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Abstract

Capturing interpretable variations has long been one of

the goals in disentanglement learning. However, unlike the

independence assumption, interpretability has rarely been

exploited to encourage disentanglement in the unsupervised

setting. In this paper, we examine the interpretability of dis-

entangled representations by investigating two questions:

where to be interpreted and what to be interpreted? A latent

code is easily to be interpreted if it would consistently im-

pact a certain subarea of the resulting generated image. We

thus propose to learn a spatial mask to localize the effect of

each individual latent dimension. On the other hand, inter-

pretability usually comes from latent dimensions that cap-

ture simple and basic variations in data. We thus impose

a perturbation on a certain dimension of the latent code,

and expect to identify the perturbation along this dimension

from the generated images so that the encoding of simple

variations can be enforced. Additionally, we develop an

unsupervised model selection method, which accumulates

perceptual distance scores along axes in the latent space.

On various datasets, our models can learn high-quality dis-

entangled representations without supervision, showing the

proposed modeling of interpretability is an effective proxy

for achieving unsupervised disentanglement.

1. Introduction

Learning disentangled representations in generative

models has gained increasing interest in recent years [18,

41, 1, 25]. Disentangled representations are supposed to

capture independent factors of variations in data [2], which

should ideally coincide with natural concepts summarized

by humans. These representations can usually be applied to

various downstream tasks such as controllable image gener-

ation and manipulation [34, 56, 51, 32, 35], domain adapta-

tion [46, 5], abstract reasoning [54], and machine learning

fairness [9, 40].

Adopting the definition from [10], we can characterize

disentanglement from three perspectives: informativeness,

independence, and interpretability. In the context of unsu-

pervised disentangled representation learning, the first two

properties have been commonly adopted as proxies to en-

courage the disentanglement in representations. Methods

built based on the framework of the Generative Adversarial

Networks (GANs) [16] maximize the mutual information

between a subset of latent variables and the generated sam-

ples [8, 21, 38]. On the other hand, the methods based on

the Variational Autoencoders (VAEs) [31, 18, 29, 7, 33, 22]

usually enforce the statistical independence in latent codes.

Unlike the informativeness and independence properties,

the interpretability property in disentanglement has rarely

been explored in the unsupervised setting. Partially due

to the meaning of the term interpretability which indicates

the correspondence between the learned representations and

human-defined concepts, it sounds impossible to approach

this goal without revealing the ground-truth labels. Un-

fortunately, omitting the modeling of interpretability leaves

the existing unsupervised models a huge flaw: the repre-

sentations satisfying the informativeness and independence

goals are far from unique, in which case the target repre-

sentation is indeed included in the solution pool but not

distinguishable from other entangled ones. A most intu-

itive example could be the rotation of coordinates in the

latent space, where the existing approaches built for mod-

eling informativeness and independence are blind to this

transformation. This nonuniqueness problem is explained

by the impossibility conclusion of unsupervised disentan-

glement drawn in [41], and also agrees with the results

about the rotation invariance in [44]. On the contrary,

modeling interpretability by providing models with ground-

truth labels solves such nonuniqueness problem, which co-

incides with the supervised and semi-supervised settings

[47, 30, 11, 32, 57, 34, 42, 43].

A rising problem is, can we enforce interpretability in

representations without supervision? A precise matching

between the target concepts and the learned representations

is unrealistic because it depends on how the target solution

is defined. For example, digital color can be represented

in RGB or HSV, but an unsupervised model does not know

which one is more preferable without being told which one

is wanted. However in more general cases, there is no doubt
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that interpretable variations are identifiable out of noninter-

pretable ones by humans without effort, i.e. the complex

world is decomposed into basic concepts that is compre-

hensible to most people. The insight is that there exist some

general biases in humans’ definition of concepts, and they

can be borrowed to heuristically guide a model to prefer

a more interpretable representation than a noninterpretable

one. These biases are not precise knowledge about individ-

ual concepts, but some general information that is assumed

to be shared by the interpretable concepts, so that noninter-

pretable ones are filtered out.

