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Abstract

To represent people in mixed reality applications for col-
laboration and communication, we need to generate realis-
tic and faithful avatar poses. However, the signal streams
that can be applied for this task from head-mounted devices
(HMDs) are typically limited to head pose and hand pose
estimates. While these signals are valuable, they are an
incomplete representation of the human body, making it chal-
lenging to generate a faithful full-body avatar. We address
this challenge by developing a flow-based generative model
of the 3D human body from sparse observations, wherein we
learn not only a conditional distribution of 3D human pose,
but also a probabilistic mapping from observations to the
latent space from which we can generate a plausible pose
along with uncertainty estimates for the joints. We show that
our approach is not only a strong predictive model, but can
also act as an efficient pose prior in different optimization
settings where a good initial latent code plays a major role.

1. Introduction

Mixed reality technology provides new ways to interact
with people, with applications in remote collaboration, vir-
tual gatherings, gaming and education. People are at the
heart of all these applications, and so generating realistic
human representations with high fidelity is key to the user
experience. Whilst external sensors and cameras [33] are
effective, using only head-mounted devices (HMDs) to gen-
erate realistic and faithful human representations remains
a challenging problem. The relevant data available from
HMDs such as Microsoft HoloLens and Oculus Quest is
limited to the location and orientation of the head and the
location and orientation of the hands, obtained either via
egocentric hand tracking [11, 39] or the signal from motion
controllers. This is a very incomplete signal for the pose and
motion of the full human body.

Although prior work has proposed human pose priors
for generating 3D human body poses from partial and
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human, e.g., head and hands Generation

Training

Figure 1. We generate a full body avatar given sparse HMD input
(three SE3s for head and hands), by training a flow-based genera-
tive model that provides an invertible mapping between the base
distribution and 3D human pose distribution. At test time, given
the HMD signal, we predict a region in the latent space that is used
as the input to the flow-based model to generate a pose.

ambiguous observations such as images [3, 19, 42], 2D
joints/keypoints [4, 26], and markers [9, 22, 44, 45], such
observations are richer sources of data than those available
in practice from HMDs. Despite the importance of this prob-
lem, there have been few attempts to generate full body pose
from extremely sparse observations, i.e., head and hand posi-
tion and orientation. Dittadi et al. [8] developed a variational
autoencoder (VAE) to compress the head and hands inputs
to a latent space, allowing a full-body pose to be generated
by sampling from that latent space.

We propose a new approach based on conditional nor-
malizing flows for sparse inputs. Specifically, we learn the
conditional distribution of the full body pose given the head
and hand data via a flow-based model which enables an
invertible mapping between the 3D pose distribution and
the base distribution. Invertibility of our model then allows
us to go further by learning a probabilistic mapping from
the condition to the high-likelihood region in the same base
distribution, as illustrated in Fig. 1. We name our approach a
flow-based avatar generative model (FLAG). The strengths
of this design are: first, using a flow-based generative model
enables exact pose likelihood computation in contrast to
the approximate likelihoods seen in VAE-based pose pri-
ors [8, 26]. Second, the invertibility of our generative model
allows us to compute the oracle latent code. During training,
the oracle latent code then acts as the ground truth for our
mapping function. This allows us to learn a representative
mapping from the observed head and hands to the latent
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space, making our approach a strong predictive model. Fi-
nally, when optimizing either in pose space or latent space,
using our model as the pose prior provides a superior ini-
tialization in the latent space, making optimization very
efficient.

2. Related Work
Several recent works generate 3D human body pose given

partial observations, such as images [3, 18, 19, 35], 2D key-
points [4,15,19], HMDs [8], IMUs [10] and additional upper
body tracking signals [41], or trajectories of partially visible
body joints [16]. These methods usually require richer input
than is available from commercial HMDs [40], whereas we
wish to address the challenge of generating full body poses
solely from HMD input. Most related work uses a generative
model of human pose, either to directly predict the parame-
ters of the body model [23, 25, 26] or as a pose prior in an
optimization framework [4, 19, 45]. A few authors combine
the two, either by training a network that mimics the behav-
ior of an optimizer [15, 43] or an optimizer initialised using
a neural network [18].

