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Abstract

In machine learning, a question of great interest is un-
derstanding what examples are challenging for a model to
classify. Identifying atypical examples ensures the safe de-
ployment of models, isolates samples that require further
human inspection and provides interpretability into model
behavior. In this work, we propose Variance of Gradients
(VoG) as a valuable and efficient metric to rank data by
difficulty and to surface a tractable subset of the most chal-
lenging examples for human-in-the-loop auditing. We show
that data points with high VoG scores are far more difficult
for the model to learn and over-index on corrupted or mem-
orized examples. Further, restricting the evaluation to the
test set instances with the lowest VoG improves the model’s
generalization performance. Finally, we show that VoG is a
valuable and efficient ranking for out-of-distribution detec-
tion.

1. Introduction
Over the past decade, machine learning models are

increasingly deployed to high-stake decision applications
such as healthcare [4, 20, 52, 70], self-driving cars [51]
and finance [53]. For gaining trust from stakeholders and
model practitioners, it is important for deep neural networks
(DNNs) to make decisions that are interpretable to both re-
searchers and end-users. To this end, for sensitive domains,
there is an urgent need for auditing tools which are scalable
and help domain experts audit models.

Reasoning about model behavior is often easier when
presented with a subset of data points that are relatively
more difficult for a model to learn. Besides aiding inter-
pretability through case-based reasoning [11, 30, 39], it can
also be used to surface a tractable subset of atypical exam-
ples for further human auditing [46, 73], for active learning
to inform model improvements, and to choose not to clas-
sify some instances when the model is uncertain [7, 14, 21].
One of the biggest bottlenecks for human auditing is the
large scale of modern datasets and the cost of annotating in-
dividual features [3, 38, 68]. Methods which automatically

surface a subset of relatively more challenging examples for
human inspection help prioritize limited human annotation
and auditing time. Despite the urgency of this use-case,
ranking examples by difficulty has had limited treatment in
the context of deep neural networks due to the computa-
tional cost of ranking a high dimensional feature space.

Present work. A popular interpretability tool is saliency
maps, where each of the features of the input data are scored
based on their contribution to the final output [64]. How-
ever, these explanations are typically for a single predic-
tion and generated after the model is trained. Our goal is
to leverage these explanations to automatically surface a
subset of relatively more challenging examples for human
inspection to help prioritize limited human annotation and
auditing time. To this end, we propose a ranking method
across all examples that instead measures the per-example
change in explanations over training. Examples that are dif-
ficult for a model to learn will exhibit higher variance in
gradient updates throughout training. On the other hand, the
backpropagated gradients of the samples that are relatively
easier will exhibit lower variance because the loss from
these examples does not consistently dominate the model
training.

We term this class normalized ranking mechanism Vari-
ance of Gradients (VoG) and demonstrate that VoG is a
meaningful way for ranking data by difficulty and surfac-
ing a tractable subset of the most challenging examples for
human-in-the-loop auditing across a variety of large-scale
datasets. VoG assigns higher scores to test set examples that
are more challenging for the model to classify and proves to
be an efficient tool for detecting out-of-distribution (OoD)
samples. VoG is model and domain-agnostic as all that is
required is the backpropagated gradients from the model.

Contributions. We demonstrate consistent results across
two architectures and three datasets – Cifar-10, Cifar-100
[43] and ImageNet [61]. Our contributions can be enumer-
ated as follows:

1. We present Variance of Gradients (VoG) – a class-
normalized gradient variance score for determining the
relative ease of learning data samples within a given
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class (Sec. 2). VoG identifies clusters of images with
clearly distinct semantic properties, where images with
low VoG scores feature far less cluttered backgrounds
and more prototypical vantage points of the object
(Fig. 4). In contrast, images with high VoG scores
over-index on images with cluttered backgrounds and
atypical vantage points of the object of interest.

2. VoG effectively surfaces memorized examples, i.e. it
allocates higher scores to images that require memo-
rization (Sec. 4). Further, VoG aids in understanding
the model behavior at different training stages and pro-
vides insight into the learning cycle of the model.