In this paper, we exploit two hypotheses about inter-

pretability to learn disentangled representations. The first

one is Spatial Constriction: a representation is usually in-

terpretable if we can consistently tell where the controlled

variations are in an image. The second hypothesis is Percep-

tual Simplicity: an interpretable code usually corresponds to

a concept consisting of perceptually simple variations. For

the first one, we design a module to restrict the impact of

each latent code in specific areas on feature maps during

generation. For the second one, we design a loss to en-

courage the model to embed simple data variations along

each latent dimension. These two contributions are orthog-

onal and can be used jointly. In addition, we show that for

a disentangled model, its accumulated perceptual distance

along latent axes are generally smaller than on other latent

directions. This observation corresponds to the Perceptual

Simplicity assumption, and inspires us to propose an unsu-

pervised model selection method. We conduct experiments

on various datasets including CelebA, Shoes, Clevr, FFHQ,

DSprites and 3DShapes to evaluate our proposed modules.

We also conduct experiments to show that the proposed TPL

score is an effective method for unsupervised model selec-

tion. These experiments justify modeling of interpretability

in learning disentangled representations.

2. Related Work

Learning interpretable representations has been com-

monly tackled as a supervised or semi-supervised prob-

lem for a long time [47, 30, 11, 32, 57, 34] under the

subject of attributes-based generation and conditional gen-

eration (matching the interpretability property defined in

[10]), until the emergence of unsupervised models like

the InfoGAN variants [8, 21, 38] and the VAE variants

[59, 18, 4, 33, 29, 7, 13, 22, 37]. These unsupervised meth-

ods achieve disentanglement from different directions. The

first type is to model the informativeness in latent codes,

such as InfoGAN [8] which maximizes the mutual infor-

mation between a subset of latent variables and the gen-

erated images, and IB-GAN [21] which imposes another

upper bound of the informativeness. Lin et al. [38] equip

InfoGAN with a contrastive regularizer, which detects the

shared dimension in latent codes of the generated image

pairs. The second type is to model the statistical indepen-

dence in the encoded latent variables based on the VAE

framework, starting with the β-VAE model [18, 4] which

modulates the prior matching term with a coefficient β in

the evidence lower bound objective. Other VAE variants

consist of methods minimizing the total correlation in la-

tent variables via factorizing the aggregated posterior [29],

moment-matching betweeen the prior and aggregated pos-

terior distributions [4], weighted sampling [7], and sequen-

tially relieving the β coefficient for different dimensions

during training [22].

Other disentanglement methods include exploiting the

hierarchical nature of deep networks in the VAE framework

[59, 37] and the GAN framework [26, 25]. [50] disentangles

background, shape and appearance in images in a hierarchi-

cal manner by designing a three-stage architecture. There

are works achieving disentanglement by manipulating sub-

parts of a latent code. Recent content-style disentanglement

techniques [15, 52, 20, 28] can be seen as designing losses

by manipulating two groups of features independently to

achieve disentanglement of content and style, based on the

hypothesis of how content and style information should be

encoded in deep generative architectures. In the domain

adaptation area, the learned content features are supposed

to be disentangled from the domain information, where the

varied domain labels serve as a supervision for the disentan-

glement [5, 46]. For more general disentanglement learn-

ing tasks, grouping information defined by sharing a subset

of latent codes inside a group of data can be exploited to

guide their disentanglement with unshared codes (identity

vs pose) [3, 19]. Different from the existing approaches, we

propose to exploit the interpretability in disentangled repre-

sentations as a proxy to achieve the unsupervised disentan-

glement goal.

3. Methods

We first introduce a module to realize the Spatial Con-

striction (Sec. 3.1), then we introduce a loss to enforce the

Perceptual Simplicity assumption (Sec. 3.2). A combined

model is shown in Fig. 1. In Sec. 3.3, we introduce a simple

approach to achieve unsupervised model selection.

3.1. Enforcing Spatial Constriction

For a latent code to represent interpretable variations in

the image space, it is usually natural to assume that these

variations happen in a consistently constricted area. For ex-

ample, if a code is to control the variation of fringe on a

human face, then it should mainly focus on the upper part

of the face to generate how the fringe should be shaped,

without paying much attention to other parts like the back-

ground. We embed this constricted modification idea into

generative models. The key point of our design is that the

constricted areas should be shaped by low degrees of free-
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Figure 1. Overview of our proposed PS-SC model.

dom so that a simple and compact area could be constructed,

which is more preferable in terms of interpretability.

