8808 0.8773

PSNR 19.63 18.32 19.60 18.44 18.69 19.04 17.01 19.22 18.84 19.05

Input (I) Ground truth Ours One-branch w/o-Con YM19 ZN18 WS19 WT19 WY19 KH20 LY20

Figure 4. From top to bottom: visual quality comparison of reflection removal for samples from SIR2-THICK [31], ZC20-ORIEN [50],

LY20-DATA [26], SIR2 [31], and ZN18-DATA [21]. Color boxes highlight noticeable differences. Zoom in for better details.

Equation (1) with Ω+Φ = 1), such performance compari-

son is to evaluate the effectiveness of our image formation

model. Table 1 shows the differences of averaged SSIM [44]

between re- and pre-trained models. As can be observed, the

re-trained models outperform pre-trained ones with 24 out

of 27 cases10. Note that the absorption effects of training

data in [25] tend to be uniform due to their setting of a fixed

glass thickness and color. The performance advantage of

the re-trained models demonstrates the effectiveness of our

image formation model for single image reflection removal.

5.3. Overall Performance

For a fair comparison with state-of-the-art learning-based

methods, we report the better numbers from their re- and pre-

trained models for each testing dataset in Table 2. As can be

observed, our method achieves the best performance regard-

ing all metrics for all testing datasets. Figure 4 shows the

10As the pre-trained models of ZN18 [21], WY19 [7] use 100 samples

from ZN18-DATA [21] for training, the pre-trained model of LY20 [26]

uses 200 samples from LY20-DATA [26] for training, we do not compare

their results and report performance from re-trained models for these cases.

visual quality comparison.11 As can be observed, YM19 [17]

produces over-smooth results, ZN18 [21] recovers T with

color distortion, WS19 [23] predicts dark results, WT19 [7],

WY19 [4], KH20 [25], and LY20 [26] fail to remove re-

flection (third to fifth rows) and produce inaccurate overall

intensity similarity (first and second rows). In contrast, our

method not only successfully removes reflection artifacts,

but also faithfully restores the intensity distortion caused by

the absorption effect. The state-of-the-art performance of

our method demonstrates the effectiveness of our solution

that explicitly considers the absorption effect.

5.4. Ablation Studies

We investigate the effectiveness of each part of our so-

lution12. Specifically, we develop two methods which are

simplified versions of the proposed method: 1) ‘One-branch’

method, network g only takes I as the input and is opti-

11More examples of visual quality comparison can be found in our sup-

plementary material.
12The ablation study of a single step network, i.e., directly regressing I

to T using network h, can be found in our supplementary material.
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Figure 5. Left: IS results of all testing samples in datasets of ZC20-ORIEN [50], LY20-DATA [26], SIR2 [31], and ZN18-DATA [21].

Samples of each dataset are ordered with the increasing IS obtained by our method. Right: the visualization of IS index maps between the

predicted Tpre (or the input I) and the ground truth of Tgt. The corresponding images of these IS index maps can be found in Figure 4.

Color boxes highlight noticeable differences. Zoom in for better details.

mized without loss function LΨ during training. 2) ‘w/o-

Con’ method, network h is optimized without the constraint

in Equation (10) or loss function Lgp. Remaining parts and

the training setups are kept unchanged as our method.

Two-branch training to propagate accurate e. The per-

formance comparison between the proposed method and the

one-branch method can help validate the effectiveness of

two-branch training. As shown in Table 2 and Figure 4, the

proposed method outperforms the one-branch method for all

testing datasets. Such performance advantage, especially for

the metric IS, indicates that two-branch training helps esti-

mate more accurate e so that the overall intensity of T can be

more accurately recovered. We further illustrate the IS distri-

bution for each testing sample in Figure 5 (left). As can be

observed, our method has a superior performance advantage

for all testing datasets over the one-branch method and other

state-of-the-art methods. The visual quality comparison in

Figure 5 (right) intuitively shows that the recovered T from

our method is more accurate regarding the overall intensity

similarity. Our method contributes to single image reflection

removal through the accurate recovery of overall intensity.

Satisfying constraint in Equation (10) to facilitate model

generalization capacity. According to the analysis in Sec-

tion 4.2, satisfying Lipschitz condition of network h helps

constrain Equation (10) and facilitates model generalization

capacity. Therefore, we evaluate by comparing the perfor-

mance of the proposed method and w/o-Con method. As

shown in Table 2 and Figure 4, the proposed method achieves

slightly better results as compared with w/o-Con method for

all testing datasets. To better validate the advantage of our

method, we train the proposed method and w/o-Con method

using a limited size of training data and compare their per-

formance. Because a limited size of training data helps high-

light the generalization capacity of a data-driven method. We

train these two methods with 1

10
and 1

20
of original training

data, represented as ‘Medium’ and ‘Small’, respectively. We

also compare with results based on the original training data

(represented as ‘Large’). As this constraint is applied based

on e, we use IS as the metric. Figure 5 illustrates the perfor-
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Figure 6. The IS performance comparison of our method (red

curves) and w/o-Con methods (blue curves) using different sizes

of training data (Large, Medium, Small). From left to right: re-

sults on testing datasets of ZC20-ORIEN [50], LY20-DATA [26],

SIR2 [31], and ZN18-DATA [21].

mance changing with different training data sizes. As can be

observed, the performance advantage of our method is more

significant with smaller training data sizes across all testing

datasets. This observation verifies that our method is good

at learning knowledge from a limited size of training data,

which indicates its better generalization capacity compared

with w/o-Con method.

6. Conclusion

This paper revisits the formation model of a reflection-

contaminated image by taking the absorption effect into

account and proposes a two-step solution for single image re-

flection removal. The state-of-the-art performance achieved

by our method verifies that accurately estimated absorption

effect benefits the accurate recovery of transmission images.

Limitations. The estimated absorption effect e may be inac-

curate as estimating e from I is an ill-posed problem. This

estimation suffers from the ambiguity introduced by un-

known scenes (e.g., environment lighting of the scene) and

the camera’s image signal processor (ISP). This paper holds

the assumption that the camera ISP is fixed for all scenes,

which may be a strong requirement in real-world. Another

limitation is our simplification of the absorption effect, which

makes it difficult to directly verify the model by real data.
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