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Abstract

Physical adversarial attacks against object detectors

have seen increasing success in recent years. However,

these attacks require direct access to the object of interest in

order to apply a physical patch. Furthermore, to hide mul-

tiple objects, an adversarial patch must be applied to each

object. In this paper, we propose a contactless translucent

physical patch containing a carefully constructed pattern,

which is placed on the camera’s lens, to fool state-of-the-

art object detectors. The primary goal of our patch is to

hide all instances of a selected target class. In addition,

the optimization method used to construct the patch aims to

ensure that the detection of other (untargeted) classes re-

mains unharmed. Therefore, in our experiments, which are

conducted on state-of-the-art object detection models used

in autonomous driving, we study the effect of the patch on

the detection of both the selected target class and the other

classes. We show that our patch was able to prevent the

detection of 42.27% of all stop sign instances while main-

taining high (nearly 80%) detection of the other classes.

1. Introduction

In recent years, deep neural networks (DNNs) and partic-

ularly convolutional neural networks (CNNs) have become

a state-of-the-art solution for computer vision tasks, such

as image classification [13, 8], object detection [23, 24],

and image segmentation [2, 1]. This is mainly due to

DNNs’ ability to accurately model complex multivariate

data. However, such models’ effectiveness depends heav-

ily on their robustness to attacks that target the model itself;

i.e., adversarial learning attacks.

Adversarial attacks have become a major focus of the

machine learning research community, primarily in the

computer vision domain [30, 25]. Recent studies have

demonstrated the ability to implement evasion attacks (i.e.,

misclassification of an object) by applying a physical patch

on the targeted object. Some examples include hiding a

person using a small printed cardboard plate [33] or wear-

able clothes [34, 35, 10], concealing a stop sign by attach-

ing small black and white stickers to it [6], or crafting a

Figure 1: Illustrating the physical translucent patch, placed

on the camera lens, which results in the failure to detect the

stop sign while correctly identifying the other objects.

new stop sign with specific patterns on its background [3].

However, the main limitation of those physical attacks is

that they require access to the object itself (to apply the ad-

versarial patch). Furthermore, to hide multiple objects, an

adversarial patch must be applied to each object.

We propose a novel physical attack aimed at fooling

common object detection models by mounting a carefully

crafted patch on the camera lens. Our attack (patch) is cal-

culated by a gradient-based optimization process which re-

sults in a universal adversarial patch that takes the following

goals into consideration: 1) successfully hide all instances

of a target class from the object detector, 2) minimize the at-

tack’s impact on the detection of untargeted classes, and 3)

produce a printable patch that is as unnoticeable as possible.

To the best of our knowledge, the only study that at-

tempted to implement a camera-based physical attack is the

work performed by Li et al. [15], in which an image classi-

fication model was targeted. Unlike an image classification

model, which predicts the class of a single (dominant) ob-

ject in the image, an object detection model is capable of

i) detecting and classifying multiple objects regardless of

their location and dominance within the image, and ii) pro-

cessing thousands of candidate bounding boxes centered on

each output pixel. Thus, in our attack all of the candidate
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objects must be manipulated, significantly complicating the

attack. Furthermore, in this research we study the effect of

the physical patch on the untargeted classes, which was not

addressed by Li et al.

To explore the feasibility of our approach, we first

demonstrated the ability to deceive Tesla’s advanced driv-

ing assistance system (ADAS) by applying two simple fully

colored translucent patches on the camera’s lens. We show

that the ADAS misclassifies a stop sign (when a red-colored

patch is used) and interprets a red traffic light as a green

one (when using a cyan-colored patch). Then, we evalu-

ated our proposed attack on CNN-based object detection

models using datasets related to the autonomous car use

case. Since autonomous cars operate in a real-world envi-

ronment, we use the latest real-time object detection model,

YOLOv5 [11], a recent improvement to YOLOv3 [23]. In

our evaluation, we select the stop sign class as the targeted

class, with the aim of preventing any of the instances from

being detected by the object detector, both in the digital and

physical domain. The results show that we are able to de-

crease the average precision of the detector for the stop sign

class by 42.47% (digitally) and 42.27% (physically), while

the detection of other object classes remains high.

We summarize the contributions of our work as follows:

• We present the first camera-based physical adversarial

attack on object detection models.