How can we simulate constricted modification with neu-

ral networks? For the modification procedure alone, we

can adopt the idea of adaptive normalization (AdaIN), a

module developed based on instance normalization for style

transferring tasks [53, 15, 20, 28], and has been used for

general image generation [25, 27]. The AdaIN is defined

as: AdaIN(x,y) = σ(y)
⇣

x�µ(x)
σ(x)

⌘

+ µ(y), where x de-

notes the content input and y denotes the style input, and

µ, σ compute the mean and standard deviation across spa-

tial dimensions. To simulate constricted modification, it is

natural to consider using the heatmaps computed by the

softmax layer in attention modules [55, 6, 36] to high-

light the focused areas of a latent dimension. However

the softmax transformation forces the activations to have

a summation of 1, which is more effective for weighted

aggregation of features instead of localized modification

(see Sec. 4.3 for an empirical comparison). Instead, we

leverage a gating layer called cumax, an activation func-

tion proposed by [48], originally used for structured lan-

guage modeling, to realize our goal. The cumax is defined

as: g = cumax(...) = cumsum(softmax(...)), where the

cumsum function denotes the cumulative summation. The

cumax layer in practice transforms a vector of neurons into

a soft version of binary gates ĝ = (0, ..., 0, 1, ..., 1), since

the softmax usually results in a hump in a vector. By com-

bining two of this function with an element-wise product

g = cumax(...) � (1 � cumax(...)), we create a learnable

binary gate (band-pass-filter shaped) with degrees of free-

dom on both ends.

The proposed Spatial Constriction (SC) module is illus-

trated in Fig. 2. We use Γ to denote the input feature maps,

and c to be the input latent code. The learnable gate for the

height dimension is computed as:

v
h1 = fh1(avgpool(Γ)), (1)

v
h2 = fh2(avgpool(Γ)), (2)

g
h = cumax(vh1)� (1� cumax(vh2), (3)

where fh1 and fh2 are functions to map vectors to the

!"

!#

h1

h2

w1

w2

⊙

⊙

⊗

Latent 

code &

AdaIN

Avg pool

Input Feature maps Γ

(Γ

Rectangular mask 

generation

Rectangular mask 

generation

h

w

c

Updated feature maps

Π

&*
+
,- SC Module

./

.0

Γ⊙ (1 − Π) + (Γ⊙ Π

Figure 2. Detailed illustration of the SC module.

length of the height of the input feature maps. Similarly,

we can get the gate for width dimension g
w. A mask on

feature maps is computed by performing an outer product:

π = g
h ⌦ g

w. (4)

This is a differentiable rectangular mask with learnable

sides and position. We allow a SC mask to be more flexible

than a single rectangular and we use the sum of J rectangles

as a direct solution:

Π =
1

J

J
X

j=1

πj . (5)

Then a latent code modifies the content on the input feature

maps conditioned on the SC mask:

Γ̂ = AdaIN(Γ, f(c)), (6)

SC(Γ, c) = Γ� (1�Π) + Γ̂�Π, (7)

where Γ̂ is the content modified by code c. Function f maps

code c to the length of the input channel number of Γ, which

is required by AdaIN.

3.2. Encouraging Perceptual Simplicity

The second hypothesis about interpretability in represen-

tations is that the data variations captured by individual la-

tent dimensions should be perceptually simple (see Sec. 3.3

for a quantitative example). In this section, we introduce

a loss to integrate this goal into training an encoder for a

GAN. We first introduce how this loss is defined, and then

discuss why such a simple implementation works.

