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Abstract

Visual and audio signals often coexist in natural environ-

ments, forming audio-visual events (AVEs). Given a video,

we aim to localize video segments containing an AVE and

identify its category. In order to learn discriminative fea-

tures for a classifier, it is pivotal to identify the helpful (or

positive) audio-visual segment pairs while filtering out the

irrelevant ones, regardless whether they are synchronized

or not. To this end, we propose a new positive sample prop-

agation (PSP) module to discover and exploit the closely

related audio-visual pairs by evaluating the relationship

within every possible pair. It can be done by construct-

ing an all-pair similarity map between each audio and vi-

sual segment, and only aggregating the features from the

pairs with high similarity scores. To encourage the net-

work to extract high correlated features for positive sam-

ples, a new audio-visual pair similarity loss is proposed.

We also propose a new weighting branch to better exploit

the temporal correlations in weakly supervised setting. We

perform extensive experiments on the public AVE dataset

and achieve new state-of-the-art accuracy in both fully and

weakly supervised settings, thus verifying the effectiveness

of our method.

1. Introduction

Recent literature has shown that by fusing multi-

modality information can lead to better deep feature pre-

sentation, i.e., audio-visual fusion [2] and text-visual fu-

sion [20]. However, building a large scale multi-modality

pre-training datasets would require heavy manual labours to

clean and annotate the raw video sets. To relief the manual

labour, recent work either focuses on learning from noise

supervision [5, 12] or tries to automatically filter out un-

paired samples [28].

The task of Audio-Visual Event (AVE) localization [28]
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Figure 1. An illustration of the AVE localization task. Each video

segment is composed of an audio and a visual component. In this

example, the “hum” of the bus exists in all the segments (audio

modality), but the visual images of the “bus” only appear in the

third and fourth segments (visual modality). So only these two

segments (red boxes) are localized as (bus) event, the remaining

are recognized as background.

is served for the latter purpose. An AVE often refers as an

event that is both audible and visible in a video segment,

i.e., a sound source appears in an image (visible) while the

source of the sound also exists in audio portion (audible).

As shown in Fig. 1, a bus humming is an AVE in the third

and fourth segments as we can see a bus and hear it hum-

ming simultaneously in these video segments. The AVE

localization task is to find these video segments that contain

an audio-visual event and classify it into a certain category1.

There are two relations that need to be considered in

the AVE task: intra-modal relations and cross-modal re-

lations. The former often addresses temporal relations in

one single modality while the later also takes audio and vi-

sual relations into account. The pioneer work [14, 28] of-

ten tries to regress the class by concatenating features from

synchronized audio-visual pairs. Since these methods do

not explicitly consider the intra-modal or cross-modal re-

lations, their accuracy is often unsatisfying. The follow-

1Note that there is a fundamental difference between the Multimedia

Event Detection (MED) task and the AVE localization task: MED is a

retrieval task that aims to find video clips that are associated with a partic-

ular event from a video archive while AVE localization is a classification

problem.
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ing works [27, 30, 31, 32] utilize a self-attention mech-

anism to explicitly encode the temporal relations within

intra-modality and some of them [21, 22, 31, 32] also aggre-

gate better audio-visual feature representations by encoding

cross-modal relations. However, these methods often ig-

nore the interference caused by irrelevant audio-visual seg-

ment pairs during the fusion process. In this paper, we argue

that by only aggregating features from positive samples, i.e.,

high-relevant audio-visual pairs, we can have better AVE lo-

calization accuracy.

Specifically, we propose a new Positive Sample Propaga-

tion (PSP) module. In a nutshell, PSP first constructs an all-

pair similarity map between each audio and visual segment

and cuts off the entries that are below a pre-set similarity

threshold, and then aggregates the audio and visual features

without considering the negative and weak entries in an on-

line fashion. Through various visualizations we show that

PSP allows more relevant features that are not necessarily

synchronized to be aggregated in an online fashion.

Apart from PSP that can be used in both fully and weakly

supervised settings (refer Sec. 3 for the setting details), we

further propose two improvements that work under each set-

ting, respectively. On the one hand, an audio-visual pair

similarity loss is introduced under the fully supervised set-

ting that encourages the network to learn high correlated

features of audio and visual segments if they belong to the

same event. On the other hand, we propose a weighting

branch in the weakly supervised setting, which gives tem-

poral weights to the segment features.