• We craft a universal perturbation to fool the model for

all instances of a specific object class, while maintain-

ing the detection of untargeted objects.

• We demonstrate the transferability of the attack when

the patch is generated using a surrogate model and then

applied to a different model.

• The design and optimization process we propose take

real-world constraints into account, including printing

limitations and accurate patch placement, resulting in

a practical attack.

2. Related Work

Previous works presenting adversarial attacks in the

computer vision domain can be categorized by four main

attributes: i) model task: image classification [13], object

detection [31], or image segmentation [2]; ii) attack type:

digitally generated perturbation or physical perturbations

applied in the real-world (either by perturbing the physical

object itself [6] or by perturbing the sensor’s perception of

the object [15]); iii) attacker’s knowledge: full knowledge

(white-box) [29], or no knowledge (black-box) about the

model [21]; and iv) perturbation type: sparse noise around

the entire image [32] or a centralized dense perturbation in

a specific location [17].

As the main novel differentiator of our attack is its phys-

ical character, in the following review of related work we

categorize the studies based on the attack type.

2.1. Digital Attacks

When attacks on DNNs in the computer vision domain

were first introduced, they mainly targeted CNN-based clas-

sification models [32, 7]. These kinds of attacks have been

extensively studied over the years in research proposing var-

ious ways to fool classifiers [29, 20]. Whereas these meth-

ods generate perturbations to fool DNNs on a single and

specific image classes, Moosavi-Dezfooli et al. [19] pro-

posed universal adversarial perturbations that can fool any

image. Later, attacks against more complex computer vi-

sion tasks were shown. For example, Metzen et al. [9]

demonstrated that imperceptible perturbations could also

fool segmentation models. However, all of these studies

digitally tampered with the input provided to the model.

Since these attacks lacked significant real-world constraints,

they do not naturally transfer to the physical world.

2.2. Physical Attacks

In recent years, physical attacks against image classifica-

tion and object detection models have emerged. Kurakin et

al. [14] took photos of printed adversarial images with a cell

phone camera, successfully fooling a pretrained image clas-

sifier. Eykholt et al. [6] proposed a type of centralized phys-

ical perturbation (i.e., applying black and white stickers on

stop signs) to fool image classifiers. Chen et al. [3] printed

adversarial stop signs by adding specific background pat-

terns, evading the Faster R-CNN [24] object detector, and

Sitawarin et al. [27] crafted toxic signs, similar to origi-

nal traffic signs, to deceive autonomous car systems. To

avoid facial recognition systems, Sharif et al. [26] suggested

wearing adversarial eyeglass frames. This work also intro-

duced the non-printability score, which forces the adversar-

ial perturbations to use printable colors.

Recently, attacks against person detectors have emerged.

First, Thys et al. [33] printed an adversarial patch on a

small cardboard plate, successfully evading YOLOv2 [22]

detection. Following this work, other studies presented

attacks in which adversarial patterns were printed on t-

shirts [34, 35, 10]. While these methods create less realistic

distortions, Duan et al. [4] used natural patterns that appear

legitimate to human observers and applied them on different

objects to fool image classifiers.

Unlike the studies mentioned above, in which the per-

turbation was applied on the targeted object, in our work,

we place the perturbation on the sensor collecting the im-

age stream. While Li et al. [15] also applied a physical

adversarial perturbation on the camera’s lens, their study

focused on image classifiers, differing from our work, in

which we attack object detectors, a more complex mech-

anism. In addition, we examine the effect of our attack on

target class while not reducing the detection of non-targeted

classes, which was not an aspect addressed by Li et al.
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(a) (b)

(c) (d)

Figure 2: An illustration of: (a) a digital patch with eight

shapes; (b) a patch printed on transparent paper; (c) a phys-

ical patch applied to the camera’s lens; and (d) lab setup of

a camera and a screen.

3. Method

In this research, we aim to generate a printable, translu-

cent universal adversarial perturbation (UAP) that can be

used to hide all instances of the selected target class by

applying the UAP to the camera’s lens. As also noted by

Li et al. [15], accurately attaching pixel-level perturbations

onto the camera’s lens is impossible and not practical for

our case. Therefore, we design and craft a region-level per-

turbation, containing several oval shapes printed on trans-

parent paper, to create a practical attack. By optimizing a

custom loss function, which considers the main attack goals

(i.e., hiding the selected target class instances while main-

taining the detection level of the other classes), we generate

the region-level perturbation. We assume that the attacker

has direct access to the camera’s lens to apply the patch

(e.g., via a supply chain).