We assume a generator G takes a vector of latent code

c 2 R
d and a vector of noise z to generate an image:

x = G(c, z), following the notations in InfoGAN [8] (see

Sec 6 in the Appendix for a brief introduction about GAN

and InfoGAN). The noise code z is to provide G with sharp
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details about an image, which will be omitted in the fol-

lowing text, and the latent code c is to learn interpretable

information. We impose a perturbation on a randomly se-

lected dimension in the latent code c0k = ck + p, where

k ⇠ Uint(0, d � 1), p ⇠ N (ck, pvar) and pvar is a hyper-

parameter. Then we get another image x
0 generated by the

altered latent code x0 = G(c0) where c0 = {c\k, c
0

k} . Then

we introduce a recognizer Q, whose primary goal is to re-

construct the latent code c and c
0 based on the generated

images x and x
0 (ĉ = Q(x), ĉ0 = Q(x0)) respectively with

MSE loss. However, in order to enforce the simple encod-

ing along dimensions of the latent code, we substitute the

errors computed on the shared dimensions by the errors be-

tween the truth code and the average of both reconstructed

values, leading to the dimension-wise loss defined as:

lossi =

(

(ĉi � ci)
2 + (ĉ0i � c0i)

2, if i = k

2⇥ (
ĉi+ĉ0

i

2 � ci)
2, if i 6= k

, (8)

where the ĉ and ĉ
0

are outputs from Q, and k is the per-

turbed dimension index. Note that ci = c0i if i 6= k. We

sum the losses on all dimensions to form the complete loss,

which is named as Perceptual Simplicity (PS) loss:

LPS =
1

d

d�1
X

i=0

lossi. (9)

This is similar to an ordinary reconstruction loss on latent

codes, but with the losses on shared dimensions calculated

in a fuzzy way.

Discussion: The PS loss is more tolerant of the mis-

alignment on the shared dimensions than on the perturbed

dimension, since it only requires the mean of the shared

two latent-code reconstructions to match the truth code. In

other words, the loss will punish the model more on the

mistakes made along the non-shared dimension than on the

other directions, forcing the generator to embed more eas-

ily recognizable variations along this specific latent axis so

that the recognizer Q can more easily regress to the truth

value on this dimension. Since the non-shared dimension is

randomly selected in each iteration, after convergence the

Q will still be an encoder. The generator G should find a

solution that the data variations controlled by each latent

dimension are necessarily simple to be interpreted, but the

coupled data variations controlled by all dimensions are rich

enough to form data matching the training distribution. Our

PS loss is similar to a series of losses from VAE-based mod-

els [3, 19, 42], but the paired images used in these works are

picked by varying a known attribute with supervision, while

ours does not rely on any labels.

3.3. Traversal Perceptual Length

In this section, we first show a concrete example of the

Perceptual Simplicity assumption in interpretability, then

(b)

(d)
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Figure 3. (a) A 2D disentangled representation capturing seman-

tics of pure wall color and floor color. (b) Illustration of how the

discum (Eq. 10) is quantified in the (c1, c2) space. Perceptual

distance scores along yellow arrows are accumulated. (c) Latent

traversals for different α’s along axis c1. (d) The plot showing how

the discum value changes with rotation degree α.

we introduce an unsupervised model selection method.

Fig. 3 (a) shows a disentangled representation (with

c1 and c2 dimensions) capturing two data variations from

3DShapes dataset [29] (wall color vs floor color). This

representation is interpretable since we can tell that each

dimension encodes pure wall color and floor color respec-

tively. Then we apply a rotation on the coordinate system

in this latent space by α degrees as shown in Fig. 3 (b). Be-

cause standard Gaussian distribution is rotation-invariant,

this transformation does not break the statistical indepen-

dence property of the representation. However it breaks the

interpretability property since the traversals along individ-

ual axes are not controlling pure variations (see traversals in

Fig. 3 (c)). This absence of interpretability is noticeable by

humans, but can a model sense it without labels? To show

this is possible, we define the accumulated perceptual dis-

tance (discum) by traversing along the transformed c1 axis

in the 2D space (see Fig. 3 (b) for an illustration):

discum(α) =
X

(c1,c2)2grid(�4,4)

dis
⇣

G
�

R(α)(c1, c2)
�

,

G
�

R(α)(c1 +
8

N
, c2)

�

⌘

, (10)

where grid(�4, 4) is an N ⇥N grid with coordinates rang-

ing from �4 to 4, and dis(...) denotes perceptual distance

computation using VGG16 [49]. The R(α) is a rotation ma-

trix in 2D space parameterized by degree α. The plot of

discum vs α is in Fig. 3 (d). As we can see, when the coor-
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dinate system is aligned with the interpretable axes in Fig.