3. We show the reliability of VoG as an OoD detection
technique and compare its performance to 9 existing
OoD methods, where it outperforms several methods,
such as PCA [24] and KDE [15, 54]. VoG presents an
overall improvement of 9.26% in precision compared
to all other methods.

2. VoG Framework
We consider a supervised classification problem where

a DNN is trained to approximate the function F that maps
an input variable X to an output variable Y, formally F :
X 7→ Y, where Y is a discrete label vector associated with
each input X and y ∈ Y corresponds to one of C categories
or classes in the dataset.

A given input image X can be decomposed into a set of
pixels xi, where i = {1, . . . , N} and N is the total num-
ber of pixels in the image. For a given image, we compute
the gradient of the activation Al

p with respect to each pixel
xi, where l designates the pre-softmax layer of the network
and p is the index of either the true or predicted class prob-
ability. We would like to note that the pre-softmax layer is
responsible for connecting activations from previous layers
in the network to individual class scores. Hence, comput-
ing the gradients w.r.t. this class indexed score measures the
contribution of features to the final class prediction [64].

Note our goal is to rank examples, so for each example,
we compute the pre-softmax activation gradient indexed at
predicted/true label with respect to the input. This is far
more computationally efficient than computing the full Ja-
cobian matrix with individual layers.

Let S be a matrix that represents the gradient of Al
p with

respect to individual pixels xi, i.e. for an image of size 3×
32 × 32, the gradient matrix S will be of dimensions 3 ×
32× 32.

S =
∂Al

p

∂xi
(1)

This formulation may feel familiar as it is often computed
based upon the weights of a trained model and visualized as
a image heatmap for interpretability purposes [5, 31, 63, 64,

64–66]. In contrast to saliency maps which are inherently
local explanation tools, we are leveraging relative changes
in gradients across training to rank all examples globally.

Following several seminal papers in explainability lit-
erature [31, 63–66], we take the average over the color
channels to arrive at a gradient matrix [63–66] where S ∈
R32×32. For a given set of K checkpoints, we generate the
above gradient matrix S for all individual checkpoints, i.e.,
{S1, . . . ,SK}. We then calculate the mean gradient µ by
taking the average of the K gradient matrices. Note, µ is
the mean across different checkpoints and is of the same
size as the gradient matrix S. We then calculate the vari-
ance of gradients across each pixel as:

µ =
1

K

K∑
t=1

St. (2)

VoGp =

√
1

K

K∑
t=1

(St − µ)2. (3)

We average the pixel-wise variance of gradients to compute
a scalar VoG score for the given input image:

VoG =
1

N

N∑
t=1

(VoGp), (4)

where N is the total number of pixels in a given image. First
calculating the pixel-wise variance (Eqn. 3) and then aver-
age over the pixels (Eqn. 4) is consistent with previous XAI
works where the gradients of an input image are computed
independently for each pixel in an image [64–66].

In order to account for inherent differences in variance
between classes, we normalize the absolute VoG score
by class-level VoG mean and standard deviation. This
amounts to asking: What is the variance of gradients for
a given image with respect to all other exemplars of this
class category?

2.1. Validating the behavior of VoG on synthetic
data

In Fig. 1a, we illustrate the principle and effectiveness
of VoG in a controlled toy example setting. The data was
generated using two separate isotropic Gaussian clusters.
In such a simple low dimensional problem, the most chal-
lenging examples for the model to classify can be quanti-
fied by distance to the decision boundary. In Fig. 1a, we
visualize the trained decision boundary of a multiple layer
perceptron (MLP) with a single hidden layer trained for 15
epochs. We compute VoG for each training data point and
plot final VoG score for each point against the distance to
the trained boundary. In Fig. 1b, we can see that VoG suc-
cessfully ranks highest the examples closest to the decision
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(a) Toy dataset trained decision boundary (b) Distance vs. VoG score