SMPLify [4] proposed a probabilistic 3D human pose
prior based on a mixture of Gaussians. Pavlakos et al. [26]
found SMPLify insufficiently expressive to model the com-
plex human pose distribution and proposed VPoser, which
uses variational autoencoders [17]. When using uncondi-
tional VAE-based pose priors, consistency with the obser-
vations has to be enforced via additional terms in the opti-
mization cost function. In contrast, conditional VAE-based
(CVAE) [38] pose priors use the observations to estimate the
pose likelihood. Liang et al. [20] and Rempe et al. [28] use
previously observed poses to condition the pose prior while
Sharma et al. [36] use a CVAE to generate 3D human pose
from 2D keypoints extracted from images.

Previous studies [6, 12, 27] have established that VAE-
based approaches are challenging to train due to the heuristic
nature of tuning the balance between the reconstruction and
the KL divergence loss in the VAE’s evidence lower bound
(ELBO). If the goal is to learn a rich semantic latent space
close to a normal distribution, the weight for the KL term
needs to be relatively high (close to 1 as in the standard
ELBO), which in turn leads to lower quality pose reconstruc-
tion through decoding. If one requires high-quality pose
reconstruction, then the weights for the KL should be rela-
tively small, e.g., 5×10−3 in VPoser [26], leading to a model
that does not optimize the true ELBO with an imperfect la-
tent representation. This push-pull effect on the weights of
the two terms makes VAE training difficult, but it becomes
even more challenging when strong conditioning signals,
such as images, previous poses, or 2D keypoints [20, 28, 36]
are introduced. If trained in the standard fashion, the condi-
tioning signal is strong enough that the decoder can generate
a pose given only the condition, and thus learns to ignore

the latent variable [1, 2]. To avoid this, CVAE-based pose
priors tend to assign a very small weight to the KL term,
e.g., 4 × 10−4 as in Rempe et al. [28], to avoid posterior
collapse [6, 12, 27].

Unlike VAE-based approaches, normalizing flow-based
models represent the complex data distribution via a com-
position of invertible transforms and minimize the exact
negative log-likelihood of the poses. Biggs et al. [3] use a
flow-based model as a pose prior in an optimization prob-
lem where the goal is find a likely pose that minimizes the
re-projection error given 2D keypoints. Zanfir et al. [42]
use a flow-based pose prior to fit a 3D body model on 2D
images in a weakly-supervised framework. Kolotouros et
al. [19] extend these models to make them conditional on
observed images enabling them to use a single model both
as a pose prior and directly as a predictive model, allowing
generation of a plausible 3D human pose given an image and
a latent code (z = 0). These advances build confidence in
highly expressive conditional flow-based models with rich
conditional inputs such as images or keypoints.
Our approach In this paper, we push this line of investi-
gation even further and propose FLAG, a conditional flow-
based pose prior for sparse inputs which builds upon prior
work by: (1) generating high-quality 3D poses from an ex-
tremely sparse conditioning signal, (2) providing latent vari-
able sampling, by learning a mapping from the observation
to the region in the latent space that generates a likely and
plausible pose. This gives us a strong predictive model as
well an efficient pose prior for optimization. Furthermore,
we show that, in a conditional scenario, starting with z = 0
as in Kolotouros et al. [19] does not necessarily lead to the
best predictive outcome and that our method provides a more
promising alternative.

3. Preliminaries
Normalizing Flows. Normalizing flows [30] as likelihood-
based generative models provide a path to an expressive
probability distribution of the data. Unlike VAEs, where the
main challenge is to find an appropriate approximate poste-
rior distribution, normalizing flows only require a definition
of a simple base distribution (also referred to as a prior) and
a series of bijective transformations. These bijective transfor-
mations allow the model to map the data to the latent space
and vice versa.

