
Panoptic-PolarNet: Proposal-free LiDAR Point Cloud Panoptic Segmentation

Zixiang Zhou∗, Yang Zhang∗†, Hassan Foroosh

Department of Computer Science, University of Central Florida

{zhouzixiang, yangzhang}@knights.ucf.edu, Hassan.Foroosh@ucf.edu

Abstract

Panoptic segmentation presents a new challenge in ex-

ploiting the merits of both detection and segmentation, with

the aim of unifying instance segmentation and semantic seg-

mentation in a single framework. However, an efficient so-

lution for panoptic segmentation in the emerging domain of

LiDAR point cloud is still an open research problem and

is very much under-explored. In this paper, we present a

fast and robust LiDAR point cloud panoptic segmentation

framework, referred to as Panoptic-PolarNet. We learn

both semantic segmentation and class-agnostic instance

clustering in a single inference network using a polar Bird’s

Eye View (BEV) representation, enabling us to circum-

vent the issue of occlusion among instances in urban street

scenes. To improve our network’s learnability, we also pro-

pose an adapted instance augmentation technique and a

novel adversarial point cloud pruning method. Our exper-

iments show that Panoptic-PolarNet outperforms the base-

line methods on SemanticKITTI and nuScenes datasets with

an almost real-time inference speed. Panoptic-PolarNet

achieved 54.1% PQ in the public SemanticKITTI panoptic

segmentation leaderboard and leading performance for the

validation set of nuScenes.

1. Introduction

As a crucial step in applications such as autonomous

driving and robotics, processing and analyzing 3D scanning

data have received increasing attention in recent years in

computer vision and deep learning. Panoptic segmentation

is a recently introduced problem in the image domain [20]

that presents a new challenge in unifying instance segmen-

tation and semantic segmentation in a single training archi-

tecture. With the recent introduction of new LiDAR point

cloud datasets [2, 5, 13] that include both pixel-wise seman-

tic label annotation and object annotation, this problem can

now be also explored for 3D scanning data as we propose

∗ Contributed equally.

† Now at Waymo LLC.

Code at: https://github.com/edwardzhou130/Panoptic-PolarNet.

0 2 4 6 8 10 12 14 16 18 20
Frames-per-second

36

38

40

42

44

46

48

50

52

54

Pa
no

pt
ic

Qu
al

ity
 (%

)

SalsaNext + PV-RCNN
KPConv + PointPillar
Milioto et al.
Rangenet++ + PointPillar
Panoptic-PolarNet

Figure 1: SemanticKITTI [1] panoptic quality vs. single

frame inference latency. The green line marks the sampling

rate of the LiDAR scanner, which spins at 10 frames-per-

second. Our proposed Panoptic-PolarNet outperforms other

baselines in both speed and PQ.

in this paper.

By definition, Panoptic segmentation requires that we

identify both class labels and instance id’s for points in the

“thing” classes, and only the class labels for points in the

“stuff” classes. To solve this problem, the first question to

answer is: What information is needed in order to obtain

a panoptic segmentation of data? It can be either the se-

mantic label of all points and the instance clustering of the

“thing” classes, or the instance segmentation of the “thing”

classes and the class labels of remaining “stuff” classes. As

a consequence, these two alternative designs would lead to

two different categories of panoptic segmentation, known as

proposal-free and proposal-based, the former being adapted

from a semantic segmentation network [27] and the latter

adapted from an object detection network [16].

2D image panoptic segmentation faces two main prob-

lems. First, proposal-based ones segment instances inde-

pendently within each individual object proposal. Such ap-

proaches require extra architectural modifications [25, 50]

to compensate for the impact of heavy object collision in

the proposals. Second, semantic segmentation and instance

segmentation are usually handled in two separate prediction

13194

heads in order to tailor the design of the dedicated network

to each task. However, this may inevitably introduce either

potential conflicts or redundant information since these two

tasks clearly share common characteristics. For example, in

the proposal-based methods, semantic and instance heads

can yield different label predictions at the same pixel. And

in the proposal-free methods, the features learned in the in-

stance head have significant correlations with class labels.

Both cases ultimately lead to inference inefficiency.

3D panoptic segmentation, on the other hand, is by and

large at its infancy and still an open research problem. It is

mainly motivated by LiDAR point cloud processing in ap-

plications such as self-driving cars, autonomous robot nav-

igation, and environment mapping, all of which generally

require real-time processing. On the other hand, compared

to conventional 3D data in computer vision, LiDAR point

clouds are irregularly sampled in the 3D space. These dif-

ferences in terms of the nature of the 3D data, the need

for real-time processing, and the level of accuracy needed

for safety and security (e.g., in self-driving cars) are clearly

creating new challenges, encouraging new innovative solu-

tions. These challenges motivated us to find a more suitable

architecture that takes into account the unique characteris-

tics of LiDAR data, efficiently solves panoptic segmenta-

tion with minimum conflicts in predictions (instance versus

class), and achieves real-time or near real-time speed with-

out compromising accuracy.

Given the speed limitation, proposal-free methods nat-

urally seem to be a more favorable choice, since they are

proven to perform better in computational time in the 2D

case. Therefore, starting from a backbone semantic pre-

diction network [55], our first goal is to integrate it with a

network for class-agnostic instance clustering. We hypoth-

esize that most “thing” class objects in the LiDAR point

cloud are separable when projected onto the XY-plane. In-

stance separability implies that the discretized BEV rep-

resentation [46] is highly suitable for LiDAR point cloud

instance clustering. Therefore, we can use the same net-

work of PolarNet also to generate discriminative features

for separating instances in the BEV. Based on these obser-

vations and assumptions, we propose a panoptic segmen-

tation framework that simultaneously learns semantic and

instance features on the discretized BEV map. Therefore,

we follow the backbone network design of PolarNet [55] to

generate the 3D semantic prediction and use a lightweight

2D instance head inspired by Panoptic-DeepLab [7] on top

of it. Predictions from semantic and instance heads are then

fused through a majority voting to create the final panoptic

segmentation. This results in a highly efficient proposal-

free panoptic segmentation network design, which we refer

to as Panoptic-PolarNet.