In this section, we start by describing the design require-

ments for the patch (Section 3.1). Then, we present the pro-

cess of optimizing the parameters of the patch in order to

achieve a successful attack (Section 3.2).

3.1. Patch Design

From digital to physical setup. Our adversarial perturba-

tion is computed digitally and then applied as a real phys-

ical patch. Therefore, when computing the digital patch,

we need to consider the effect of printing and applying a

translucent physical patch on the camera’s lens. As Li et

al. [15] suggested, an approximation of that effect can be

achieved using an alpha blending process between the orig-

inal image and the digital patch. Therefore, in this study, we

define our patch as a 2D image with four channels. The first

three channels represent RGB colors supplemented with a

fourth alpha channel representing how opaque each pixel is.

The result of performing alpha blending between the orig-

inal image and a translucent patch at pixel (i, j) is defined

as follows:

perturbed(i, j) = original(i, j) ∗ (1− α(i, j))+

γ(i, j) ∗ α(i, j) (1)

where perturbed is the resulting image consisting of just

RGB channels, α represents the patch’s alpha channel, and

γ represents RGB triplets.

Patch structure. As illustrated in Figure 2a, our patch com-

prises n (configurable parameter) blurry oval shapes; these

shapes are initialized as fully colored dots with shearing in

the x and y directions. The following attributes define a

single shape:

• (xc, yc) ∈ [−1, 1] ⊂ R
2 - a tuple representing a

shape’s center with regard to the center of the image;

for example, a shape centered at (0, 0) will be placed

in the center of the image.

• r ∈ [rmin, rmax] ⊂ R - the shape’s radius in relation to

the patch size.

• (shx, shy) ∈ [−1, 1] ⊂ R
2 - a tuple representing the

shape’s shear in the x and y directions.

• γ ∈ R
3 - a triplet representing an RGB color.

• α ∈ [0, 1] ⊂ R - represents the alpha value.

Patch blending. Usually, when crafting a pixel-level patch,

the total variance factor [26] is also included in the cus-

tom loss function to ensure that the optimizer favors smooth

color transitions between adjacent pixels, thus preventing

noisy images. Since we aim to generate a region-level

patch, the configuration of the patch’s alpha channel is im-

plemented as a predefined total variation constraint, forcing

neighboring pixels within the same shape to be similar. We

achieve this by defining a position-dependent alpha channel

at pixel (i, j) for a single shape as follows:

α(i, j) = amax ∗ (−s ∗ d(i, j)β + 1)

d(i, j) =
(i− xc,norm)

2 + (j − yc,norm)
2

r2norm

xc,norm = (1− xc) ∗ ⌊
pw

2
⌋

yc,norm = (1− yc) ∗ ⌊
ph

2
⌋

rnorm = r ∗ ⌊
min(pw, ph)

2
⌋

(2)

where the parameters above represent the following:

• amax ∈ [0, 1] ⊂ R - the maximum value of the alpha

channel.

• s ∈ [0, 1] ⊂ R - controls the minimum value of the

alpha channel, where αmin = αmax ∗ (1− s).

• β ∈ R+ - exponential drop-off.
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Figure 3: Overview of our method’s pipeline.

• (pw, ph) ∈ N
2 - patch width and height.

• d(i, j) ∈ [0, 1] ⊂ R - the normalized distance

of pixel (i, j) from the shape’s normalized center

(xc,norm, yc,norm).

Equation 2 produces distance-dependent opacity along the

shapes’ area, forming a smooth shape. Pixels close to the

shape’s center (d → 0) will have an alpha value closer to

αmax, whereas pixels that lie close to the shape’s edge (d →
1) will have near αmin value. The drop-off parameter β

controls the smoothness intensity.

Shape’s positioning and shearing. To control the posi-

tioning and shearing of each shape on the patch, we use 2D

affine transformations [28], characterized by the following

affine matrix:
[

1 shx xc

shy 1 yc

]

(3)

Intuitively, the shape’s location is characterized by discrete

pixel coordinates. However, since we use a gradient-based

optimization process, discrete parameters cannot be used.