We evaluate our method on the standard AVE

dataset [28]. We show that the proposed techniques con-

sistently benefit our system and when combined allow us to

achieve state-of-the-art performance under both fully and

weakly supervised settings.

2. Related work

Audio-visual correspondence (AVC) aims to predict

whether a given visual image corresponds duration of the

audio. A model is asked to judge whether the audio and vi-

sual signals describe the same object, e.g., dog v.s. bark, cat

v.s. meow. It is a self-supervised problem since the visual

image is usually accompanied by the corresponding sound.

Existing methods try to evaluate the correspondences by

measuring the audio-visual similarity [2, 3, 4, 6, 8, 11]. It

will get a large similarity score if the audio-visual pair is

corresponding, otherwise, a low score. This motivates us to

tackle the abundant audio-visual pairs in the AVE localiza-

tion problem by considering the audio-visual similarity.

Sound source localization aims to localize those visual

regions which are relevant to the provided audio signal. It

is related to sound source separation [1, 7, 17, 18, 33] prob-

lem. The target region of the visual frame must be corre-

sponding with the given sound. It is similar to the AVC

task from this point of view, but the real challenge of sound

source localization is to accurately locate the sound-maker

when there are multiple sound sources in a visual frame.

Qian et al. [19] adapt the Grad-CAM [24] to disentangle

class-specific features for multiple sound sources problem.

Senocak et al. [25] propose a triplet loss working in an un-

supervised manner. Afouras et al. [1] utilize a contrastive

loss to train the model in a self-supervised learning way.

Both of these methods [1, 25] need to construct positive and

negative audio-visual pair samples. Since similar positive

and negative samples are easily obtained in AVE localiza-

tion, depending on whether the audio and visual segments

depict the same event, we try to research those audio-visual

pairs and explore its effect.

Audio-visual event localization aims to distinguish

those segments including an audio-visual event from a long

video. Existing works mainly focus on the audio-visual

fusion process. A dual multimodal residual network is

proposed in [28]. Lin et al. [14] adapt a bi-directional

LSTM [23] to fuse audio and visual features in a seq2seq

manner. During the whole fusion process, simple concate-

nation and addition operations are adapted along the sin-

gle synchronized audio-visual pair. Ramaswamy [21, 22]

utilizes a bilinear method to capture cross-modal relations.

Xuan et al. [32] propose to leverage modality sentinel to

give different weights to audio and visual features. Lin et

al. [15] design an audio-visual transformer to describe local

spatial and temporal information. The visual frame is di-

vided into patches and adjacent frames are utilized, making

the model complicated and computationally intensive. Xu

et al. [31] attempt to leverage concatenating audio-visual

features as the supervision then the feature of each modality

is updated by separate modules. Unlike these, the proposed

PSP method has a further in-depth study on the abundant

audio-visual pairs, selecting the most relevant ones. Re-

lying on these positive samples, more distinguished audio-

visual features can be obtained after feature aggregation.

3. Problem statement

AVE localization aims to find out those segments con-

taining an audio-visual event [28]. In other words, AVE

localization is expected to decide whether each synchro-

nized audio-visual pair depicts an event. Besides, AVE lo-

calization needs to identify the event category for each seg-

ment. Specifically, a video sequence S is divided into T
non-overlapping yet continuous segments {Sv

t , S
a
t }Tt=1

, and

each segment is one-second long. Sv and Sa are the visual

and audio components, respectively. We consider two set-

tings of this task, to be described below.

Fully-supervised AVE localization. Under the fully-

supervised setting, the event label of every video seg-

ment is given, indicating whether the segment denotes

an event and which category the event belongs to. We
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Figure 2. System Flow. We first extract and encode video and audio features through existing modules such as AVGA [28] and Bi-LSTM.