We evaluated our approach on SemanticKITTI and

nuScenes datasets. Panoptic-PolarNet achieves state-of-

the-art performance. Compared to the PolarNet, our in-

stance segmentation head only introduces 0.1M parameters

and increases the inference time by only 0.027s.

Our contributions are summarized as follows:

• We propose a model taking into account the specific

nature of LiDAR data and the applications in mind, to

construct a proposal-free LiDAR panoptic segmenta-

tion network that can efficiently cluster instances on

top of the semantic segmentation.

• Unlike existing panoptic segmentation networks that

generally use two entirely separate decoding modules

for semantic and instance segmentation and rely on an

attention module to connect the learned information,

our networks share decoding layers among them, al-

lowing for early fusion at feature extraction level. This

early fusion strategy has two substantial impacts: (1) it

reduces redundancy between the networks and there-

fore improves computational efficiency; (2) increases

the PQ measure despite a smaller computation load.

• Compared to existing proposal-based panoptic seg-

mentation methods that suffer from class and instance

prediction overlapping, we propose a proposal-free de-

sign and train the instance head without bounding box

annotation, which allows us to avoid the conflict of

class prediction.

• We introduce two novel point cloud data augmentation

methods that can apply to any other LiDAR segmenta-

tion networks.

• Experiments show that our approach outperforms

strong baselines on SemanticKITTI and nuScenes

datasets with smaller and near-real-time latency, as

shown in Figure 1.

2. Related works

2.1. Image based panoptic segmentation

Current 2D panoptic segmentation methods normally di-

vide panoptic segmentation into two subproblems: semantic

segmentation and instance segmentation. They are trained

in a single network with a shared feature encoding layer

and separated heading layer. According to how they ac-

curately separate different instances, panoptic segmentation

methods can be categorized into top-down/ proposal-based

and bottom-up/ proposal-free approaches. Top-down meth-

ods usually use Mask R-CNN [16] to get each object’s in-

stance mask first and then fill in the rest region with the

semantic segmentation prediction. While this design gives

a reliable instance segmentation result, it requires additional

means to resolve the overlapping instances and the conflict

between instance and semantic predictions. Liu et al. [25]

13195

propose a spatial ranking module to sort the overlapping

masks. UPSnet [50] introduces a panoptic head to resolve

the conflict between instance and semantic predictions by

adding an unknown class label. EfficientPS [30] proposes

a panoptic fusion module that dynamically adapts the fu-

sion of instance and semantic heads according to their con-

fidence. Recent research also focuses on designing either

end-to-end training [25, 50] or attention module bridging

between semantic and instance learning [24, 49, 6]. On the

contrary, bottom-up methods generally get semantic pre-

diction and then fuse it with class-agnostic instance seg-

mentation. The first bottom-up method, DeeperLab [53],

proposes to separate the instance using bounding box cor-

ners and center. Panoptic-DeepLab [7] further simplifies

this grouping method by predicting the instance center and

offset. SSAP [10] uses cascaded graph partition to segment

instance from a pixel-pair affinity pyramid.

2.2. LiDAR point cloud object detection and seman­
tic segmentation

Compared to the conventional 3D point cloud data, Li-

DAR point cloud is inherently 2.5D data since it is a per-

spective projection of the real world. This results in a sparse

and imbalanced distribution of points among 3D geomet-

rical space. Besides, most LiDAR point cloud tasks are

targeted on the autonomous driving scenario, which cre-

ates even larger data size for the conventional point cloud

method [36, 37, 34] to process. In addition to directly learn-

ing features on either the point level [40, 44, 18] or vox-

elized space [58, 51], research on LiDAR point cloud also

uses projected space like the bird’s eye view [23, 52, 33]

or spherical projection/range image [35, 47, 48, 29, 8], and

sometimes the fusion of multiple aforementioned views [57,

42]. Like its counterpart in 2D object detection, LiDAR

point cloud object detection methods are also divided into

proposal-based and proposal-free ones. Proposal-based

methods [58, 40, 51] first generate region proposal from

an encoded feature and use another head to select and re-

fine object bounding box, while proposal-free methods di-

rectly predict object through vote clustering [34] or key-

point/center estimation [54]. For the segmentation prob-

lem, researchers pay more attention to efficiently extract-

ing and recovering local and global context. KPConv [44]

and RandLA [18] proposed to use kernel point convolution

and local feature aggregation module to replace the con-

ventional convolutional layer in an encoder-decoder struc-

ture to operate on the point cloud directly. However, it re-

quires a time-consuming preprocessing to build the graph.

Many other methods [47, 8] choose to use 2D convolu-

tion to segment the point cloud on the 2D point projec-

tion. Rangenet++ [29] and KPRNet [21] introduce addi-

tional KNN and aligning processing to better recover label

from a projected view to the original point cloud. Polar-

Net [55] encodes point cloud into a polar BEV to compen-

sate for the imbalanced distribution of points in the physical

space.

2.3. Point cloud panoptic segmentation

As a rising task, LiDAR panoptic segmentation has not

been well studied yet. However, many researchers have al-

ready explored indoor point cloud panoptic segmentation

by combining instance segmentation and semantic segmen-

tation methods. Most of them [45, 22, 32, 26] use the dis-

criminative loss [9] to learn a embedded feature space to

cluster instances. Zhou et al.[56] extract the instance seg-

mentation from the region proposals clustered from the se-

mantic segmentation. SemanticKITTI [2] benchmarks the

first panoptic segmentation LiDAR dataset by combining

existing state-of-the-art object detection and semantic seg-

mentation networks. MOPT [19] attaches a semantic head

to Mask R-CNN to generate panoptic segmentation on the

range image. Milioto et al. [28] proposes to solve LiDAR

point cloud panoptic segmentation on the range image first

then restore it to point cloud level through a tri-linear up-

sampling.

3. Panoptic-PolarNet

As shown in Figure 2, our Panoptic-PolarNet consists of

the following four components: (1) a network that encodes

the raw point cloud data to a fixed-size 2D polar BEV repre-

sentation, (2) a shared encoder-decoder backbone network,

(3) two independent heads for semantic and instance seg-

mentation, (4) a fusion step that merges the aforementioned

predictions into one final panoptic segmentation result.