Therefore, we use affine transformation to represent a con-

tinuous and differentiable form of the shape’s location.

Attack parameters. The parameters discussed in this sec-

tion can be divided into two groups:

• a set of manually chosen (input) parameters: number

of shapes n and Θmanual which characterizes all of the

shapes on our patch:

Θmanual = (αmax, s, β, (rmin, rmax)) (4)

The specific values chosen for Θmanual are essential for

limiting the amount of noise applied to our patch and

simulating a printed physical patch, which will be fur-

ther explained in Section 5.

• The free parameters Θfree are optimized by the pro-

posed algorithm:

θ = ((xc, yc), r, (shx, shy), γ)

Θfree = {θ1, .., θn}
(5)

where θ characterizes a single shape and Θfree is a com-

position of all of the shapes parameters.

3.2. Patch Optimization

To optimize Θfree, we compose a custom loss function

consisting of four components:

ℓtotal = w1 ∗ ℓtarget conf + w2 ∗ ℓIoU

+w3 ∗ ℓuntargeted conf + w4 ∗ ℓnps
∑

i

wi = 1
(6)

The optimization process minimizes ℓtotal, aiming to achieve

three main goals, each of which will be discussed through-

out this section, noting their relation to the components pre-

sented in Equation 6. To determine the optimal weight val-

ues wi, we use the grid search approach. We also allow ze-

roing w1 and w2 during the hyperparameter search to study

whether they are both necessary to achieve our goals.

Since our entire attack is differentiable, we use an au-

tomatic differentiation tool kit (PyTorch) to optimize our

patch parameters using the backpropagation algorithm, as

shown in Figure 3.
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Eliminating the detection of the target class. The infer-

ence output of object detection models provides two unique

defining details for each detected object: the bounding box

and confidence score. We use these details to achieve the

following goals:

• Minimize the confidence score of the target class:

ℓtarget conf = Pr(objectness) ∗ Pr(target class) (7)

where Pr(objectness) and Pr(class) correspond to the

YOLO output, which consists of two confidence scores

for each cell in the final detection grid: (a) the object-

ness score - whether a specific cell in the grid contains

any object, (b) the class score - whether a specific cell

in the grid contains a specific class. The model outputs

a detection only if the confidence score surpasses a cer-

tain threshold. As noted by Thys et al. [33], it is pos-

sible to minimize Pr(objectness) and Pr(class) indi-

vidually. However, in our preliminary experiments, the

only combination that led to adequate results was the

product of these components.

• Minimize the Intersection over Union (IoU) score be-

tween the predicted bounding box and the ground truth

bounding box of the target class:

ℓIoU = IoU
ground truth
predicted (target class) (8)

By doing this, we steer the shapes in our patch to-

ward learning better positions, causing the detector

to incorrectly predict the location of bounding boxes

and resulting in the misdetection of the object’s loca-

tion. Although our attack aims to hide a selected tar-

get class, incorrectly placing a bounding box can also

negatively affect the detector’s performance. When the

location of the predicted bounding box matches that of

the ground truth bounding box with high accuracy, the

penalty of this component is greater.

Maintaining the detection of untargeted classes. Since

our patch is not placed on the target object, we address the

issue of affecting the detection of the untargeted classes:

ℓuntargeted conf =

1

M

∑

cls∈image
cls6=target

|conf(cls, clean)− conf(cls, patch)| (9)

where conf(cls,image) represents the confidence score of

class cls in image image, as explained earlier in this sec-

tion, and M represents the number of classes in the image.

When untargeted classes are detected correctly, the loss

will be closer to zero. On the other hand, when the detector

does not detect untargeted classes, the penalty of this com-

ponent is greater.

Figure 4: Camera-based attack on a Tesla Model X, using

a cyan-colored patch. The street view in the upper part of

the image shows the actual scene with a red traffic light.

The lower part of the image shows that the car’s navigation

screen interprets the traffic light’s color as green.

Generating a printable patch. We include the non-

printability score (NPS) [26], which represents how closely

digital colors match colors printed by a standard printer:

ℓnps =
∑

cpatch∈P

min
cprint∈C

|cpatch − cprint| (10)

where cpatch is a color in our patch P (i.e., shape color) and

cprint is a color in the set of printable colors C. This loss

penalizes colors that are far from the set of printable colors.