The proposed positive sample propagation (PSP) takes the LSTM encoded features as input, which are fed to a few linear layers. An

affinity matrix is computed before selecting the positive connections of audio-visual segment pairs using thresholding. In this module,

audio and visual features are aggregated by feature propagation through the positive connections. In the last stage, we classify the event

into predefined categories. For the supervised setting, apart from the commonly used CE loss, we further propose an audio-visual pair

similarity loss which enforces similar features between them when they contain an event. For the weakly supervised setting, we introduce

another FC layer that gives weights to different video segments: higher weights are given event-containing segments.

denote the event label of the tth segment as yt =
{yct |yct ∈ {0, 1},∑C

c=1
yct = 1} ∈ R

C , where C is the

number of categories (including the background). Then,

the label for the entire video can be written as Y fully =
[y1;y2; ...;yT ] ∈ R

T×C . Through Y fully, we know

whether an arbitrary synchronized audio-visual pair at time

t is an event: if the 1 of its event label yt is at the entry of

a certain event instead of the background, the pair describes

an event, and otherwise does not.

Weakly-supervised AVE localization. We adapt the

weakly-supervised setting proposed in [14, 32], where the

label Y weak ∈ R
1×C is the average pooling value of Y fully

along the column. It implies the proportion of audio-visual

pairs that contain an event. This setting is different from the

fully-supervised one because the event label of each seg-

ment yt is unknown, making the problem more challenging.

4. Our method

4.1. Overall pipeline

The overall pipeline of our system is illustrated in Fig. 2,

which includes three modules: a feature extraction and en-

coding module, a positive sample propagation module, and

a classification module. In the feature extraction and en-

coding module, audio-guided visual attention (AVGA [28])

is adapted for early fusion to make the model focus on those

visual regions closely related to the audio component. Then

a Bi-LSTM is utilized to encode temporal relations in video

segments. The LSTM encoded features are sent to the pro-

posed positive sample propagation (PSP) module. PSP is

able to select those positive connections of audio-visual seg-

ment pairs by measuring the cross-modal similarity with

thresholding. Audio and visual features are aggregated by

feature propagation through the positive connections. The

updated audio-visual features after PSP are fused then sent

to the final classification module, predicting which video

segments contain an event and the event category.

4.2. Feature extraction and encoding

The visual and synchronized audio segments are

processed by pretrained convolutional neural networks

(CNNs). We denote the resulting visual feature as VVV ∈
R

T×N×dv , where dv is the feature dimension, N = H×W ,

H and W are the height and width of the feature map,

respectively. The extracted audio feature is denoted as

AAA ∈ R
T×da , where da denotes feature dimension. We

then directly adapt AGVA [28] for multi-modal early fu-

sion. AVGA allows the model to focus on visual regions

that are relevant to the audio component. To encode the

temporal relationship in video sequences, the visual and au-

dio features after AVGA are further sent to two independent

Bi-LSTMs. The updated visual and audio features are rep-

resented as vlstm ∈ R
T×dl and alstm ∈ R

T×dl , respectively.

4.3. Positive sample propagation (PSP)

PSP allows the network to learn more representative fea-

tures by exploiting the similarities of audio-visual pairs. It

involves three steps.

In all-pair connection construction, all the audio-visual

pairs are connected. As shown in Fig. 3, here we only dis-

play the connections of one visual segment for simplicity,

i.e., 〈v1 ↔ a1/a2/a3/a4〉. The strength of these connec-

tions are measured by the similarity between the audio-

visual components 〈alstm,vlstm〉, computed by,

βva =
(vlstmW v

1
)(alstmW a

1
)⊤√

dl
, βav = (βva)⊤, (1)
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where W v
1

and W a
1

∈ R
dl×dh are learnable parameters

of linear transformations, implemented by a linear layer,

and dl is the dimension of the audio or visual feature.

βva and βav ∈ R
T×T are the similarity matrices.

Second, we prune the negative and weak connections.

Specifically, the connections constructed in the first step are

divided into three groups according to the similarity values:

negative, weak, and positive. As a classification task, the

success of AVE localization highly depends on the richness

and correctness of training samples for each class. That is,

we aim to collect possibly many and relevant positive con-

nections. We achieve this goal by filtering out the weak and

negative ones, e.g., v1 ↔ a3 and v1 ↔ a4 as shown in

Fig. 3. We begin with processing all the audio-visual pairs

with the ReLU activation function, cutting off connections

with negative similarity values. Row-wise ℓ1 normalization

is then performed, yielding the normalized similarity matri-

ces βva and βva.