3.1. Preliminary

Given a set of points P = {(x, y, z, r)n|n ∈
{1, . . . , N}}, where (x, y, z) are the 3D coordinates rela-

tive to the LiDAR scanner’s reference frame and r is the

intensity of reflection, and a set of ground truth class labels

CGT = {ln|n ∈ {1, . . . , N}}, LiDAR point cloud seman-

tic segmentation task aims to predict a unique set of class

labels Cp for the points P that minimizes the difference

with CGT . Panoptic segmentation task extends this prob-

lem to requiring that points belonging to separate instances

have different labels in some “thing” classes, e.g., car, bicy-

cle, and human. The remaining classes are “stuff” classes,

which do not require detailed separation and share the same

label among all points.

3.2. Polar BEV encoder

To process a point cloud containing a random size of

points, we need to create a fixed-size representation through

projection and quantization. We use BEV for two main rea-

sons. First, BEV provides a trade-off between computa-

13196

3D Semantic Segmentation2D BEV Center Heatmap2D BEV Instances Offset

2D BEV “Things” MaskClass-agnostic Instances Clustering3D Panoptic Segmentation

+

Raw Point Cloud

Semantic head

H × W × Z × C

Instance head

H × W × 1

H × W × 2

(H
 ×

W
 ×

N
*

)
×

K

(H
 ×

W
 ×

N
*

)
×

5
1

2

Shared

MLP

H
 ×

W
 ×

5
1

2

m
a

xp
o

o
l

Polar BEV Encoder Backbone Network

Visibility Feature

+

Figure 2: Our Panoptic-PolarNet framework. We first encode the raw point cloud data with K features into a fixed-size

representation on the polar BEV map. Next, we use a single backbone encoder-decoder network [55] to generate semantic

prediction, center heatmap and offset regression. Finally, we merge these outputs via a voting-based fusion to yield the

panoptic segmentation result.

tional cost and accuracy, enabling us to use the more effi-

cient 2D convolutional networks to process the data. Sec-

ond, since objects rarely overlap along the z-axis in the ur-

ban scene, BEV is empirically the best projection for ob-

ject detection [46]. We also represent the points in the po-

lar coordinates rather than conventional Cartesian coordi-

nates to balance the distribution of points among different

ranges [55]. The polar coordinate gives neural networks

better potential to learn discriminative features at locations

closer to the sensor and minimizes the information losses

due to quantization.

We adopt the original polar BEV encoder design from

PolarNet [55]. More specifically, we first group a point

cloud data P ∈ R
N×K to P ′ ∈ R

(H×W×N⋆)×K based on

its position in the polar BEV map, where K is the input fea-

ture dimension, H and W are the grid size of the BEV map

and N⋆ is the number of points in each BEV grid. Next, we

encode this point cloud through a simplified PointNet [36],

which only contains MLP. Then, a max-pooling layer is ap-

plied at each BEV grid to create a fixed-size representation

M ∈ R
H×W×C , where C is the feature channel. We use

C = 512 in our experiment.

3.3. Semantic Segmentation

After encoding LiDAR point cloud data into a feature

matrix M , most 2D semantic segmentation backbone net-

works are able to process it. We follow PolarNet to use

Unet [38] with 4 encoding layers and 4 decoding layers as

the backbone network. Unlike other panoptic segmentation

networks that generally use two entirely separate decoding

modules for semantic and instance segmentation, our net-

work shares the first three decoding layers among them.

Our semantic head generates multiple predictions at each

pixel Cp ∈ Z
Z×H×W , which are later reshaped back to 3D

voxels to separate labels at different heights along Z-axis.

We calculate the loss at the voxel level during the training,

where the groundtruth label for each voxel is decided by

majority voting of points within the same voxel.

3.4. Panoptic Segmentation

According to [20], one big problem in 2D image panop-

tic segmentation is the difficulty to efficiently separate in-

stances when the collision occurs, e.g., two people standing

next to each other. We hypothesized that we could circum-

vent this challenge in LiDAR data based on two assump-

tions. First, objects rarely collide in 3D space even their

masks overlap in 2D projection. Second, most “thing” class

objects in the LiDAR point cloud of urban scenes are still

separable when projected onto the XY-plane from 3D space.

Such a claim is also supported by [46], who find the same

object detection network has better performance in BEV in

contrast to 2D projection. This suggests that the BEV rep-

13197

resentation has the potential to not only improve the perfor-

mance but also reduce the problem of instance clustering in

the LiDAR point cloud panoptic segmentation to a 2D prob-

lem. Therefore, we can use the same network of PolarNet

to generate discriminative features for separating instances

in the BEV.

We follow the instance head design in Panoptic-

DeepLab [7] to predict the center heatmap and the offset

to the object center for each BEV pixel. Pixels that have

the same nearest center are grouped together. Compared to

other top-down methods with overlaps of class prediction

between segmentation and instance branches, this bottom-

up design provides only class-agnostic instance grouping.

This allows us to avoid the conflict of class prediction and

train instance head without bounding box annotation. Dur-

ing the training phase, we encode the ground truth center

map by a 2D Gaussian distribution around each instance’s

mass center. For each pixel p in the BEV map, the heatmap

is Hp = maxi exp(−
(p−ci)

2

2σ2), where ci is the mass center

of one instance in the polar BEV coordinates.

To merge the 3D semantic segmentation and 2D instance

grouping predictions, we propose a fusion step as shown

in Figure 2. First, the top k centers are selected from

the heatmap prediction after a non-maximum suppression.

Next, we use the semantic segmentation prediction to create

a foreground mask where at least one “thing” class is de-

tected at one BEV pixel. Pixels in the foreground are then

grouped together based on the minimal distance d(p, ci) =‖
p+ offset(p)− ci ‖2 to one of the k centers. Lastly, “thing”

class predictions in the semantic segmentation head are as-

signed a unique instance label L for each group Gi in the

BEV using a majority voting according to semantic seg-

mentation probability P (v): Li = argmax
∑

v∈Gi
P (v).