Figure 1. Left: Variance of Gradients (VoG) for each testing data point in the two-dimensional toy problem. Right: VoG
accords higher scores to the most challenging examples closest to the decision boundary (as measured by the perpendicular
distance).
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(a) Early-stage training (b) Late-stage training

Figure 2. The 5×5 grid shows the top-25 Cifar-10 and Cifar-100 training-set images with the lowest and highest VoG
scores in the Early (a) and Late (b) training stage respectively of two randomly chosen classes. Lower VoG images evidence
uncluttered backgrounds (for both apple and plane) in the Late training stage. VoG also appears to capture a color bias present
during the Early training stage for both apple (red). The VoG images in Late training stage present unusual vantage points,
with images where the frame is zoomed in on the object of interest.

boundary. The most challenging examples exhibit the great-
est variance in gradient updates over the course of the train-
ing process. In the following sections, we will scale this toy
problem and show consistent results across multiple archi-
tectures and datasets.

2.2. Experimental Setup

Datasets. We evaluate our methodology on Cifar-10 and
Cifar-100 [43], and ImageNet [61] datasets. For all datasets,
we compute VoG for both training and test sets.
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Cifar Training. We use a ResNet-18 network [25] for
both Cifar-10 and Cifar-100. For each dataset, we train
the model for 350 epochs using stochastic gradient descent
(SGD) and compute the input gradients for each sample ev-
ery 10 epochs. We implemented standard data augmenta-
tion by applying cropping and horizontal flips of input im-
ages. We use a base learning rate schedule of 0.1 and adap-
tively change to 0.01 at 150th and 0.001 at 250th training
epochs. The top-1 test set accuracy for Cifar-10 and Cifar-
100 were 89.57% and 66.86% respectively.

ImageNet Training. We use a ResNet-50 [25] model
for training on ImageNet. The network was trained with
batch normalization [35], weight decay, decreasing learn-
ing rate schedules, and augmented training data. We train
for 32, 000 steps (approximately 90 epochs) on ImageNet
with a batch size of 1024. We store 32 checkpoints over the
course of training, but in practice observe that VoG rank-
ing is very stable computed with as few as 3 checkpoints.
Our model achieves a top-1 accuracy of 76.68% and top-5
accuracy of 93.29%.

Number of checkpoints. The number of checkpoints used
to compute VoG balances efficiency for practitioners to use
with the robustness of ranking. This can be set by the prac-
titioner, and we note that in practice the last 3 checkpoints
are sufficient for a robust VoG ranking (minimal difference
when restricting to the last 3 in Figs. 5b,8b,11b vs. eval-
uating on all checkpoints in Fig. 4). For all experiments,
VoG(early-stage) is computed using checkpoints from the
first 3 epochs and VoG(late-stage) is computed using check-
points from the last 3 epochs. The test set accuracy at the
early-stage is 44.65%, 14.16%, and 51.87% for Cifar-10,
Cifar-100, and ImageNet, respectively. In the late-stage it is
89.57%, 66.86%, and 76.68% for Cifar-10, Cifar-100, and
ImageNet, respectively.

3. Utility of VoG as an Auditing Tool

In this section, we evaluate the merits of VoG as an au-
diting tool. Specifically, we (1) present the qualitative prop-
erties of images at both ends of the VoG spectrum, (2) mea-
sure how discriminative VoG is at separating easy examples
from difficult, (3) quantify the stability of the VoG ranking,
(4) use VoG as an auditing tool for test dataset, and (5) lever-
age VoG to understand the training dynamics of a DNN.

1) Qualitative inspection of ranking. A qualitative inspec-
tion of examples with high and low VoG scores shows that
there are distinct semantic properties to the images at either
end of the ranking. We visualize 25 images ranked lowest
and highest according to VoG for both the entire dataset (vi-
sualized for ImageNet in Fig. 7) and for specific classes (vi-
sualized for ImageNet in Fig. 3 and for Cifar-10 and Cifar-
100 in Fig. 2). Images with low VoG score tend to have

uncluttered and often white backgrounds with the object of
interest centered clearly in the frame. Images with the high
VoG scores have cluttered backgrounds and the object of in-
terest is not easily distinguishable from the background. We
also note that images with high VoG scores tend to feature
atypical vantage points of the objects such as highly zoomed
frames, side profiles of the object or shots taken from above.
Often, the object of interest is partially occluded or there are
image corruptions present such as heavy blur.