Given data x ∈ Rd, the goal is to learn the joint distri-
bution of data. Normalizing flows model x as a transforma-
tion T of a real vector z ∈ Rd sampled from the chosen base
distribution pz(z), which could be as simple as a multivariate
normal distribution. With invertible and differentiable T (and
hence T−1) and using the change of variable formula [32],
we obtain the density of x as:

px(x) = pz(z)
∣∣det JT (z)∣∣−1

(1)
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Figure 2. Overview of FLAG, consisting of a flow-based model fθ
and a latent region approximator fLRA. During training fθ aims to
learn the distribution of xθ and fLRA aims to learn a mapping from
the condition to the latent representation of xθ . At test time, we
sample a latent variable zH via fLRA and use that to generate a new
pose via x̂θ = fθ(zH, [xH, β]).

where JT is the Jacobian of T . Since z = T−1(x), px(x)
can also be written in terms of x and the Jacobian of T−1:

px(x) = pz(T
−1(x))

∣∣ det JT−1(x)
∣∣ (2)

Instead of one transformation, multiple simple transforms
can be composed to form a complex transform T = TK ◦
TK−1 ◦ ... ◦ T1 where Ti transforms zi−1 into zi, z0 is the
latent variable in the base distribution and x = zK . This
composition can be built with neural networks that maximize
the data log-likelihood. As shown in [30], log p(x) can be
written as:

log p(x) = log p(z0)−
K∑
i=1

log det

∣∣∣∣∂Ti

∂zi

∣∣∣∣ (3)

SMPL Body Model. SMPL [23] is a parametric generative
model of human body meshes. SMPL receives as input
the 3D human poses in axis-angle representation θ and the
body shape parameters β, and generates the body mesh
represented as 3 × 6890 matrix M = SMPL(θ, β). With
that, we define SMPL(θ, β).HH() to compute the head and
hands location and orientation.

4. Proposed Method
We first define our problem statement, followed by an

overview of our approach. We then describe the components
of FLAG and the training and generation of full body poses.

4.1. Model Overview

Our task is to generate a full body pose xθ given a sparse
observation xH and the shape parameters β. xθ ∈ R3×J rep-
resents joint rotations as axis-angle vectors for J body joints,
and xH ∈ R9×K represents the global 6D joint rotation [46]
and a 3D joint location for each of the K = 3 observations
(head and hands). This information can be obtained from a
parametric model of human body, e.g., SMPL [23].

One valid way to generate xθ from xH is to learn the dis-
tribution of the body pose given the observed xH and β via a
conditional flow-based model fθ. While this approach can
effectively provide the likelihood of a given pose, the gen-
eration process remains incomplete; for generating a novel
pose given xH and β, one needs to sample a latent variable.
However, the sampling process is completely independent of
the observations. While [19] rely on the mean of the latent
space z = 0 (a vector of all zeros) as the latent code to gen-
erate the full pose, we argue that there exists a latent code
that represents xθ better than z = 0. In fact, while z = 0 is
the most likely latent code in the base distribution, it may not
necessarily translate to the most likely pose in the pose space
since there can be changes in the volume of the distribution
(the second term in Eq. 3) through fθ’s transformations. To
obtain such a latent code, our model estimates a sub-region
in the normalizing flow base distribution, N (µH,ΣH), given
xH and β, from which a latent variable can be sampled to
generate the full body pose.

At test time, to generate a full body pose given xH and β,
we sample a latent code from zH ∼ N (µH,ΣH) and use that
as an approximation of zθ, the latent code that generates a
full body pose. We use this latent estimate to generate a full
body pose via x̂θ = fθ(zH, [xH, β]). Next, we define fθ and
describe how we model N (µH,ΣH).

4.2. Flow over Full Body Pose

We model the distribution of xθ with a normalizing flow
model. Our model fθ is a conditional RealNVP [7] con-
ditioned on xH and β. This can be achieved by mapping
xθ from the pose distribution to the base distribution (and
vice versa) via a composition of simple invertible transfor-
mations, where each transformation can stretch or shrink its
input distribution.