The negative and weak connections are presumably fea-

tured by smaller similarity values, so we simply adapt a

thresholding method, written as,

γva = βva
I(βva − τ),

γav = βav
I(βav − τ),

(2)

where τ is the hyper-parameter, controlling how many con-

nections will be pruned. I(·) is an indicator function, which

outputs 1 when the input is greater than or equal to 0, and

otherwise outputs 0, γva. After thresholding, row-wise ℓ1
normalization is again performed to obtain the final similar-

ity matrices γva, γav ∈ R
T×T .

Online feature aggregation. The above step identifies au-

dio (visual) components with high similarities with a given

visual (audio) component, e.g., v1 ↔ a1 and v1 ↔ a2
shown in Fig. 3. This is essentially a positive sample prop-

agation process that can be utilized to update the features of

audio or visual components. Particularly, given the connec-

tion weights γav and γva, the audio and visual features apsp

and vpsp are respectively updated as,

apsp =

v
pos

︷ ︸︸ ︷

γav(vlstmW v
2
)+alstm,

vpsp =

a
pos

︷ ︸︸ ︷

γva(alstmW a
2
)+vlstm,

(3)

where W a
2
,W v

2
∈ R

dl×dl are parameters defining linear

transformations, and apsp,vpsp ∈ R
T×dl .

Generally, the audio (visual) feature apsp (vpsp) is en-

hanced by the propagated positive support from the other

modality. This practice allows us to learn more discrimina-

tive audio-visual representations, displayed in Fig. 5. More

discussions are provided in Sec. 4.6.

𝒗𝟏 𝒗𝟐 𝒗𝟑 𝒗𝟒

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒

𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝟒
Step-1

event event background background

Step-3 Step-2

Figure 3. An illustration of the proposed PSP. In this example, only

the first two video segments contain an audio-visual event, i.e.,

motorcycle. “
√

” denotes the audio or visual segment describes

the event, while “×” means not. The red lines denote connections

of audio-visual pairs, solid lines represent connections formed by

relevant pairs, while dotted lines denote irrelevant pairs. The thick-

ness of line reflects the similarity of the audio-visual pair. v1 ↔ a4

is a negative connection, formed by irrelevant audio-visual pair

with negative similarity value. v1 ↔ a3 and v1 ↔ a1/a2 are

weak and positive connections respectively, determined via simi-

larity. The upper part corresponds to “Step-1” (all-pair connection

construction), while the lower part denotes “Step-2” (prune the

negative and weak connections), and the green arrow indicates the

direction of feature propagation (“Step-3”).

4.4. Classification

Before classifier prediction, we transform the visual and

audio features into the same embedding space through an-

other linear layer, and then combine the output through sim-

ple averaging, yielding the fusion feature denoted as fv↔a.

This process is written as,

fv↔a =
1

2
[N (vpspW v

3
) +N (apspW a

3
)], (4)

where N (·) represents layer normalization, W v
3
,W a

3
∈

R
dl×dl represent learnable parameters in the linear layers,

and fv↔a ∈ R
T×dl .

For the fully-supervised setting, as shown in Fig. 2, the

fusion feature is further processed by two FC layers. The

classifier prediction ofully ∈ R
T×C can be obtained through

a softmax function.

For the weakly supervised setting, different from exist-

ing methods [14, 28, 32], we add a weighting branch on

the fully supervised classification module (Fig. 2). It is es-

sentially another FC layer that enables the model to further

capture the differences between synchronized audio-visual

pairs by dynamically focusing on different event categories.

This process is summarized below,

fh = fv↔aW weak
4

W weak
5

,

φ = σ(fhW weak
6

),

oweak = s(favg(f
h ⊙Φ)),

(5)

where W weak
4

∈ R
dl×dh , W weak

5
∈ R

dh×C , W weak
6

∈
R

C×1 are learnable parameters in the FC layers, and fh ∈
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R
T×C . σ and s denote the sigmoid and softmax operators,

respectively. φ ∈ R
T×1 weighs the importance of the tem-

poral video segments, and Φ ∈ R
T×C is obtained by dupli-

cating φ for C times. ⊙ is the element-wise multiplication,

favg is the average operation along the temporal dimension.

The final prediction oweak ∈ R
1×C .