2) Test set error and VoG. A valuable property of an au-
diting tool is to effectively discriminate between easy and
challenging examples. In Fig. 4, we plot the test set error
of examples bucketed by VoG decile. Note that we plot
error, so lower is better. We show that examples at the low-
est percentiles of VoG have low error rates, and misclassi-
fication increases with an increase in VoG scores. Our re-
sults are consistent across all datasets, yet the trend is more
pronounced for more complex datasets such as Cifar-100
and ImageNet. We ascribe this to differences in underlying
model complexity. Furthermore, in Fig. 10, we observe that
test set error on the lowest VoG scored images are lower
than the baseline test set performance.

3) Stability of VoG ranking. To build trust with an end-
user, a key desirable property of any auditing tool is consis-
tency in performance. We would expect a consistent method
to produce a ranking with a closely bounded distribution of
scores across independently trained runs for a given model
and dataset. To measure the consistency of the VoG ranking,
we train five Cifar-10 networks from random initialization
following the training methodology described in Sec. 2.2.
Empirically, Fig. 6 shows that VoG rankings evidence a con-
sistent distribution of test-error at each percentile given the
same model and dataset. For completeness, we also mea-
sure instance-wise VoG stability by computing the standard
deviation of VoG scores for 50k Cifar-10 samples across 10
independent initializations. The standard deviation of the
VoG scores is negligible with a mean deviation of 3.81e−9

across all samples. In addition, we find similar results for
Cifar-100 dataset where the output VoG scores are stable
(mean std of 9.6e−6) across different model initializations.
Finally, we extend our stability experiments to understand
the effect of different training hyperparameter settings (e.g.,
batch size) on the VoG scores. Here, we train 5 Cifar-10
models using different batch sizes, i.e., {128, 256, 384, 512,
640}, and find that the mean VoG standard deviation across
50k Cifar-10 samples was 1.9e−5.

4) VoG as an unsupervised auditing tool. Many auditing
tools used to evaluate and understand possible model bias
require the presence of labels for protected attributes and
underlying variables. However, this is highly infeasible in
real-world settings [68]. For image and language datasets,
the high dimensionality of the problem makes it hard to
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Figure 3. Each 5×5 grid shows the top-25 ImageNet training-set images with the lowest and highest VoG scores for the class
magpie and pop bottle. Training set images with higher VoG scores tend to feature zoomed-in images with atypical
color schemes and vantage points.
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(c) ImageNet

Figure 4. The mean top-1 test set error (y-axis) for the examples thresholded by VoG score percentile (x-axis). Across Cifar-
10, Cifar-100 and ImageNet, mis-classification increases with an increase in VoG scores. Across all datasets the group of
samples in the top-10 percentile VoG scores have the highest error rate, i.e. contains most number of misclassified samples.

identify a priori what underlying variables one needs to be
aware of. Even acquiring the labels for a limited number
of attributes protected by law (gender, race) is expensive
and/or may be perceived as intrusive, leading to noisy or in-
complete labels [2,29]. This means that ranking techniques
which do not require labels at test time are very valuable.

One key advantage of VoG is that we show it continues to
produce a reliable ranking even when the gradients are com-
puted w.r.t. the predicted label. In Fig. 7, we include the top
and bottom 25 VoG ImageNet test images using predicted
labels from the model. Finally, we also computed the mean
test-error for the predicted VoG distribution, and find that it
also effectively discriminates between top-10 and bottom-
10 examples, respectively (Fig. 12a).