4. Motivating Example: Tesla Use Case

As a proof of concept, we demonstrated the ability to

successfully perform a camera-based attack on an object de-

tection model by applying a physical on-sensor patch. After

applying fully colored patches (i.e., not generated by our

attack) on the front camera of a Tesla Model X, we were

able to deceive the car’s advanced driving assistance sys-

tem (ADAS):

• Traffic light attack - by applying a cyan-colored patch,

we managed to change the ADAS’s perception of a

traffic light’s color, so that it interpreted a red light as

a green light, as shown in Figure 4.

• Stop sign attack - by applying a red-colored patch, we

were able to hide a stop sign and prevent it from being

detected.

A demo of both experiments can be found here: https:

//youtu.be/n6P55eslyvA.
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CLEAN PATCH RANDOM RED CYAN

Figure 5: Examples of frames presented to the detection model and its detections when various patches are applied to the

camera’s lens. Each row represents a single frame, and each column represents the use of a different patch.

5. Evaluation

We evaluate our attack on the use case of autonomous

cars, in which object detection models are used to identify

obstacles and road signs. Specifically, we aim to devise an

attack that will cause the object detection model to fail to

detect stop signs while maintaining its capability of detect-

ing other object classes.

We first experiment in the digital domain by using alpha

blending between the original images and several different

types of patches (see Equation 1). Then, we evaluate the

performance of the patches in a real-world setup by printing

and attaching them to a camera lens, as shown in Figure 2.

Models. We evaluated our attack using the YOLOv5 one-

stage detector [11] (an improvement to YOLOv3 [23]) in

a white-box setting. In addition, we examined our patch’s

transferability to other detectors, YOLOv2 [22] and Faster

R-CNN [24], as a black-box setting. For all of the detectors

we use pretrained weights on the MS-COCO [16] dataset.

MS-COCO contains 80 object categories from several do-

mains. We selected eight relevant categories: person, bicy-

cle, car, bus, truck, traffic light, fire hydrant, and stop sign.

Datasets. We use a combination of multiple driving-related

datasets, from which we extracted images containing stop

signs, to improve the robustness of our patch:

• LISA traffic sign dataset [18] - tens of videos split into

frames containing U.S. traffic signs; ∼500 images con-

taining stop signs.

• Mapillary Traffic Sign Dataset (MTSD) [5] - a diverse

street-level dataset obtained from a rich geographic

area; ∼750 images containing stop signs.

• Berkeley DeepDrive (BDD) [36] - videos of the driv-

ing experience covering many different times of the

day, weather conditions, and driving scenarios; ∼500

images containing stop signs.

Hence, the full dataset contains ∼1750 images of stop

signs. Since the LISA and MTSD datasets only have an-

notations of traffic signs, we use our object detection model

(YOLOv5) to annotate (label) the rest of the classes exam-

ined in this paper. These annotations are later used as the

ground truth.

Evaluation setup. We split our full dataset into training,

validation, and test sets. The training and validation sets

consist of images from the BDD and MTSD datasets (ran-

domly chosen with a split ratio of 90% and 10%, respec-

tively), while the test set contains images from the LISA

dataset. By dividing the full dataset this way, we achieve

two goals: (1) there is no correlation between the train-

ing/validation sets and the test set; thus, achieving good re-

sults on the test set implies that our patch is unbiased and

universal, and (2) since the LISA dataset is comprised of

multiple videos split into frames, it allows us to demonstrate

our patch’s effectiveness in the physical domain by testing

it on driving videos.

Evaluation metrics. We use the average precision (AP) for

digital attacks, representing the area under the precision-

recall (PR) curve for both the selected target class and un-

targeted classes.

In addition, to quantify our physical patch’s success in

the real world, we define the following metric:

Fooling Rate(class) =
# fooled objects(class)

# total objects(class)
(11)

where an object of category class is considered ‘fooled’ if

it was not output by the detector (the confidence score does

not surpass the minimum threshold). We set our minimum

confidence score threshold at 0.4, a point where our detector

achieved an AP of 95.17% on the original images contain-

ing the stop sign class in the digital domain.

Types of patches evaluated. We compare our patch’s

performance to several different translucent patches: (a)

15237



(a) Stop sign class.