For comparison, we denote predictions through a net-

work without the weighting branch as,

oweak
wo = s(favg(f

h)). (6)

4.5. Objective function

Fully supervised setting. Given the network output

o
fully and ground truth Y

fully, we adapt the cross entropy

(CE) loss as the objective function, written as,

Lce = − 1

TC

T∑

t=1

C∑

c=1

Y
fully
tc log(Ofully

tc ) (7)

Recall that each row of Y fully contains a one-hot event label

vector, describing the category of the corresponding seg-

ment (synchronized audio-visual pair). As such, this classi-

fication loss allows the network to predict which event cat-

egory a video segment contains.

Apart from the CE loss, we propose a new loss item,

named audio-visual pair similarity loss Lavps. In principle,

it asks the network to produce similar features for a pair of

audio and visual components if the pair contains an event.

Specifically, for a video composed of T segments, we define

label vector G = {gt|gt ∈ {0, 1}, t = 1, 2, ..., T} ∈ R
1×T ,

where gt represents whether the tth segment is an event or

background. Next, ℓ1 normalization is performed on G.

We then compute the ℓ1 normalized similarity vector S ∈
R

1×T between the visual and audio features

S =
vpsp ⊙ apsp

‖vpsp ⊙ apsp‖
1

, (8)

where ‖ · ‖1 calculate the ℓ1 norm of a vector. The proposed

loss Lavps is then written as,

Lavps = LMSE(S,G), (9)

where LMSE(·, ·) computes the mean squares error between

two vectors.

Combining Eq. 9 and Eq. 7, the overall objective func-

tion for fully-supervised setting Lfully can be computed by:

Lfully = Lce + λLavps, (10)

where λ is a hyper-parameter to balance the two losses.

Weakly supervised setting. For this setting, following

the practice in [14, 31], we adapt the binary cross entropy

(BCE) loss, formulated as,

Lw-bce = LBCE(o
weak,Y weak),

Lwo-bce = LBCE(o
weak
wo ,Y weak),

(11)

where Lw-bce and Lwo-bce are calculated between the ground-

truths and predictions. oweak and oweak
wo are predictions ob-

tained with or without the weighting branch (Sec. 4.4 and

Fig. 2), respectively.

4.6. Discussion

Detailed examination and meanings of vpos and apos.

The computation of vpos (apos) is shown in Eq. 3. Take

vpos for example. The ith row v
pos
i is the weighted sum of

the visual feature vlstm
j (j = 1, 2, ..., T ) after linear trans-

formation. Here the weight, denoted as γav
i , is exactly the

similarity between the audio feature ai and features of all

the visual components. Note that some elements of γav
i are

zeros since the negative and weak connections are pruned

during PSP, so v
pos
i is the aggregation result of those posi-

tive visual features which are most relevant to ai.

Physical meanings of vpsp and apsp. Take apsp for ex-

ample. From Eq. 3, we find apsp is composed of two fea-

tures: the original audio feature alstm and the aggregation of

positive visual features vpos. As discussed above, those pos-

itive visual features have large audio-visual similarity val-

ues, i.e., small vector angles and similar vector directions.

Therefore, after being added to vpos, the magnitude and di-

rection of vectors representing original audio feature alstm

will be changed to reflect that during training. Such an ad-

justment in the distribution of audio representation can be

verified by the visualization results in Fig. 5.

Why an additional FC layer in the weakly supervised

setting? When fully supervised, clear supervision is known

for each segment. For the weakly supervised setting, both

the ground truth label Y weak ∈ R
1×C and the prediction

oweak ∈ R
1×C are obtained through an average pooling op-

eration along the temporal dimension. Without knowing the

supervision for each segment, the baseline approach con-

siders all temporal video segments to have similar weights

when calculating the loss. It makes it harder for the model

to focus on video segments that contain an event. In our de-

sign, through the sigmoid activation function, we obtain the

weights of temporal video segments. As such, our model

can better distinguish these temporal sequences and thus

help locate which segments contain an event.