5) VoG understands early and late training dynamics.
Recent works have shown that there are distinct stages

to training in deep neural networks [1, 17, 36, 49]. To this

end, we investigate whether VoG rankings are sensitive to
the stage of the training process. We compute VoG sepa-
rately for two different stages of the training process: (i)
the Early-stage (first three epochs) and (ii) the Late-stage
(last three epochs). We plot VoG scores against the test
set error at each decile in early- and late-stage and find a
flipping behavior across all datasets and networks (Fig. 5
for ImageNet, Fig. 8 for Cifar-100, and Fig. 11 for Cifar-
10). In the early training stage, samples having higher
VoG scores have a lower average error rate as the gradi-
ent updates hinge on easy examples. This phenomenon re-
verses during the late-stage of the training, where, across all
datasets, high VoG scores in the late-stage have the highest
error rates as updates to the challenging examples dominate
the computation of variance. Further, we note a noticeable
visual difference between the image ranking computed for
early- and late-stages of training. As seen in Fig. 2, for
some classes such as apple, it appears that VoG scores also
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(b) Late-stage training

Figure 5. The mean top-1 test set error (y-axis) for the examples thresholded by VoG score percentile (x-axis) in ImageNet
validation set. The Early (a) and Late (b) stage VoG analysis shows inverse behavior where the role of VoG flips as the
training progresses.

Figure 6. The VoG top-1 test set error for five ResNet-18
networks independently trained on Cifar-10 from random
initialization. The plot shows that VoG produces a stable
ranking with a similar distribution of error in each percentile
across all images

capture the network’s color bias during the early training
stage, where images with the lowest VoG scores over-index
on red-colored apples.

4. Relationship between VoG Scores and Mem-
orized/OoD Examples

Recent works have highlighted that DNNs produce un-
calibrated output probabilities that cannot be interpreted as
a measure of certainty [22, 26, 37, 44]. To this end, we ar-
gue that if VoG is a reliable auditing tool, it should cap-
ture model uncertainty even when it’s not reflected in the
output probabilities. We consider VoG rankings on a task
where the network produces highly confident predictions
for incorrect/out-of-distribution inputs and evaluate VoG on
two separate tasks: (1) identifying examples memorized by

the model and (2) detecting out-of-distribution examples.

4.1. Surfacing examples that require memorization

Overparameterized networks have been shown to
achieve zero training error by memorizing examples [19,32,
72]. We explore whether VoG can distinguish between ex-
amples that require memorization and the rest of the dataset.
To do this, we replicate the general experiment setup of
Zhang et al. [72] and replace 20% of all labels in the train-
ing set with randomly shuffled labels. We re-train the model
from random initialization and compute VoG scores across
training for all examples in the training set. Our network
achieves 0% training error which would only be possible
given successful memorization of the noisy examples with
shuffled labels. We now answer the question: Is VoG able
to discriminate between these memorized examples and the
rest of the dataset?

We perform a two-sample t-test with unequal variances
[69] and show that this difference is statistically significant
at a p-value of 0.001, i.e. shuffled labels have a different
VoG distribution than the non-shuffled dataset. Intuitively,
the two-sample t-test produces a p-value that can be used
to decide whether there is evidence of a significant differ-
ence between the two distributions of VoG scores. The p-
value represents the probability that the difference between
the sample means is large, i.e. the smaller the p-value, the
stronger is the evidence that the two populations have dif-
ferent means. For both Cifar-10 and Cifar-100, we find a
statistically significant difference in VoG scores for each
population (p-value is < 0.001), which shows that VoG
is discriminative at distinguishing between memorized and
non-memorized examples. We include more details about
the statistical testing in Sec. C.