All these operations are implemented in GPU, requiring lit-

tle computational time.

3.5. Augmenting Panoptic­PolarNet

Instance augmentation: Training data augmentation on

the instance level has proven to be an important technique

for LiDAR object detection [23, 15] without increasing in-

ference computational cost. How the sensor samples points

of an instance is determined by the sensor’s angle interval,

the relative pose, and distance of an instance to the sensor.

Our instance augmentation aims to increase the variance of

data without changing the projection properties of instance

points. We summarise it as the following three steps: (1)

Instance oversampling: We randomly choose 5 instances

from the whole training set and paste them into the current

training scan. The probability of each class being selected

is in proportion to the reciprocal of its point distribution ra-

tio. The imported points retain the same relative coordinates

and reflection values as in their source. (2) Instance global

augmentation: The goal here is to find a transformation to

change an instance’s location on XY-plane without altering

its projection on the sensor. The need to preserve projec-

tion narrows the transformation to either rotation on the cen-

ter or reflection on a certain view plane through the center.

We apply those two transformations to each instance with a

20% probability for each transformation. (3) Instance local

augmentation: We also apply small independent translation

and rotation to each instance, which serves as measurement

noise. We sample the translations [∆x,∆y,∆z] from a nor-

mal distribution N(0, 0.25), and the rotation angle ∆θ from

a uniform distribution U(−20/π,+20/π).

Point cloud self-adversarial pruning: Inspired by

YOLO-v4 [4], we also use self-adversarial pruning on the

point cloud after the training is almost converged. The

idea of self-adversarial pruning is to find the most influ-

ential points through the network itself. Those points are

likely to be either noise or key feature points. By omit-

ting those points during training, we enforce the network

to learn more general features from the overall point cloud

instead of overfitting into some specific geometry patterns.

More specifically, we use two forward-backward loops for

each batch of input data. We use the gradient to select those

highly influential points in the first forward-backward loop

and feed the altered data to the second forward-backward

loop to update the network weights after omitting those

points. Similar to [31], we consider the gradient variance

as the diagonal of the Fisher information matrix, which rep-

resents the importance of input to the panoptic loss. In the

experiments, we deleted only the top 1% of the points ac-

cording to validation results.

Visibility feature: Visibility is a concept commonly

used in the mapping problem to create an occupancy map

of the environment through raycasting. Recently, Hu et

al. [17] included the visibility in the detection problem to

enrich the voxel representation of the point cloud. Given a

point (x, y, z) in the LiDAR point cloud, the space along

the same direction α(x, y, z) can be divided into visible if

0 < α < 1 and occluded if α > 1. However, comput-

ing the visibility for the whole 3D space requires travers-

ing through all points, which is usually preprocessed offline

before the training. Since the range at the z axis is much

smaller than the other two axes in the LiDAR point cloud,

we approximate this traversal as for each point at (d, θ, z),
where d and θ are the distance and angle in the polar coor-

dinates, the space of (αd, θ, z) is visible if 0 < α < 1 and

occluded if α > 1. Hence we can compute the visibility

for each voxel efficiently in the polar coordinate alongside

the instance data augmentation during the training. We con-

catenate the visibility feature with the feature representation

generated by the polar BEV encoder, then feed it into the

backbone network in our implementation.

13198

4. Experiment

In this section, we demonstrate our panoptic segmen-

tation results on the SemanticKITTI [2] dataset and the

nuScenes [5] dataset. Due to page limitations, please re-

fer to our supplementary material for more details on the

experiments, discussions, and qualitative examples.

4.1. Datasets

SemanticKITTI provides point-wise semantic and in-

stance annotations for the well known KITTI [12] odometry

dataset, which contains 10/1/11 training/validation/testing

sequences, and a total of 43551 LiDAR scans of European

city streets. Each SemanticKITTI scan has 104452 points

on average and is annotated with 20 class labels, 8 of which

are selected as “thing” classes.

NuScenes is a large scale autonomous driving dataset

created by Motional. It contains 1000 driving scenes, with

850 scenes for training and validation, and 150 scenes

for testing. In each keyframe that is sampled every 0.5s,

nuScenes provides bounding box annotations for 10 pos-

sible object classes and point-wise semantic labels for 16

classes. The first 10 are the same as object classes. Al-

though nuScenes also provides image and radar data, we

only used the LiDAR data in the keyframe during the train-

ing and validation. Unlike SemanticKITTI, nuScenes does

not explicitly provide the instance label for each point. We

manually created the panoptic instance annotation by as-

signing “thing” points to its closest detection bounding box.

We remove outliers by omitting the “thing” points that are

more than 5m apart from the nearest bounding box cen-

troids. Since nuScenes does not provide panoptic segmenta-

tion metrics on the test set evaluation server, we only report

panoptic segmentation results on the validation set.

4.2. Baselines

Our baselines include both dedicated panoptic LiDAR

point cloud segmentation methods as well as combinations

of state-of-the-art segmentation and detection pipelines.

The method proposed by Milioto et al. [28], MOPT [19]

and Panoster [11] are the only three methods specifically de-

signed for LiDAR point cloud panoptic segmentation. The

first two are trained on range images, while the third one

is a variant of KPConv [44] at the point level. Due to the

lack of public implementation, we use their reported re-

sults for comparison. For the combining methods, we pick

the highest-ranking approaches with public implementa-

tion. We use PolarNet [55] and SalsaNext [8] to generate the

semantic prediction. We use PV-RCNN [39] and PointR-

CNN [40] to generate the object bounding box prediction

for the SemanticKITTI dataset. In addition, we include

two combining baselines (Rangenet++ [29]/KPConv [44] +

PointPillar [23]) from [2] in our comparison. We generate

all results of these baselines from their publicly available

implementations and pretrained-networks. During the com-

bination, we pick the points within and close to each bound-

ing box prediction and assign a unique instance to all points

that have the same class as the bounding box. We use the

combined time of semantic segmentation and object detec-

tion as the total inference time for the combining method.