While it is not straightforward to investigate the contribu-
tion of each invertible transformation in generating a human
pose given zθ sampled from the base distribution, we ex-
pect each successive transformation to add expressivity to
the incoming distribution of human poses it acts upon. To
intuitively understand the role of each transformation, we
visualize how a human pose is formed through all transfor-
mations in a model. Fig. 3a illustrates how zθ from the base
distribution evolves through invertible transformations of fθ,
up to the last transformation which produces a pose from
the pose distribution. As shown, most of the observable
modifications to the intermediate distributions are happening
in later stages, in which one observes a human-like pose
being formed. We argue that this is because the only source
of supervision is the ground truth (GT) pose that explicitly
guides the last transformation block. To ease the training
and get the most out of each transformation block in fθ, we
propose to introduce intermediate supervision to fθ. In addi-
tion to having GT pose as the input to the last transformation
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(a) Without intermediate supervision

(b) With intermediate supervision

Figure 3. Pose progression through transformations from the base
distribution to the pose distribution (TK ← T1) with and without
intermediate supervision. First column shows the GT pose. The
poses are color-coded to show large errors from GT in yellow, with
dark blue showing zero error.

block, we provide the GT pose as the input to the intermedi-
ate transformation blocks, as if they are the last block of a
sub-network. This is possible because the transformations
in fθ do not modify the data dimension. As a result, inter-
mediate transformation blocks are encouraged to produce
reasonable human poses and their capacity is exercised fully.
We illustrate the pose evolution through transformations with
and without intermediate supervision in Fig. 3b) and also
show in 2 that intermediate supervision leads to improved
plausibility of the generated poses.

4.3. Latent Variable Sampling

To generate a novel pose given xH and β, we need to
sample a latent variable z from the base distribution and
use that to generate a pose x̂θ = fθ(z, [xH, β]). In a stan-
dard conditional flow-based model, one randomly samples
z ∼ N (0, I), hoping for a plausible pose to be generated
by the model, or consider z = 0 [19]. Although these ap-
proaches yield valid solutions, we argue and empirically
show that these do not constitute the best solution. This
can be examined explicitly thanks to the invertibility of nor-
malizing flows, where one can obtain the oracle latent code
z∗ = f−1

θ (xθ, [xH, β]). Since an oracle latent code is known
during training, we train our model such that it learns to map
the condition (xH and β) into a region in the base distribution
where z∗ has a high likelihood. Utilizing z∗ during training
allows us to take into account the changes in the volume of
the base distribution, and thus the changes in the probability
mass around the latent code, when transformed from the
base distribution to the pose space via fθ. We model the
region of interest with a Gaussian and learn its parameters
µH and ΣH = diag(σH)

2. Such a mapping should have two
desirable properties: (i) It should be expressive, so that it
can produce a representation of full body given the sparse
observation. This is necessary to estimate a sub-region of
the base distribution that represents the full body. (ii) It
should account for uncertainty in human body representation

given sparse observation. When only the head and hands
are observed, there exist multiple plausible full-body poses.
For each plausible pose, we need to know the corresponding
sub-region in the base distribution. With these key properties
in mind, we design a transformer-based mapping function
with a discrete latent space.
Attention-based Latent Region Estimation. We propose
a transformer-based model (with a transformer encoder) to
model the mapping function, taking advantage of the self-
attention mechanism which learns the relationships between
different joints in the body during training. Briefly, the trans-
former encoder receives as input xH and β, and estimates
N (µH,ΣH) wherein µH is trained to be a good approxima-
tion of the oracle latent code z∗.

For such a distribution to be representative of the full
body, we make several design choices to come up with the
model illustrated in Fig. 4. First, training such a model us-
ing sparse inputs directly proves challenging. To make it
easier for the model, we define an auxiliary task of gener-
ating xθ from the output of the transformer encoder (via
ToPoseSpace block in Fig. 4), initially aiming to recon-
struct xθ from full body joints and gradually decreasing the
joint visibility (through masking) in the encoding until we
provide only head and hands1. To further help the trans-
former learn the representation of the body, we introduce
another auxiliary task of predicting the masked joints given
the observed ones. Such gradual masking-and-prediction
(MaskedJointPredictor) lets the model infer the full
body representation through attention (layer) on the avail-
able joints in the input. To get a compact representation out
of the transformer encoder, we apply pooling (PoolH) over
output joints and take only the head and hand representation,
as they are always unmasked.