10373



0.0000
GT: trifle
PT: trifle

0.0001
GT: leopard
PT: leopard

0.0001
GT: torch
PT: torch

0.0001
GT: dough
PT: dough

0.0001
GT: snowmobile
PT: snowmobile

0.0001
GT: english sheepdog
PT: english sheepdog

0.0001
GT: airship
PT: airship

0.0001
GT: castle
PT: castle

0.0001
GT: cornet
PT: cornet

0.0001
GT: boa constrictor
PT: boa constrictor

0.0003
GT: warplane
PT: warplane

0.0003
GT: espresso maker
PT: espresso maker

0.0003
GT: planetarium
PT: planetarium

0.0003
GT: American lobster
PT: American lobster

0.0004
GT: bathing cap
PT: bathing cap

0.0004
GT: dining table

PT: tray

0.0004
GT: orange
PT: orange

0.0005
GT: obelisk
PT: obelisk

0.0005
GT: American alligator
PT: American alligator

0.0005
GT: peacock
PT: peacock

0.0005
GT: palace
PT: palace

0.0005
GT: bathtub

PT: tub

0.0005
GT: refrigerator
PT: refrigerator

0.0005
GT: cassette

PT: cassette player

0.0006
GT: blenheim spaniel
PT: blenheim spaniel

(a) Lowest VoG

6.2069
GT: dragonfly
PT: dragonfly

6.2007
GT: warthog
PT: warthog

6.1901
GT: restaurant

PT: water bottle

6.1354
GT: bee

PT: paintbrush

6.0919
GT: bee eater
PT: bee eater

6.0631
GT: ice cream
PT: ice cream

6.0558
GT: echidna
PT: echidna

6.0451
GT: pretzel
PT: chain

6.0365
GT: horse cart

PT: go-kart

5.9871
GT: pug
PT: pug

5.9293
GT: hog
PT: hog

5.9084
GT: boxer
PT: boxer

5.8820
GT: speedboat
PT: speedboat

5.8161
GT: lionfish
PT: sea lion

5.7976
GT: convertible

PT: racer

5.7509
GT: monarch

PT: fountain pen

5.7124
GT: car mirror

PT: rubber eraser

5.6610
GT: macaque

PT: groenendael

5.6208
GT: soft-coated..

PT: tibetan ..

5.5839
GT: salamander
PT: salamander

5.5771
GT: horizontal bar
PT: parallel bars

5.5494
GT: tractor
PT: barrow

5.5464
GT: artichoke

PT: mixing bowl

5.5226
GT: bay retriever

PT: pinscher

5.4728
GT: plate
PT: wok

(b) Highest VoG

Figure 7. Each 5×5 grid shows the top-25 ImageNet test set images with the lowest and highest VoG scores for the top-1
predicted class. Test set images with higher VoG scores tend to feature zoomed-in images and are misclassified more as
compared to the lower VoG images which tend to feature more prototypical vantage points of objects.
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(a) Early-stage training
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(b) Late-stage training

Figure 8. The mean top-1 test set error (y-axis) for the exemplars thresholded by VoG score percentile (x-axis) in Cifar-100
testing set. The early (a) and late (b) stage VoG analysis shows inverse behavior where the role of VoG flips as the training
progresses. Results for Cifar-10 are shown in Appendix Fig. 11.

4.2. Out-of-Distribution detection

We have already established that VoG is very effective
at distinguishing between easy and challenging examples
(Fig. 10). Here, we ask whether this makes VoG an effective

out of distribution (OoD) detection tool. It also gives us a
setting in which to compare VoG as a ranking mechanism
to other methods

Ruff et al. [59] benchmark a variety of OoD detection
techniques on MNIST-C [50]. For completeness, we repli-
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cate this precise setup by using a trained LeNet model
and evaluate VoG on MNIST-C against 9 other methods
[12, 41, 45, 56–58, 60, 62, 67].

Evaluation metrics. We evaluate OoD detection perfor-
mance using the following metrics:

i) AUROC. The Area Under the Receiver Operator Charac-
teristic (AUROC) curve can be interpreted as the probability
that a positive example is assigned a higher detection score
than a negative example [18].

ii) AUPR (In). The Area Under the Precision Recall
(AUPR) curve computes the precision-recall pairs for differ-
ent probability thresholds by considering the in-distribution
examples as the positive class.

iii) AUPR (Out). AUPR (Out) is AUPR as described above,
but calculated considering the OoD examples as the positive
class. We treat this outlier class as positive by multiplying
the VoG scores by −1 and labelling them positive when cal-
culating AUPR (Out).