(b) Other (untargeted) classes.

Figure 6: Precision-Recall (PR) curves of our method

(PATCH) with eight shapes compared to different patch

types (RANDOM, RED, CYAN) and the original images

(CLEAN) on the YOLOv5 (white-box setting).

CLEAN - the original image without a patch, (b) PATCH -

our optimized patch, (c) RANDOM - a baseline patch with

the same number of shapes as PATCH and random initial-

ization of our attack’s optimized parameters Θfree: location,

color, and shearing, (d) RED - a fully red-colored patch, (e)

CYAN - a fully cyan-colored patch. The different types of

patches evaluated are presented in Figure 5.

Implementation details. Throughout this section the re-

sults presented are obtained using the following manual pa-

rameters: 1) s = 0.9, to achieve near zero values at the

shape’s edge, for smooth transitions between pixels inside

and outside the shape’s area; 2) β = 2.5, to apply high in-

tensity around the shape’s center, which will be caused in

the physical patch by the printer; and 3) the upper radius

bound rmax = 0.25, to bind the number of pixels changed

in the perturbed image, while the lower bound rmin = 0.03
is the minimum printable shape.

The settings of our free parameters Θfree are randomly

initialized and updated using the Adam optimizer [12]. The

initial learning rate is set at 5e−3, except for the radius up-

date, which is initially set at 8e−4. Moreover, using a grid

search algorithm, we found the optimal wi setting to be

w1 = 0.74 , w2 = 0.15 , w3 = 0.1 , w4 = 0.01.

5.1. Digital Attacks

To evaluate our patch’s effectiveness, we conduct digital

experiments in which our optimized patch is applied to im-

ages in the test set, using alpha blending (see Equation 1).

White-box attack performance. First, we examine our at-

tack’s performance in a white-box setting in which our patch

is optimized using the weights of the YOLOv5 detector and

evaluated on the same model. As shown in Figure 6a, using

a patch with eight shapes with αmax = 0.4, we were able to

degrade the detector’s AP to 52.7%, which is a decrease of

over 42.47% from the detector’s best performance (which

is 95.17%). In addition, of the patches examined, our patch

has the greatest effect on the detector’s performance for the

stop sign class.

Since we do not apply our patch on a specific object but

rather on the entire image, it might interfere with the de-

tection of untargeted classes; thus, a comprehensive evalu-

ation must address that issue as well. The results in Fig-

ure 6b show that our patch has a minimal effect on untar-

geted classes. The detector was able to achieve an AP of

82.69%, for the untargeted classes which is only a 10.07%

difference from the random patch and better than simple

fully-colored patches. It should be noted that our detector’s

AP on untargeted classes is 100%, because the ground truth

labels on the LISA dataset were generated by our detector,

as mentioned earlier in this section. Unlike our patch, which

affects the detection of the stop sign class more than other

classes, the rest of the attacks have a similar effect on all of

the classes, both targeted and untargeted.

Attack’s performance for different parameter values. A

significant aspect of adversarial attacks refers to the amount

of noise added to the resulting image, which is mainly con-

trolled by manual parameter setting. The noise can have

two kinds of impact, affecting the deception rate as follows:

• The number of pixels changed - in our attack this is af-

fected by two parameters: the number of shapes n and the

shapes’ radius r. Since r is a free parameter, we examine

the effect of the number of shapes with αmax = 0.4. As

shown in Table 1, we can see that the AP decreases as we

# Shapes (n) ‘Stop Sign’ Class Other Classes

3 91.15% 95.44%

5 77.45% 91.72%

7 65.01% 83.23%

10 53.11% 77.65%

15 47.9% 72.49%

Table 1: Average precision as a function of n
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add more shapes. It should be noted that at some point,

the AP does not decrease as we add more shapes, because

shapes may overlay each other.

• The patch’s dominance in the resulting image - in our at-

tack the dominance is mainly influenced by αmax; there-

fore, we use a fixed number of shapes (eight) to study

αmax’s influence. As shown in Table 2, we are able to

decrease the detector’s AP as the patch’s αmax increases

in the resulting image, eliminating a large portion of stop

sign instances when setting the maximum opacity of the

patch to 90%. While high opacity achieves a higher fool-

ing rate, at some level the patch becomes perceptible to

the human eye. Thus, the setting of αmax must address

the patch’s effectiveness on the target class and keep the

patch as imperceptible as possible.