Next, we make the output of the transformer encoder
stochastic, to obtain uncertainty estimates for the pre-
dicted poses. We propose using a categorical latent
space [13, 31, 34] over human pose from the output of
the transformer encoder (via ToLatentSpace). One
can sample a discrete latent variable from this distribu-
tion (via Gumbel-Softmax [13] for differentiablity) to
generate xθ with the defined auxiliary task or use the
entire latent representation to estimate N (µH,ΣH) (via
LatentRegionApproximator) which contains infor-
mation about a plausible pose and the associated uncertainty.
To model the complex distribution of human motion effi-
ciently, we need a relatively large number of latent cate-
gories. To remedy this, we use a 2D categorical latent space,
as shown in Fig. 4. We model a G-dimensional latent vari-
able each responsible for M modes, giving us a capacity to

1While in principle, masking can be done randomly, we follow the
kinematic tree of the SMPL skeleton and start by masking the lower body
joints, then the spine joints, followed by arm joints, and finally the pelvis
(the root of the kinematic tree).
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Figure 4. Transformer-based fLRA. The attention-based encoder
aims to learn the relationships between xH and the rest of the body
to generate an expressive representation of the body. A categorical
latent space from the output of the transformer encoder allows us
to predict a plausible pose and the associated uncertainty.

use MG one-hot latent codes.

4.4. Learning

We use a dataset of diverse 3D human models, where
each sample is a triplet (xθ, xH, β), where β are the SMPL
shape parameters. Our loss function L is given by

L =λnllLnll + λmjpLmjp + λrecLrec + λlraLlra (4)

where λ.s are the weights associated with each term.
Lnll: This term encourages the model to minimize the nega-
tive log-likelihood of xθ under the model fθ, following Eq. 3.
Additionally, we take into account the log-likelihoods pro-
duced by the sub-networks of fθ as the result of intermediate
supervision discussed in Section. 4.2.

Lnll = −
(
log pθ(xθ) +

∑
s∈S

ws log p
s
θ(xθ)

)
(5)

where S is the set of sub-networks of fθ (e.g., from block
Ti to T1 for a pre-defined set of is), psθ(xθ) is the likelihood
of xθ under sub-network s, and ws is the weight associated
to the sub-network that is proportional to the number of
transformation blocks in each sub-network.
Lmjp: To train the auxiliary task of masked joint prediction,
we employ the term

Lmjp =
∑

j∈Jmasked

∥∥∥x̂j
P − xj

P

∥∥∥2
2

(6)

where Jmasked is the list of masked joints, xj
P is the represen-

tation of the jth joint in R9 (6D rotation and 3D location),
and x̂j

P is the corresponding prediction from the network.
Lrec: This term acts on the output of the auxiliary task of
decoding the full body pose from a discrete latent variable
sampled transformer’s categorical latent space, aiming to
guide to build a meaningful discrete latent space.

Lrec =
∥∥x̂tps

θ − xθ

∥∥2
2

(7)

where x̂tps
θ is the output of ToPoseSpace.

Llra: Finally, this term encourages learning a Gaussian dis-
tribution N (µH,ΣH) under which the oracle latent variable
z∗ has high likelihood.

Llra = −αnll log pH(z
∗) + αrec ∥µH − z∗∥22

−αreg(1 + lnσH − σH) (8)

where pH is the estimated sub-region of the base distribution.
While the first term in Eq. 8 is enough to achieve this goal,
we add the second term to implicitly encourage µH to be
similar to z∗ and the third term discourages σH to be zero
and thus avoids a deterministic mapping. Note that αreg and
αrec can be relative small, but need to be present.

Although the entire model can be trained in an end-to-end
fashion, we observed training fθ first followed by training the
latent region approximator is quite effective since we have
access to a valid z∗ from the beginning. The second training
stage is quick, 4 GPU-hours. This two-stage training may
also be useful in cases where one wishes to use a previously
trained fθ as a foundation model [5] and only train mapping
functions for other data modalities, e.g., body markers or
environment scans.