Implications of Eq. 9. As shown in Eq. 7, the clas-

sification loss Lce prompts the model to correctly predict

the event categories. In comparison, Lavps allows the net-

work to be aware of whether an event exists in an audio-

visual pair. Specifically, if gt is equal to 1, the synchro-

nized audio-visual feature should have a higher similarity,

and otherwise lower. Therefore, for an audio (visual) com-

ponent, Lavps provides another auxiliary constraint so that

the model can better select the most relevant visual (audio)

components for feature aggregation during PSP. Note that

Lavps cannot be adapted in the weakly supervised setting,

where the label gt of each segment is unknown.
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5. Experiment

5.1. Experimental setup

Dataset. Following existing works [14, 28, 31, 32], we

use the AVE dataset [28] that is publicly available. This

dataset contains 4,143 videos, which cover various real-life

scenes and can be divided into 28 event categories, e.g.,

church bell, male speech, acoustic guitar, and dog bark-

ing. Each video sample is evenly partitioned into 10 seg-

ments, and each segment is one-second long. The audio-

visual event boundary on the segment level and the event

category on the video level are provided.

Evaluation metric. The category label of each segment

is predicted in both fully and weakly supervised settings.

Following [14, 28, 31, 32], we adapt the classification accu-

racy of each segment as the evaluation metric.

Implementation details. We use VGG-19 [26] pre-

trained on ImageNet [13] to extract the visual features.

Specifically, 16 frames are sampled from each one-second

segment. We extract the visual feature maps from each

frame and use the average map as the visual feature for this

segment. For audio features, we first process the raw au-

dio into log-mel spectrograms and then extract the acoustic

features using a VGG-like network [10] pretrained on Au-

dioSet [9]. Besides, dropout technique is used in the linear

layers (Fig. 2). Weight λ in Eq. 10 is empirically set to 100.

5.2. Quantitative Analysis

The effectiveness of the PSP encoding can be veri-

fied through comparing with an ablation study, i.e., remov-

ing it from the localization network (Fig. 2). In Table 1,

We denote the method without PSP as “w/o PSP”. We ob-

serve from the table that the performance drops in both the

fully supervised and weakly supervised setting significantly.

Specifically, the accuracy decrease is 4.1% (from 77.8% to

73.7%) and 3.3% (from 73.5% to 70.2%) for the two set-

tings, respectively. This experiment clearly validates PSP.

Comparison with alternative positive sample selec-

tion methods. In our method, we emphasize that weak and

negative samples are filtered out. Here, we compare this

strategy with two variants: 1) all connections are used; 2)

only negative ones are removed. Results are shown in Table

1. We have two main observations.

First, when all samples are propagated (denoted as

“ASP”), the accuracy drops by 1.9% and 2.3% on the two

settings, respectively. This shows that it is essential to have

a selection process before feature aggregation instead of uti-

lizing all the connections. In fact, the ASP variant shares the

same spirit with HAN [27].

Second, when we only remove the negative connections

(i.e., those with a similarity value below τ = 0), the system

is inferior to the full method. Specifically, the classification

accuracy decreases by 1.8% and 2.3% under the two set-

Method Fully-supervised Weakly-supervised

w/o PSP 73.7 70.2

ASP 75.9 71.2

WPSP 76.0 71.2

SAPSP 75.4 70.8

PSP (ours) 77.8 73.5

Table 1. Ablation studies of the proposed PSP, measured by ac-

curacy(%) on the AVE dataset. “w/o” denotes “without”. “ASP”

means retaining all connections (τ = −∞), while “WPSP” uses

the weak and positive ones (τ = 0). “SAPSP” represents adding

self-attention to the feature extractor.

tings, which validates the effectiveness of filtering out the

negative connections.

Comparison with adding self-attention [29] to the fea-

ture extractor. Self-attention [29] is widely used in exist-

ing methods [27, 30, 31, 32] to capture relationships within

single modality. To explore whether it is useful in our sys-

tem, we add a self-attention module before the Bi-LSTMs

and denote it as the “SAPSP” method. As shown in Ta-

ble 1, the performance surprisingly decreases by 2.4% and

2.7% under fully and weakly supervised settings, respec-

tively. We speculate that the PSP module is sufficient to de-

scribe the cross-modality while implicitly reveals the intra-

modality correlations. For example, in PSP a visual com-

ponent is constrained to have similar features with multiple

audio components describing the same event. Such cross-

modality similarity at the same time implies that the simi-

larity of the involved audio components to be high. In our

future work, we will study in-depth the intra-modality and

inter-modality similarities.