Moreover, adding too many shapes or setting the value of

αmax too high largely affects the detection of the untargeted

classes, which is something that we want to avoid.

αmax ‘Stop Sign’ Class Other Classes

0.1 93.85% 98.26%

0.3 70.13% 88.25%

0.5 51.75% 81.93%

0.7 38.61% 78.76%

0.9 36.55% 70.45%

Table 2: Average precision as a function of the αmax

Transferability of the attack. To perform a comprehen-

sive evaluation of our patch, we further investigate its per-

formance on detectors that it was not trained on (black-

box setting), which means that our patch (eight shapes and

αmax = 0.4) was optimized using a surrogate model and

tested on other models. In Table 3, we present our patch’s

performance on two attacked models: YOLOv2 [22] and

Faster R-CNN [24]. We show that our patch can success-

fully deceive models it was not trained on, reducing the AP

of the YOLOv2 and Faster R-CNN on the stop sign class

to 57.36% and 54.53% respectively, while maintaining an

AP for untargeted classes that is close to the detector’s best

performance for this task.

5.2. Physical attacks

Finally, to evaluate our patch’s performance in the real

world, we print it on transparent paper (Figure 2b) and

place it on the camera’s lens (Figure 2c), filming a com-

puter screen that is projecting videos of our test set (Fig-

ure 2d). Since the physical attack evaluation requires ac-

cess to the object detection model’s predictions, we used a

testbed which contained the following equipment: a Log-

itech C930 web camera to simulate the autonomous car’s

camera, a 21-inch computer screen to project videos on,

simulating real driving, and YOLOv5 to simulate the car’s

ADAS. To print our patch (0.6x0.33 inches) on transparent

paper, we used a Xerox 6605DN laser printer.

‘Stop Sign’ Class Other Classes

Model/Attack CLEAN PATCH CLEAN PATCH

YOLOv5 95.17% 52.7% 100% 82.69%

YOLOv2 81.54% 57.36% 59.13% 54.92%

Faster R-CNN 94.31% 54.53% 78.31% 70.36%

Table 3: Average precision in black-box setting: patch

trained on YOLOv5 and evaluated on other object detectors

We first evaluate the detector’s best performance on the

test set videos without any attack (i.e., no patch is applied to

the camera’s lens) and then use this as a reference (ground-

truth) to examine the effect of different patches. As the re-

sults presented in Table 4 show, our physical patch was able

to cause the detection model to fail to detect 42.27% of the

total number of stop sign instances (compared to 42.47%

in the digital attack), while still detecting nearly 80% of

the untargeted class instances (compared to 82.69% in the

digital attack). In contrast to the results obtained by our

patch, the other patches have major disadvantages: 1) the

random patch could not achieve an adequate fooling rate

on the stop sign class, and 2) the fully colored patches per-

formed poorly on the untargeted classes (similar to the ef-

fect of completely blocking the camera’s lens).

During the physical experiments we observed a specific

trend when our patch was used - in most of the scenes, the

stop sign is detected at a very late stage, which leads to a

very small window of time for the ADAS to respond.

Class/Attack PATCH RANDOM RED CYAN

Stop sign 42.27% 20.57% 93.3% 98.9%

Others 21.54% 19.27% 82.7% 81.6%

Table 4: Fooling rate for the stop sign class and other classes

for physical patch attacks

6. Conclusion

We presented a physically-realizable attack against state-

of-the-art object detectors without the need to have direct

access to the targeted object. We crafted a translucent

patch attached to the camera lens by the adversary with a

unique design that considers real-world constraints and im-

plemented a custom optimization process to achieve a suc-

cessful attack in a real-world environment. Our experiments

demonstrated that it is possible to prevent a specific class

from being detected while simultaneously allowing the de-

tection of other classes. Moreover, we showed that com-

pared to the other evaluated attacks, our method has the best

trade-off between the target class’s misdetection and the un-

targeted classes’ detection. Our study highlighted the risk

that autonomous cars’ ADASs face from an adversary capa-

ble of simply applying a patch on their cameras. Further re-

search should focus on proposing countermeasures for such

attacks, such as anomaly detection or active sensor checks.
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