4.5. Conditional Generation

We can generate a full body pose given xH and β by
first computing µH given the observation, then use µH as an
approximation of zθ to generate a pose x̂θ = fθ(µH, [xH, β]).
To further enhance our quality of the generated pose, one can
also use our flow-based model as a pose prior in optimization
to minimize a cost function over the prior and the data. The
optimization can be done either in pose space or in latent
space. We use the LBFGS optimizer [21] throughout (see
supp. mat. for further details).
Optimization in the pose space: The optimizer seeks a
plausible human pose θ under our model that matches the
observation xH. We optimize for θ by minimizing the cost:

C(θ) = − log pθ(xθ) + ||SMPL(θ, β).HH()− xH||2 (9)

Optimization in the latent space: The optimizer seeks a
latent variable z that leads to a plausible pose under the
model that matches the observation xH. Using generative
functionality of the pose prior (fθ) to generate a pose, we
optimize for z by minimizing the cost:

C(z) = − log p(z) + ||SMPL(θ̂, β).HH()− xH||2 + r
(10)

where log p(z) is the log-likelihood of the optimized z under
the base distribution N (0, I), θ̂ = fθ(z, [xH, β]), and r =
||z − µH|| is a regularizer (see supplementary material) to
implicitly prevent the latent code from straying too far from
the initial guess (there is no signal for the lower body in the
data term, i.e., the second term in Eq. 10).
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Figure 5. Qualitative results. First column (orange) shows the GT. Generated poses are color-coded to show large vertex errors in yellow.

Method Upper Body MPJPE (↓) Full Body MPJPE (↓)

VPoser-HMD 1.69 cm 6.74 cm
HuMoR-HMD 1.52 cm 5.50 cm
VAE-HMD 3.75 cm 7.45 cm
ProHMR-HMD 1.64 cm 5.22 cm

FLAG (Ours) 1.29 cm 4.96 cm

Table 1. Comparison of FLAG with existing methods on AMASS.

5. Experiments
We first introduce the dataset and then present the experi-

mental results, ablation studies, and qualitative results of our
approach (see supp. mat. for implementation details).
Dataset. We report results on AMASS [24], a large-scale
motion capture dataset, with diverse poses represented with
SMPL body model. We evaluate our approach and existing
methods on the held out Transitions and HumanEVA [37]
subset of the AMASS. The models are trained on the remain-
ing datasets, excluding the dancing sequences [28].
Baselines. There have been a few efforts towards generat-
ing full body poses given head and hand inputs [8]. Our
first baseline, which we call VAE-HMD, involves a two-
step process. First a VAE encoder-decoder is trained on
full body, without any condition. In the next step, another
VAE is trained (starting from the frozen decoder) which en-
codes head and hand representation into the latent space and
uses the previously trained full body decoder for generation.
Since our approach is a conditional pose prior, we compare
it with existing conditional pose priors after adapting them to
our problem setting. ProHMR [19] is closest to our approach
in terms of architecture since it is a conditional flow-based
model. We adapt the conditioning signal to head and hands
representation and include this as another baseline called
ProHMR-HMD. Our third baseline is a conditional version
of VPoser [26], a VAE-based approach, since it constitutes a
strong and commonly used human pose prior in the literature,
and refer to it as VPoser-HMD. We also evaluate another
recently proposed CVAE-based pose prior, HuMoR [28],

which learns a prior distribution given the conditioning sig-
nal. We adapt this approach to our scenario and refer to it
as HuMoR-HMD. For all baselines we follow original im-
plementation where available, otherwise follow the papers.
We consider the same data and condition representations
for all methods for a fair comparison. Following prevailing
convention [8, 29], the avatar root is positioned at the origin.
Evaluation Metrics. To measure accuracy quantitatively,
we report the mean per-joint position error (MPJPE) in cm.
Since the quality of upper-body representation is of greater
importance for AR, VR, and MR applications, we report the
MPJPE of the upper body as well as that of the full body.