On the nuScenes dataset, we use OpenPCDet’s [43] pre-

trained nuScenes CBGS [59] model for the object detec-

tion. Since SalsaNext [8] has the best SemanticKITTI test-

ing mIoU among all open-source LiDAR segmentation net-

works, we train the SalsaNext on the nuScenes dataset from

scratch as there are no available pretrained nuScenes seg-

mentation networks.

4.3. Setup

Metrics: We use mean intersection over union (mIoU)

to evaluate the performance of semantic segmentation. For

panoptic segmentation, we use the panoptic quality (PQ)

metric [20], defined as

PQ =

∑

TP IoU

|TP|
︸ ︷︷ ︸

SQ

|TP|

|TP|+ 1
2 |TN|+ 1

2 |FP|
︸ ︷︷ ︸

RQ

. (1)

For an instance prediction to be considered as a TP, it

needs at least 50% overlap with the groundtruth. Recogni-

tion quality (RQ) shows the accuracy of finding TP, while

Semantic quality (SQ) shows the average IoU in all TPs.

In addition, we report PQ†, which is proposed by Porzi et

al. [33] to use only SQ as PQ in “stuff” classes. We also re-

port the inference time to generate a single scan prediction.

Implementation details: Following the same configu-

ration of PolarNet [55], we discretize the 3D space within

[distance : 3 ∼ 50m, z : −3 ∼ 1.5m] to [480, 360, 32]
voxels in SemanticKITTI. We generate the groundtruth

heatmap for the center prediction in a ±3∗5 window around

the mass center of points, and correspondingly use the NMS

with kernel size σ = 5, threshold 0.1, and k = 100
during the panoptic fusion. Compared to SemanticKITTI,

nuScenes uses the LiDAR sensor that contains 32 beams

rather than 64 beams. Furthermore, each scan in nuScenes

has 34720 points and 34 instances on average, whereas Se-

manticKITTI has 104452 points and 5.3 instances. As a re-

sult, object points are more sparse in the nuScenes dataset.

Hence, we consider an instance with a minimal of 20 points

instead of 50 points as a valid instance during the panop-

tic segmentation evaluation. We use the same implementa-

tion setting as in SemanticKITTI to train Panoptic-PolarNet

in nuScenes, except that we change the 3D space range to

[distance : 0 ∼ 50m, z : −5 ∼ 3m].
We implemented Panoptic-PolarNet in Pytorch on a sin-

gle NVIDIA TITAN Xp GPU. We use the Adam optimizer

with the default configuration. We use the combination of

13199

Table 1: Panoptic Segmentation results on the test split of SemanticKITTI.
Method Latency PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

Rangenet++ [29] + PointPillar [23] 0.409s 37.1% 45.9% 47.0% 75.9% 20.2% 25.2% 75.2% 49.3% 62.8% 76.5% 52.4%

Milioto et al. [28] 0.085s 38.0% 47.0% 48.2% 76.5% 25.6% 31.8% 76.8% 47.1% 60.1% 76.2% 50.9%

KPConv [44] + PointPillar [23] 0.514s 44.5% 52.5% 54.4% 80.0% 32.7% 38.7% 81.5% 53.1% 65.9% 79.0% 58.8%

SalsaNext [8] + PV-RCNN [39] 0.255s 47.6% 55.3% 58.6% 79.5% 39.1% 45.9% 82.3% 53.7% 67.9% 77.5% 58.9%

Panoster [11] -* 52.7% 59.9% 64.1% 80.7% 49.9% 58.8% 83.3% 55.1% 68.2% 78.8% 59.9%

Panoptic-PolarNet-mini 0.057s 52.6% 59.4% 63.6% 80.9% 51.9% 59.5% 86.9% 53.1% 66.6% 76.5% 58.4%

Panoptic-PolarNet 0.086s 54.1% 60.7% 65.0% 81.4% 53.3% 60.6% 87.2% 54.8% 68.1% 77.2% 59.5%

* [11] did not disclose their latency nor did they release their code. Since [11] is a variant of KPConv, its latency should be similar to KPConv which is

stated to be 200ms [44].

Table 2: Panoptic Segmentation results on the validation split of SemanticKITTI.
Method Latency PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

MOPT [19] 0.146s 40.0% - 48.3% 73.0% 29.9% 33.6% 76.8% 47.4% 70.3% 59.1% 53.8%

SalsaNext [8] + PointRCNN [40] 0.196s 47.5% 53.2% 58.2% 74.4% 42.5% 50.3% 73.4% 51.1% 64.0% 75.2% 59.0%

PolarNet [55] + PointRCNN [40] 0.202s 47.9% 53.1% 58.7% 71.3% 39.5% 47.8% 71.0% 54.1% 66.7% 71.4% 58.2%

PolarNet [55] + PV-RCNN [39] 0.261s 49.9% 55.0% 60.9% 71.4% 44.1% 52.9% 71.2% 54.1% 66.7% 71.4% 58.2%

SalsaNext [8] + PV-RCNN [39] 0.255s 49.9% 55.6% 61.0% 74.4% 48.3% 56.7% 73.3% 51.1% 64.0% 75.2% 59.0%

Panoptic-PolarNet in Cartesian coordinates 0.078s 54.3% 58.8% 65.5% 78.0% 58.4% 67.3% 85.3% 50.3% 64.2% 69.1% 58.6%

Panoptic-PolarNet-mini 0.057s 57.1% 61.8% 68.1% 77.7% 63.8% 72.6% 87.4% 52.2% 64.9% 70.6% 61.9%

Panoptic-PolarNet 0.086s 59.1% 64.1% 70.2% 78.3% 65.7% 74.7% 87.4% 54.3% 66.9% 71.6% 64.5%

cross-entropy loss (Lce) and Lovasz softmax loss [3] (Lls)

to train our semantic segmentation head. For the instance

head, we use the MSE loss (Lhm) for the heatmap regres-

sion and L1 loss (Los) for the offset regression. The final

loss is

L = Lce + Lls + λhmLhm + λosLos, (2)

where we set λhm = 100 and λos = 10. In addition to in-

stance augmentation, during the training, we also use data

augmentations, which randomly reflects a point cloud along

x, y and x + y axis and randomly rotates the point cloud

around the Z axis. We apply dropblock [14] at the end of

each up layer to further regularize the training of the pro-

posed Panoptic-PolarNet. Unless specifically mentioned,

all hyperparameters (percentage of points pruned per frame,

etc.) are tuned on the validation dataset.