Table 1. Comparison of VoG to 9 existing OoD detection
methods. Shown are average values of metrics and standard
deviations across 15 corruptions in the MNIST-C datasets.
Arrows (↑) indicate the direction of better metric perfor-
mance. VoG outperforms most baselines by a large margin.

OoD methods AUROC (↑) AUPR OUT (↑)

KDE [57] 57.46±32.09 62.56±24.16

MVE [58] 62.84±21.92 61.42±19.1

DOCC [60] 69.16±28.35 70.37±23.25

kPCA [12] 72.12±31.00. 75.39±26.37

SVDD [67] 74.01±21.39 73.33±21.98

PCA [56] 77.71±30.90 80.86±25.2

Gaussian [45] 80.57±29.71 84.51±22.62

VoG 85.42±10.28. 84.96±9.61

AE [41] 89.89±18.52 89.99±18.19

AEGAN [62] 95.93±7.90. 95.40±9.46

Findings. In Table 1, we observe that VoG outperforms
all methods except AutoEncoders (AE) and AutoEncoder
GAN (AEGAN). In stark contrast to VoG, AE and AEGAN
require complex training of auxiliary models and do not fea-
sibly scale beyond small-scale datasets like MNIST. Given
these limitations, VoG remains a valuable and scalable OoD
detection method as it can be used for large-scale datasets
(e.g. ImageNet) and networks (e.g. ResNet-50). Unlike gen-
erative models, VoG does not require an uncorrupted train-
ing dataset for learning image distributions. Further, VoG
only leverages data from training itself, is computed from
checkpoints already stored over the course of training, and
does not require the true label to rank.

5. Related Work
Our work proposes a method to rank training and test-

ing data by estimating example difficulty. Given the size of
current datasets, this can be a powerful interpretability tool
to isolate a tractable subset of examples for human-in-the-
loop auditing and aid in curriculum learning [8] or distin-
guishing between sources of uncertainty [16, 33]. While
prior works have proposed different notions of what subset
merits surfacing, introduced the concept of prototypes and
quintessential examples in the dataset, but did not focus on
large-scale deep neural networks models [9, 13, 39, 40, 73].

Unlike previous works, we propose a measure that can
be extended to rank the entire dataset by estimating exam-
ple difficulty (rather than surfacing a prototypical subset).
In addition, VoG is far more efficient than other global rank-
ings like [42] and [23].

VoG also does not require modifying the architecture or
making any assumptions about the statistics of the input dis-
tribution. In particular, works such as [39] require assump-
tions about the statistics of the input distribution and [47]
requires modifying the architecture to prefix an autoencoder
to surface a set of prototypes, [55] leverages pruning of the
model to identify difficult examples and [6] requires the ad-
dition of an auxiliary k-nn model after each layer.

Our work is complementary to recent works by [36] that
proposes a c-score to rank examples by aligning them with
training instances, [30] that classifies examples as outliers
according to sensitivity to varying model capacity, and [10]
that considers different measures to isolate prototypes for
ranking the entire dataset. We note that the c-score method
proposed by [36] is considerably more computationally in-
tensive to compute than VoG as it requires training up to
20,000 network replications per dataset. Several of the pro-
totype methods considered by [10] require training ensem-
bles of models, as does the compression sensitivity mea-
sure proposed by [30]. Finally, our proposed VoG is both
different in the formulation and can be computed using a
small number of existing checkpoints saved over the course
of training.

6. Conclusion and Future Work
In this work, we proposed VoG as a valuable and effi-

cient way to rank data by difficulty and surface a tractable
subset of the most challenging examples for human-in-the-
loop auditing. High VoG samples are challenging to classify
for algorithm and surfaces clusters of images with distinct
visual properties. Moreover, VoG is domain agnostic as it
uses only the vanilla gradient explanation from the model,
and can be used to rank both training and test examples. We
show that it is also a useful unsupervised protocol, as it can
effectively rank examples using the predicted label.
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