3 (a) (α = �90, 0, 90, 180), the discum scores become local

minima (indicated by the blue dash lines). This experiment

indicates that though a disentangled representation is indeed

isotropic in terms of statistical independence, it is percep-

tually anisotropic, with variations along latent axes being

simpler than other directions (more examples are shown in

the Appendix Sec. 8).

This perceptual-anisotropy phenomenon inspires us to

develop an unsupervised model selection method, since we

can assume the overall accumulated perceptual distance

scores along all latent axes to be generally small in dis-

entangled representations. The method, namely Traversal

Perceptual Length (TPL), is defined as follows:

tpli(G) = Ec

X

ci2lin(�4,4)

dis
�

G(c\i, ci), G(c\i, ci +
8

N
)
�

, (11)

tpl(G) =
d�1
X

i=0

acti · tpli(G), acti =

(

1, tpli(G) � S

0, tpli(G) < S
,

(12)

where lin(�4, 4) denotes linearly spaced N values in in-

terval (�4, 4), and S is a threshold to determine if a di-

mension encodes enough information to be activated. Our

method is different from existing model selection methods

[12] and unsupervised metrics [25, 60] in ways like: 1) it

does not rely on comparing a herd of models; 2) it does not

rely on training a classifier; 3) it approximately evaluates

interpretability along axes. More Pros and Cons are shown

in the Appendix Sec. 9.

4. Experiments

In this section we evaluate the proposed TPL model se-

lection method, and the effectiveness of our interpretability-

oriented models for learning disentangled representations.

The introductions of the used datasets and implementations

are in the Appendix Sec. 7 and Sec. 14 respectively. Code is

available at https://github.com/zhuxinqimac/

PS-SC.

4.1. Effectiveness of TPL

We first conduct experiments to evaluate the effective-

ness of the proposed TPL model selection method. An in-

tuitive way to do so is by examining its agreement with ex-

isting supervised metrics applied on existing disentangle-

ment learning models. Specifically, we compute the TPL

scores (the threshold S is set to be 0.01 and the number

of segments N is set to be 50) on 1,800 pretrained check-

points from [41] on DSprites dataset and then compute the

correlation coefficients against four supervised metrics: β-

VAE metric (BVM) [18], FactorVAE metric (FVM) [29],

DCI disentanglement score [14], and Mutual Information

Range Methods BVM DCI FVM MIG

All

TPL (act>0) 0.15 0.44 0.21 0.49

TPL (act>4) 0.45 0.72 0.60 0.66

FVM 0.82 0.77 1.00 0.72

TC-VAE
UDR 0.42 0.55 0.30 0.37

TPL (act>0) 0.39 0.79 0.39 0.73

Table 1. Spearman’s rank correlation between unsupervised model

selection methods and supervised disentanglement metrics.

Figure 4. TPL (act>4) vs DCI disentanglement on DSprites

dataset across various configurations. Ranked by TPL scores.

Gap (MIG) [7]. The pretrained checkpoints include 6 dif-

ferent models (β-VAE [18], FactorVAE [29], DIP-VAE I

and II [33], β-TC-VAE [7], and Annealed VAE [4]), cover-

ing 6 hyper-parameter configurations each and 50 random

seeds each. These configurations form an extensive cover-

age from good models to bad models.