4.4. Quantitative Results

Table 1 shows the comparison between Panoptic-

PolarNet and the baselines on the test split of Se-

manticKITTI. Our method outperforms the best baseline by

1.4% in PQ while having a near real-time inference speed,

setting a new state-of-the-art performance for the LiDAR

panoptic segmentation. It is noticeable that our method has

a significant improvement for the “thing” classes compared

with other dedicated state-of-the-art LiDAR object detec-

tor. We credit our superior instance prediction to the ar-

chitecture design and augmentation methods. On the other

hand, the results for “stuff” classes show a very close corre-

lation to the semantic segmentation. Nevertheless, we still

manage to achieve a better performance than the best com-

bining baseline method because of a more well-balanced

segmentation results among all classes. Our mini version

of Panoptic-PolarNet with [320, 240, 32] grid size achieves

a comparable result and only need 2/3 of inference time.

More detailed results with respect to each class will be pre-

sented in the supplemental materials.

We present our SemanticKITTI validation results in Ta-

ble 2. We additionally experimented with different set-

tings of Panoptic-PolarNet with more variants of combin-

ing baselines. Similar to [55], we found that polar coordi-

nate prevails Cartesian coordinate in terms of every metric

while having a slower inference time. All three settings of

Panoptic-PolarNet outperform the best baseline method by

a large margin.

We report the result on the validation set of nuScenes in

Table 3. Our method outperforms the combining baseline

method by 1.1% in PQ with only half of the time. However,

due to the increase in the number of instances, the inference

time in nuScenes is slightly higher than SemanticKITTI.

4.5. Ablation Studies

To further analyze the influence of each component, we

conducted the ablation studies on the validation split of Se-

manticKITTI, as shown in Table 4. We started by training

Panoptic-PolarNet without any augmentation and used two

independent decoding networks for semantic and instance

heads. Rather than using an attention module to connect the

learned information between semantic and instance heads,

we found out that directly sharing the first three decoding

layers can increase the PQ from 51.6% to 52.3% with an

even smaller computation load. This indicates that the fea-

tures learned by semantic and instance heads share plenty

of similarities in our setting. Next, we tested the effect

of different instance augmentation components on the seg-

mentation results. Instance oversampling improves PQ by

2.8% and mIoU by 2.1%, which benefits the “thing” classes

that seldom appear in a scan most. On the other hand,

instance global augmentation and local augmentation both

have improvements, and using all three instance augmenta-

13200

Table 3: Panoptic segmentation results on the validation split of nuScenes.

Method Latency PQ PQ† RQ SQ PQTh RQTh SQTh PQSt RQSt SQSt mIoU

PolarNet [55] + CBGS [59] 0.208s 66.6% 70.3% 78.0% 84.6% 63.8% 74.1% 85.1% 71.4% 84.5% 83.7% 71.8%

SalsaNext [8] + CBGS [59] 0.207s 61.6% 66.3% 72.3% 84.5% 59.5% 68.1% 86.6% 65.1% 79.5% 81.0% 63.4%

Panoptic-PolarNet 0.099s 67.7% 71.0% 78.1% 86.0% 65.2% 74.0% 87.2% 71.9% 84.9% 83.9% 69.3%

Table 4: Ablation study of Panoptic PolarNet on the valida-

tion split of SemanticKITTI. ‘SU’,‘IO’,‘IGA’,‘ILA’,‘SAP’,

‘Vis’ stand for training with first three up layers shared

among semantic and instance heads (SU), instance over-

sampling (IO), instance global augmentation (IGA), in-

stance local augmentation (ILA), self adversarial pruning

(SAP), and visibility feature (Vis).
SU IO IGA σ = 5 ILA SAP Vis PQ mIoU

51.6% 57.8%

× 52.3% 58.1%

× × 55.1% 60.2%

× × × 57.0% 62.1%

× × × × 57.3% 61.3%

× × × × 57.3% 61.7%

× × × × × 57.4% 61.6%

× × × × × × 57.5% 62.1%

× × × × × × 58.0% 62.6%

× × × × × × × 59.1% 64.5%

Table 5: Oracle test of Panoptic-PolarNet on the validation

split of SemanticKITTI.

GT Heatmap GT Offset GT Semantic PQ mIoU

59.1% 64.5%

× 59.5% 64.5%

× 59.4% 64.5%

× × 60.1% 64.5%

× 91.9% 94.1%

× × × 96.8% 96.4%

tion methods gives the best result in PQ. Self-adversarial

pruning slightly improves the results in terms of PQ but

helps to stabilize the semantic results, especially for “stuff”

classes. Lastly, visibility feature improves the PQ by 1.6%.

Those classes that are mostly surrounded by visible space,

like bicyclist and motorcyclist, benefit most from the visi-

bility feature.

We also conducted an oracle test, as shown in Table 5 to

investigate the room for improvement in Panoptic-PolarNet.

We replaced some predictions in the semantic and instance

heads to the ground truth for each experiment and gener-

ated the panoptic predictions using the same fusion step. It

can be seen that our heatmap and offset prediction are both

very close to the ground truth in our test setting and, when

combined, have only 1.0% difference in PQ compared to

the ground truth instance clustering. Conversely, ground

truth semantic prediction greatly impacts the results and in-

creases both the PQ and mIoU to above 90%. This matches

the finding in [7] that the biggest bottleneck in proposal-

Table 6: Runtime and parameter size comparisons of

Panoptic-PolarNet.

Model Pred Fusion Params FPS

PolarNet 0.059s - 13.6M 16.9

Panoptic-PolarNet 0.061s 0.025s 13.7M 11.6

Panoptic-PolarNet-mini 0.043s 0.014s 13.7M 17.5

free panoptic segmentation is the semantic segmentation.