Benefit of the audio-visual pair similarity loss Lavps.

We respectively adapt Lce and Lce +λLavps as the objective

function for model training. Two baselines are used: our

PSP system and the AVEL system [28]. Results are pre-

sented in Table 2. We can clearly see that Lavps improves

the accuracy when the system is fully supervised. The im-

provement is 1.2% and 1.5% for PSP and AVEL, respec-

tively. These results verify the role of Lavps as an auxiliary

restriction to help to select the positive audio-visual pairs

for feature aggregation.

Improvement from the additional FC in the weakly

supervised setting. In the weakly supervised setting, the

major difference between our classification module and tra-

ditional methods [14, 28, 32] consists in the weighting

branch (Fig. 2). To evaluate its effectiveness, we also im-

plement this branch on top of the PSP and AVEL baselines.

The results are shown in the last two rows of Table 2. We

find that the performance of PSP and AVEL is improved

by 1.9% and 2.3%, respectively. We argue the additional

weighting branch within the designed classification module

allows the model to give different weights to the tempo-

ral sequences, thus benefiting the localization of the target

video segments. These results confirm the effectiveness of

8441



AVEL

Ours

GT

frying 

food

frying 

food

frying 

food

BG BG BG BG BG BG BG 𝜸𝜸𝐯𝐯𝐯𝐯 𝜸𝜸𝐯𝐯𝐯𝐯

Figure 4. A qualitative example of AVE localization. For the video on the left, only the first three segments contain the visual and

audio signals of the event frying food. The green boxes represent ground truth labels. The blue and orange boxes indicate predictions of

AVEL [28] and our method, respectively. Besides, we visualize the attention effect on the images. It is clear that our method produces

more accurate localization and that our attended regions better overlap with the sound sources. On the right, we visualize the audio-visual

similarity matrices γva and γ
av (Eq. 3) after PSP. For γva, the x-axis and y-axis correspond to audio and visual features, respectively, and

for γav the order is reversed. The red bounding boxes in γ
va show that the first three audio components are highly correlated with the first

four visual components. Besides, negative and weak connections are cut off to 0 in γ
va and γ

av. The color bar corresponds to the similarity

strength, with red denoting high similarities and blue for low similarities.

Setting Method PSP (ours) AVEL [28]

fully
Lce 76.6 69.8*

Lce + λLavps 77.8 71.3*

weakly
w/o weight. branch 71.6 66.9*

w/ weight. branch 73.5 69.2*

Table 2. Method comparison on the AVE dataset under two set-

tings. We evaluate 1) the audio-visual pair similarity loss Lavps

under the fully supervised setting, and 2) the weighting branch

under the weakly supervised setting. The two improvements are

implemented on top of our system and AVEL [28]. Under AVEL,

* denotes that the number is produced by us. We use bold font to

show the higher performance brought by our technique.

τ 0 0.025 0.075 0.095 0.115

Fully-supervised 75.9 76.1 75.3 77.8 76.6

Weakly-supervised 71.2 71.7 70.4 73.5 72.8

Table 3. Impact of various values of τ on the system accuracy.

Results on the two setting are shown.

the proposed improvements. We refer readers to Sec. 4.6

for discussions on the two techniques.

Sensitivity to hyper-parameter τ . The selection pro-

cess is controlled by τ , determining how many connections

will be cut off. Its influence on the system accuracy is

shown in Table 3. We observe that overall the accuracy re-

mains stable when τ varies between 0 and 0.115 and that the

highest accuracy is achieved when τ = 0.095. For different

videos, the proportion of segments that are cut off highly

depends on the video itself. If the whole video contains the

same event of interest, it is likely that most will be retained

in training; if a video contains lots of background, the same

threshold will cut off more of its content.