In Table 1 upper part we show the Spearman’s rank cor-

relation scores computed over all models thresholded by the

number of active latent dimensions (the active dimensions

are determined by TPL without supervision). The reason

we threshold the models by active latent dimensions is that

the TPL can be misled by cheating models which achieve

disentanglement by only encoding a subset of generative

factors. These models are indeed disentangled if they are

evaluated based only on this subset of factors, but will not

be ranked high if compared against all the ground-truth fac-

tors as done by supervised metrics. However, our TPL is

an unsupervised method and has no access to the ground-

truth factors, thus may wrongly rank those cheating mod-

els high, leading to lower correlation with supervised met-

rics as shown by the entry act>0 in Table 1 (there are 5

ground-truth factors). Fortunately these models can be di-

rectly filtered out by the number of active dimensions com-

puted by TPL, and in real-world applications they can also

be filtered out by unsupervised generative quality metrics

like FID [17], ensuring TPL to work in its more effective
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Methods
Shoes+Edges Clevr-Simple Clevr-Comp

PPL FID PPL FID PPL FID

InfoGAN 2952.2 10.4 56.2 2.9 83.9 4.2

HP 1301.3 21.2 45.7 25.0 73.1 21.1

HP+FT 554.1 17.3 39.7 6.1 74.7 7.1

Ours 246.2 9.7 9.2 9.2 17.4 10.8

Table 2. Comparing Perceptual Path Length (PPL) and Fréchet In-

ception Distance (FID) on Edge+Shoes and Clevr datasets. Lower

is better for both metrics.
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Figure 5. Qualitative comparison between Hessian Penalty model

[45] and ours on Clevr-Simple dataset.

zone. The TPL (act>4) works reasonably well for ranking

the pretrained models. The supervised FVM row works as

an upper bound, and the largest difference between TPL and

FVM is the correlation with BVM, indicating the TPL is

more similar to DCI and MIG metrics while different from

BVM. In the lower part of Table 1 we compare our model

against UDR unsupervised metric on the model TC-VAE

(UDR scores calculated on all models are not available).

Our method correlates better with supervised metrics, es-

pecially DCI and MIG. The plot of TPL (act>4) vs DCI

metric is shown in Fig. 4, where the models are ranked by

TPL. An obvious descending trend can be observed, indi-

cating the TPL roughly sorts the models in a correct way.

As we plot different models with different colors, we see

that among the 6 models, FactorVAE and TC-VAE are most

promising for disentanglement learning, which agrees with

our common sense in this field. More correlation results and

more plots for other metrics and other numbers of active di-

mensions are shown in the Appendix Sec. 10. This experi-

ment also implies that our hypothesis of Perceptual Simplic-

ity holds in general disentangled representations learned by

existing models.

4.2. Shoes and Clevr

We follow the setups in [45] to conduct experiments

on the Shoes+Edges dataset (created by mixing 50,000

edges and 50,000 shoes) [58], and variants of Clevr dataset

Figure 6. Shoes ↔ Edges translation by altering the dimension

corresponding to the domain concept.

Methods
CelebA FFHQ

TPL PPL FID TPL PPL FID

InfoGAN 10.9 43.6 6.0 33.4 142.7 11.0

+PS Loss 8.5 34.3 6.2 30.7 139.6 13.8

+SC Module 9.9 44.1 5.9 20.4 136.5 16.4

+Both 8.1 38.9 6.0 18.7 120.1 13.5

Table 3. Ablation study about different modules on CelebA and

FFHQ datasets.

[23]: Clevr-Simple contains four factors of variation: ob-

ject color, shape, and location (10,000 images); Clevr-

Complex contains two objects of Clevr-Simple in multi-

ple sizes (10,000 images). Table 2 shows the quantita-

tive comparison between our model and multiple baselines

provided by [45], using the same metrics Perceptual Path

Length (PPL) [25] and Fréchet Inception Distance (FID)

[17]. It is clear our model outperforms the baselines sig-

nificantly. Note that HP+FT is a fine-tuned model based

on a pretrained ProGAN [24], thus the direct end-to-end

trained baseline should be the HP version. Our models

work best in terms of disentanglement on all datasets, and

on Shoes+Edges ours can even achieve the best FID score.

On Clevr datasets, our models have worse FID, which may

be caused by the smaller size of the datasets, which consist

of more factors of variations than Shoes+Edges but have

fewer data samples to train.

In Fig. 5 we qualitatively compare the representations

learned by a HP baseline and our model on Clevr-Simple

dataset. We show the latent traversals of the learned latent

codes (baseline images are taken from [45]), ordered from

high to low by our defined tpli in Eq. 11. We can see our

model encodes the vertical and horizontal position varia-

tions into two clear separate latent codes, while the baseline

encodes these two factors into three codes. In Fig. 6 we

show that our model encode the domain concept in a single

latent dimension on the Shoes+Edges dataset. We achieve

such a domain shift by just reversing the sign of this single

dimension in the representation.