Lastly, Table 5 shows that PQ and mIoU are 96.8% and

96.4% when we use all three ground truth together. This

shows that the discretization and projection errors are rela-

tively small in our setting and also verifies our assumption

that it is sufficient to separate instances directly on the BEV.

4.6. Runtime

We report the detailed runtime and model size of

Panoptic-PolarNet with different settings in Table 6. Com-

pared with PolarNet [55] that solves only for semantic seg-

mentation, our method merely increases the parameter size

by 0.1M, and prediction time by 0.02s. Such an insignifi-

cant increase reflects our method’s high efficiency in gen-

erating instance prediction on top of a well-established se-

mantic segmentation network. The inference time differ-

ence mostly comes from the fusion step, while it is worth

noting that this part has a big room for improvement if bet-

ter optimized. Both Panoptic-PolarNet and its mini version

can process LiDAR data in real-time as a typical LiDAR

sensor works at 10 FPS [12, 41].

5. Conclusion

In this paper, we present a real-time proposal-free Li-

DAR point cloud panoptic segmentation framework named

Panoptic-PolarNet. Our method builds upon the established

semantic segmentation network and solves the instance seg-

mentation by center regression on the polar BEV map.

This design highly simplifies the complexity of the panop-

tic segmentation, requiring a negligible computation over-

head on top of the semantic segmentation and achieving the

state-of-the-art result on both SemanticKITTI and nuScenes

datasets. We also propose several novel augmentation meth-

ods that can be generalized to any other LiDAR point cloud

segmentation methods. We hope Panoptic-PolarNet can

serve as a strong baseline for future research and a help-

ful framework for current semantic segmentation methods

to migrate to the panoptic segmentation.

13201

References

[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-

zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-

manticKITTI: A dataset for semantic scene understanding of

lidar sequences. In ICCV, 2019.

[2] Jens Behley, Andres Milioto, and Cyrill Stachniss. A Bench-

mark for LiDAR-based Panoptic Segmentation based on

KITTI. In arXiv, 2020.

[3] Maxim Berman, Amal Rannen Triki, and Matthew B

Blaschko. The Lovász-Softmax loss: A tractable surrogate

for the optimization of the intersection-over-union measure

in neural networks. In CVPR, 2018.

[4] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-

Yuan Mark Liao. Yolov4: Optimal speed and accuracy of

object detection. In arXiv, 2020.

[5] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,

Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-

ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-

modal dataset for autonomous driving. In CVPR, 2020.

[6] Yifeng Chen, Guangchen Lin, Songyuan Li, Omar Bourahla,

Yiming Wu, Fangfang Wang, Junyi Feng, Mingliang Xu, and

Xi Li. Banet: Bidirectional aggregation network with occlu-

sion handling for panoptic segmentation. In CVPR, 2020.

[7] Bowen Cheng, Maxwell D Collins, Yukun Zhu, Ting Liu,

Thomas S Huang, Hartwig Adam, and Liang-Chieh Chen.

Panoptic-deeplab: A simple, strong, and fast baseline for

bottom-up panoptic segmentation. In CVPR, 2020.

[8] Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy.

Salsanext: Fast, uncertainty-aware semantic segmentation of

lidar point clouds for autonomous driving. In arXiv, 2020.

[9] Bert De Brabandere, Davy Neven, and Luc Van Gool.

Semantic instance segmentation with a discriminative loss

function. In arXiv, 2017.

[10] Naiyu Gao, Yanhu Shan, Yupei Wang, Xin Zhao, Yinan Yu,

Ming Yang, and Kaiqi Huang. Ssap: Single-shot instance

segmentation with affinity pyramid. In ICCV, 2019.

[11] Stefano Gasperini, Mohammad-Ali Nikouei Mahani, Al-

varo Marcos-Ramiro, Nassir Navab, and Federico Tombari.

Panoster: End-to-end panoptic segmentation of lidar point

clouds. In arXiv, 2020.

[12] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? The KITTI vision benchmark

suite. In CVPR, 2012.

[13] Jakob Geyer, Yohannes Kassahun, Mentar Mahmudi,

Xavier Ricou, Rupesh Durgesh, Andrew S Chung, Lorenz

Hauswald, Viet Hoang Pham, Maximilian Mühlegg, Sebas-

tian Dorn, et al. A2d2: Audi autonomous driving dataset. In

arXiv, 2020.

[14] Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock:

A regularization method for convolutional networks. In

NeurIPS, 2018.

[15] Martin Hahner, Dengxin Dai, Alexander Liniger, and Luc

Van Gool. Quantifying data augmentation for lidar based 3d

object detection. In arXiv, 2020.

[16] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Gir-

shick. Mask r-cnn. In ICCV, 2017.

[17] Peiyun Hu, Jason Ziglar, David Held, and Deva Ramanan.

What you see is what you get: Exploiting visibility for 3d

object detection. In CVPR, 2020.

[18] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan

Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.

RandLA-Net: Efficient semantic segmentation of large-scale

point clouds. In CVPR, 2020.

[19] Juana Valeria Hurtado, Rohit Mohan, and Abhinav Valada.

Mopt: Multi-object panoptic tracking. In CVPR Workshop,

2020.

[20] Alexander Kirillov, Kaiming He, Ross Girshick, Carsten

Rother, and Piotr Dollar. Panoptic segmentation. In CVPR,

2019.

[21] Deyvid Kochanov, Fatemeh Karimi Nejadasl, and Olaf

Booij. Kprnet: Improving projection-based lidar semantic

segmentation. In arXiv, 2020.

[22] Jean Lahoud, Bernard Ghanem, Marc Pollefeys, and Mar-

tin R Oswald. 3d instance segmentation via multi-task metric

learning. In ICCV, 2019.

[23] Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou,

Jiong Yang, and Oscar Beijbom. PointPillars: Fast encoders

for object detection from point clouds. In CVPR, 2019.

[24] Yanwei Li, Xinze Chen, Zheng Zhu, Lingxi Xie, Guan

Huang, Dalong Du, and Xingang Wang. Attention-guided

unified network for panoptic segmentation. In CVPR, 2019.