Comparison with the state of the art. We compare our

method with the state of the art in Table 4, where we re-

port superior results: the classification accuracy is 77.8%

and 73.5% for the fully and weakly supervised settings,

respectively. Compared with the baseline feature extrac-

Method Fully-supervised Weakly-supervised

AVEL [28] 68.6 66.7

AVSDN [14] 72.6 67.3

CMAN [32] 73.3* 70.4*

DAM [30] 74.5 -

AVRB [22] 74.8 68.9

AVIN [21] 75.2 69.4

AVT [15] 76.8 70.2

CMRA [31] 77.4 72.9

PSP (Ours) 77.8 73.5

Table 4. Comparison with the state-of-the-art methods under two

settings, measured by accuracy(%) on the AVE dataset. * indicates

the number is reproduced by us.

tor AVEL [28], we exceed it by 9.2% and 6.8% under the

fully and weakly supervised settings, respectively. This

can also be proved by the results shown in Table 2 where

the numbers of AVEL are reproduced by ourselves. More-

over, while the AVGA module [28] adapted in our system is

slightly lower (0.6%) than the recent audio-guided spatial-

channel attention (AGSCA) [31], our overall system man-

ages to obtain higher accuracy than AGSCA. This can be

attributed to both the PSP and our system design.

5.3. Qualitative analysis

We start by presenting an example of audio-visual event

localization in Fig. 4. The event in this sample is difficult

to predict because the visual images are changeable and the

audio signals are mixed with background noise. 1). While

both our method and AVEL [28] use the AVGA attention,

we show that our method enables better attention to visual

regions closely related to sound sources. As displayed in

Fig. 4, for the event of frying food, our attended regions in-

clude both the frying chicken thighs and the pot, especially

in the first four segments. In comparison, AVEL only finds

the thighs and very small receptive fields. 2). Our method

has a better prediction result. AVEL seems to make deci-
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feature after CNN (𝐴𝐴) feature after Bi-LSTM (𝒂𝒂lstm)Audio

Visual

feature after PSP (𝒂𝒂psp)

feature after CNN (𝑉𝑉) feature after Bi-LSTM (𝒗𝒗lstm) feature after PSP (𝒗𝒗psp)

Figure 5. TSNE [16] visualization of audio and visual feature distributions under the fully-supervised setting. The data all come from the

validation set. (Row 1:) audio features. (Row 2:) visual features. (Column 1:) the CNN features. (Column 2:) features after Bi-LSTM

encoding. (Column 3:) features after PSP encoding. We observe that features after PSP are much better clustered into individual classes

than the Bi-LSTM and CNN features. Different colors represent different classes. Best view in color and zoom in.

sions merely according to synchronized audio-visual seg-

ments while our method can pay attention to visual and au-

dio components that are at different time stamps. For exam-

ple, AVEL incorrectly regards the fifth and sixth segments

as the frying food event, ignoring the third and fourth seg-

ments which are more relevant to the event. 3). We visu-

alize the similarity matrices γva and γav in Fig. 4. We find

that only a small percentage of all the audio-visual connec-

tions are retained after PSP selection and are closely related

to the event. For example, for the first four visual compo-

nents describing the target event, they tend to build strong

connections (large similarity values) with the first three au-

dio components containing the sound of the event. Such

a propagation mechanism is critical for AVE localization

because more discriminative audio-visual features can be

identified with these positive connections and subsequently

used in classifier training. Through backpropagation, it al-

lows the model to be able to attend to broader and more

sound-relevant regions in the visual images.

We then visualize the data distribution of features

processed by different stages in our framework using

TSNE [16] (Fig. 5). We first find that the CNN-based au-

dio and visual features are not very well clustered. This is

because they are at a relatively low level in the network hi-

erarchy encoding limited semantics. Then, after Bi-LSTM,

features of some categories (e.g., rodents and Fry food) can

be better clustered compared with the CNN features, but

most are still disordered and highly mixed. Further, after

PSP, the features are much better clustered: cohesive within

the same class and divergent between different classes. This

reflects that the audio-visual representations gain stronger

discriminative abilities along the pipeline of our method.

6. Conclusion

For the AVE localization problem, we propose a positive

sample propagation (PSP) method, which identifies and ex-

ploits relevant but unsynchronized audio and visual samples

to enrich the encoded features. We find that negative and

weak connections, even though having small weights, have

a detrimental effect on the system, and thus have to be com-

pletely removed. Further, for the fully supervised setting,

we propose an audio-visual pair similarity loss to supervise

feature learning from a complementary way: whether a seg-

ment contains an event. For the weakly supervised setting,

we insert a weighting branch to the classification module

inject temporal importance to the features. Extensive ex-

periments validate the effectiveness of these techniques.
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