4.3. CelebA and FFHQ

We conduct experiments on human-face datasets CelebA

[39] and FFHQ [25]. For CelebA we crop the center 128⇥
128 area, and for FFHQ we use the 512⇥ 512 version.

For quantitative evaluation, the FID metric is used to

evaluate generative quality, and the PPL and TPL (the
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Figure 7. (a) Latent traversals on FFHQ dataset ordered by tpl
i

scores. The masks coarsely highlight the corresponded components in

images. (b) Same results on CelebA dataset. (c) Same results on 3DShapes dataset.
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Figure 8. Latent traversals by models trained with softmax masks.

Methods
CelebA FFHQ

TPL PPL FID TPL PPL FID

softmax-mask 14.8 49.3 18.4 28.3 145.4 57.1

λ = 0.001 10.2 47.5 5.3 20.3 135.4 23.7

λ = 0.01 8.1 38.9 6.0 18.7 120.1 13.5

λ = 0.1 9.1 42.0 7.2 20.0 123.2 16.0

Table 4. Ablation study about softmax mask and λ on CelebA and

FFHQ datasets.

threshold S is set to be 0.3 on CelebA and 0.5 on FFHQ,

the number of segments N is set to be 48) are used for

rough measurement of disentanglement. On CelebA we

train models for around 19 epochs, and on FFHQ we train

models for around 28 epochs where FID starts to saturate.

In Table 3 we evaluate the effectiveness of the proposed Per-

ceptual Simplicity loss and the Spatial Constriction mod-

ule. Both modules improve the baseline model in terms

of disentanglement, validated by both the PPL metric and

our TPL scores. Note that the PPL measures the perceptual

smoothness of the latent space but cannot detect if a latent

axis captures simple variations, while TPL can perform a

rough evaluation on this property of interpretability. This is

why the PPL and TPL disagree on the +PS and +Both rows,

where the additional SC module slightly sacrifices the over-

all smoothness in the latent space to achieve an alignment

between simple variations and latent axes. On both datasets,

the two contributions can be combined to achieve the best

performance, indicating their complimentarity. Then we

evaluate how the strength of PS loss impact the learning of

models. We denote the trade-off between the GAN loss and

PS loss by a hyper-parameter λ : Ltotal = LGAN + λLPS .

Table 4 shows the ablation study. We see setting λ = 0.01
is generally a good choice for both datasets, while when it

increases to 0.1 both models appear to degenerate in gener-

ation ability. For CelebA, setting λ = 0.001 is beneficial

to the image synthesis, but on FFHQ this harms the image

quality. It indicates this λ is too small for the model to main-

tain good generation ability on this high-resolution dataset

with less training samples, probably due to that the effect

of the latent reconstruction loss as a regularization has been

wiped out. The experiment of switching the SC masks to

softmax masks is also shown in the Table 4. We see us-

ing softmax masks is not an ideal choice since it harms

both the disentanglement and the generation quality. This

is also qualitatively verified by comparing the latent traver-

sals shown in Fig. 8 and Fig. 7 (b). The ablation study on

the number of rectangles J used in SC modules is shown in

the Appendix Sec. 11.

For qualitative evaluation, we show the latent traversals

and the learned SC masks on both datasets in Fig. 7 (a)