[25] Huanyu Liu, Chao Peng, Changqian Yu, Jingbo Wang, Xu

Liu, Gang Yu, and Wei Jiang. An end-to-end network for

panoptic segmentation. In CVPR, 2019.

[26] Jinxian Liu, Minghui Yu, Bingbing Ni, and Ye Chen. Self-

prediction for joint instance and semantic segmentation of

point clouds. In ECCV, 2020.

[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In

CVPR, 2015.

[28] Andres Milioto, Jens Behley, Chris McCool, and Cyrill

Stachniss. Lidar panoptic segmentation for autonomous driv-

ing. In IROS, 2020.

[29] Andres Milioto and C Stachniss. RangeNet++: Fast and ac-

curate LiDAR semantic segmentation. In IROS, 2019.

[30] Rohit Mohan and Abhinav Valada. Efficientps: Efficient

panoptic segmentation. In arXiv, 2020.

[31] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio,

and Jan Kautz. Importance estimation for neural network

pruning. In CVPR, 2019.

[32] Quang-Hieu Pham, Thanh Nguyen, Binh-Son Hua, Gemma

Roig, and Sai-Kit Yeung. Jsis3d: joint semantic-instance

segmentation of 3d point clouds with multi-task pointwise

networks and multi-value conditional random fields. In

CVPR, 2019.

[33] Lorenzo Porzi, Samuel Rota Bulò, Aleksander Colovic, and

Peter Kontschieder. Seamless scene segmentation. In CVPR,

2019.

[34] Charles R Qi, Or Litany, Kaiming He, and Leonidas J

Guibas. Deep hough voting for 3d object detection in point

clouds. In ICCV, 2019.

[35] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3d object detection from rgb-d

data. In CVPR, 2018.

13202

[36] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. In CVPR, 2017.

[37] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NeurIPS, 2017.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:

Convolutional networks for biomedical image segmentation.

In MICCAI, 2015.

[39] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-

voxel feature set abstraction for 3d object detection. In

CVPR, 2020.

[40] Shaoshuai Shi, Xiaogang Wang, and Hongsheng Li. Pointr-

cnn: 3d object progposal generation and detection from point

cloud. In CVPR, 2019.

[41] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien

Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou,

Yuning Chai, Benjamin Caine, et al. Scalability in perception

for autonomous driving: Waymo open dataset. In CVPR,

2020.

[42] Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin,

Hanrui Wang, and Song Han. Searching efficient 3d architec-

tures with sparse point-voxel convolution. In ECCV, 2020.

[43] OpenPCDet Development Team. Openpcdet: An open-

source toolbox for 3d object detection from point clouds.

https://github.com/open-mmlab/OpenPCDet,

2020.

[44] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, François Goulette, and Leonidas J.

Guibas. KPConv: Flexible and deformable convolution for

point clouds. In ICCV, 2019.

[45] Xinlong Wang, Shu Liu, Xiaoyong Shen, Chunhua Shen, and

Jiaya Jia. Associatively segmenting instances and semantics

in point clouds. In CVPR, 2019.

[46] Yan Wang, Wei-Lun Chao, Divyansh Garg, Bharath Hariha-

ran, Mark Campbell, and Kilian Q Weinberger. Pseudo-lidar

from visual depth estimation: Bridging the gap in 3d object

detection for autonomous driving. In CVPR, 2019.

[47] Bichen Wu, Alvin Wan, Xiangyu Yue, and Kurt Keutzer.

Squeezeseg: Convolutional neural nets with recurrent crf for

real-time road-object segmentation from 3d lidar point cloud.

In ICRA, 2018.

[48] Bichen Wu, Xuanyu Zhou, Sicheng Zhao, Xiangyu Yue, and

Kurt Keutzer. Squeezesegv2: Improved model structure and

unsupervised domain adaptation for road-object segmenta-

tion from a lidar point cloud. In ICRA, 2019.

[49] Yangxin Wu, Gengwei Zhang, Yiming Gao, Xiajun Deng,

Ke Gong, Xiaodan Liang, and Liang Lin. Bidirectional graph

reasoning network for panoptic segmentation. In CVPR,

2020.

[50] Yuwen Xiong, Renjie Liao, Hengshuang Zhao, Rui Hu, Min

Bai, Ersin Yumer, and Raquel Urtasun. Upsnet: A unified

panoptic segmentation network. In CVPR, 2019.

[51] Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embed-

ded convolutional detection. In Sensors, 2018.

[52] Bin Yang, Wenjie Luo, and Raquel Urtasun. Pixor: Real-

time 3d object detection from point clouds. In CVPR, 2018.

[53] Tien-Ju Yang, Maxwell D Collins, Yukun Zhu, Jyh-Jing

Hwang, Ting Liu, Xiao Zhang, Vivienne Sze, George Pa-

pandreou, and Liang-Chieh Chen. Deeperlab: Single-shot

image parser. In arXiv, 2019.

[54] Tianwei Yin, Xingyi Zhou, and Philipp Krähenbühl. Center-

based 3d object detection and tracking. In arXiv, 2020.

[55] Yang Zhang, Zixiang Zhou, Philip David, Xiangyu Yue, Ze-

rong Xi, Boqing Gong, and Hassan Foroosh. Polarnet: An

improved grid representation for online lidar point clouds se-

mantic segmentation. In CVPR, 2020.

[56] Dingfu Zhou, Jin Fang, Xibin Song, Liu Liu, Junbo Yin,

Yuchao Dai, Hongdong Li, and Ruigang Yang. Joint 3d

instance segmentation and object detection for autonomous

driving. In CVPR, 2020.

[57] Yin Zhou, Pei Sun, Yu Zhang, Dragomir Anguelov, Jiyang

Gao, Tom Ouyang, James Guo, Jiquan Ngiam, and Vijay Va-

sudevan. End-to-end multi-view fusion for 3d object detec-

tion in lidar point clouds. In CoRL, 2020.

[58] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3d object detection. In CVPR, 2018.

[59] Benjin Zhu, Zhengkai Jiang, Xiangxin Zhou, Zeming Li, and

Gang Yu. Class-balanced grouping and sampling for point

cloud 3d object detection. In arXiv, 2019.

13203