(b). More traversals are shown in the Appendix Sec. 12 and

traversals.gif in the supplementary. We observe that

1) many semantics in these two datasets are successfully

captured by individual latent dimensions, including some

subtle variations like the hair thickness, hair style on FFHQ,

and the elevation on CelebA; 2) the dim-wise TPL score

(tpli) agrees with human’s common sense about the signifi-

cance of the discovered semantics, indicating it can be used

to filter out non-significant noise information, or automati-

cally detect important variations; 3) the SC masks coarsely

align with the components controlled by each latent code,

e.g. masks for azimuth and elevation covering main areas in

the images, masks for hair related information covering up-

per part of the images, etc. Compared to the masks learned

by softmax shown in Fig. 8, the SC masks are more in-

formative and interpretable, and the softmax masks usually

consist of point-like heatmaps. Though the softmax masks

are sometimes meaningful like the ones corresponding to

smile and fringe, masks for most other semantics are not in-

terpretable, resulting in worse disentanglement quality than

using SC masks. Notice that in Fig. 7 (a) the dimension cap-

turing saturation is assigned with a very low tpli score. This

is due to the bias of perceptual distance used in the score

computation, which is more sensitive to high-level seman-
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Figure 9. Latent traversal comparison on CelebA dataset between

InfoGAN-CR [38], VPGAN [60], and our model.

Model DSprites 3DShapes

VAE

VAE 63 (6) -

β-VAE 74.41 (7.68) 91 (from [29])

CascadeVAE 81.74 (2.97) -

FactorVAE 82.15 (0.88) 89 (from [29])

GAN

InfoGAN 65.41 (7.03) 83.65 (9.49)

IB-GAN 80 (7) -

InfoGAN-CR 88 (1) -

Ours 83.54 (6.91) 92.04 (6.49)

Ours+TPL 84.22 (4.21) 93.41 (3.34)

Table 5. State-of-the-art comparison using FactorVAE metric on

DSprites and 3DShapes datasets.

tic variations. In Fig. 9, we compare the latent traversals

between our model and two existing GAN-based models on

CelebA (128⇥128 version). Though all three models seem

to discover the shown semantics, the InfoGAN-CR has the

worst disentanglement quality (e.g. lighting entangled with

smile). Moreover, both baselines cannot maintain a high

generative quality when constrained to disentangle the un-

derlying semantic factors. Unlike either of them, our model

can achieve high-quality disentanglement while maintain-

ing much better generative quality.

We then conduct an image editing experiment with our

trained model on FFHQ. Specifically, we generated a set of

source images to provide main attributes, and another set of

images to provide the new attributes. Afterwards we copy

the latent code dimensions representing new attributes to the

corresponding positions in the latent code of the source im-

ages. The results are shown in Fig. 10. We see the source

images are naturally adapted to the given attributes, while

keeping the other attributes intact. More image editing ex-

amples are in the Appendix Sec. 13.

4.4. DSprites and 3DShapes

In Table 5 we compare the state-of-the-art models trained

with continuous latent codes on DSprites and 3DShapes

synthetic datasets. 10 random seeds are used to train the

models, and for the +TPL version we use 30 seeds to train

and report results with the top 10 seeds ranked by our un-

Smile

Azimuth

Smile

Age

Lighting

F
a

ce
 s

o
u

rc
e

Attributes source

Figure 10. Top row: source images. Left column: images provid-

ing attributes. Main section: transformed images using the pro-

vided attributes from the left ones.

supervised TPL model selection method. On DSprites the

InfoGAN-CR achieves the best performance, but it was

trained by keeping the number of latent dimensions equal to

the ground-truth factors, which is different from the general

over-parameterized setting. Our model shown on DSprites

does not use SC module since the Spatial Constriction as-

sumption does not hold on this synthetic dataset and using

SC module harms the performance (obtaining a score of

81.47 (5.39)). On 3DShapes our model achieves the best

performance, and a latent traversal is shown in Fig. 7 (c).

5. Conclusion

Based on the observation that interpretability usually

comes from localized and simple variations, we proposed

to learn disentangled representations by directly modeling

interpretability from these two perspectives as a proxy. We

adopted two hypotheses, Spatial Constriction and Percep-

tual Simplicity, to construct our models. We designed a

module to constrain the impact of each latent dimension into

constricted subareas, and a loss to enforce the encoding of

simple variations along latent axes. We also introduced a

simple unsupervised model selection method by quantify-

ing the perceptual variations accumulated along latent axes.

Experiments on various datasets validated the effectiveness

of our proposed modules and the model selection method.

Although our work was proposed as a standalone approach

for learning disentangled representations, it should work to-

gether with other assumptions like statistical independence

to achieve a boosted performance, and we left this explo-

ration for future work.
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