5.1. Comparison to Existing Approaches

We evaluate our approach in generating a plausible pose
given sparse observations and compare it with existing meth-
ods. Table 1 summarizes this evaluation2. We do not use
optimization for this comparison. Flow-based approaches,
ProHMR-HMD and FLAG (Ours), generally yield lower
full body error, but approaches that have conditional latent
variable sampling tend to generate better upper bodies. This
is the case with HuMoR and our approach, where the latent
variable is sampled given head and hands information while
for other techniques, a latent variable is sampled independent
of the conditioning signal. The superiority of our approach
is also evident in the qualitative results in Fig. 5, where
FLAG yields least error compared to other techniques, with
HuMoR producing relatively good upper body. We provide
more qualitative results in the supplementary material.

5.2. Ablation Study

Effect of Intermediate Supervision. Building on Sec-
tion 4.2, here we evaluate the effect of the proposed interme-

2The MPJPE for VAE-HMD on the standard AMASS test set is relatively
high. We analyze this in the supplementary material, demonstrating that
this is due to imperfect utilization of the latent space resulting from the
two-stage training used in VAE-HMD approach.
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Setting Upper Body MPJPE (↓) Full Body MPJPE (↓)

w/o Intermediate Sup. 1.64 cm 5.22 cm
w/ Intermediate Sup. 1.39 cm 5.11 cm

Table 2. Evaluating the effect of intermediate supervision.

Method GT Pose Manip. Pose (RD ↑) Noise (RD ↑)

CVAE * (true ELBO) 29.68 29.68 (0.0) 32.40 (0.08)
VPoser-HMD * 34.79 35.56 ( 0.02) 2.39×1e3 (0.98)
HuMoR-HMD * 46.02 49.21 (0.06) 2.37×1e4 (0.99)
ProHMR-HMD † 110.72 282.01 (0.61) 6.63×1e7 (1.0)

FLAG (Ours) † 98.54 489.66 (0.80) 3.04×1e13 (1.0)

Table 3. Evaluating the generalizability of learned latent repre-
sentation by examining the NLL of in- and out-of-distribution
samples.* denotes VAE-based methods and †denotes NF-based
methods.

Latent Variable Sampling Upper Body MPJPE (↓) Full Body MPJPE (↓)

Zeros (z = 0) 1.39 cm 5.11 cm
MLP (z = MLPH) 1.36 cm 5.05 cm
Ours (z = µH) 1.29 cm 4.96 cm

Table 4. Evaluating the effect of latent variable sampling. Compar-
ing z = 0 [19], estimating z with an MLP, and our approach.

diate supervision. Such supervision provides an additional
signal to intermediate transformation blocks of fθ, allowing
better convergence to a plausible pose throughout transfor-
mations when starting from the base distribution. This was
visible in Fig. 3 and is also evident in our quantitative results
in Table 2 wherein we show considerable improvement in
the quality of generated poses.
Generalizability of Latent Representations. As various
models are trained differently, with various training tricks
such as KL term annealing or modifying the ELBO for mit-
igating posterior collapse, we define an auxiliary task to
evaluate the quality of the learned latent space. To this
end, we use the negative log-likelihood (NLL) metric to
identify out-of-distribution (OOD) samples. We define in-
distribution samples to be the poses from the ground truth test
set, whereas the OOD samples are defined in two ways (1)
manipulating ground truth poses by adding a small amount of
noise to a subset of joints (2) creating pose-like random noise
(random values within the range of natural poses). Table 3
summarizes how different models perform when detecting
OOD samples. For a clearer comparison, we also report the
relative difference (RD = |NLLOOD−NLLGT|

max(NLLOOD,NLLGT)
) between the

NLL of the models for OOD samples and that of the ground
truth poses, which higher is better. It can be seen that flow-
based models are typically better at detecting OOD samples,
demonstrating a richer learned latent representation, whereas
VAE-based ones are less effective despite utilizing various
techniques to avoid posterior collapse. For reference, we
also provide the results of a CVAE trained with true ELBO.
Effect of Initial Latent Code. A key contribution of this
work is the probabilistic mapping from the condition to a
sub-region in the latent space that leads to a highly plausible

Latent Variable Sampling Cosine Dist.(↓) Sinkhorn Dist.(↓)

Random (z ∼ N (0, I)) 1.0 0.29
Zeros (z = 0) 1.0 0.22
Ours (z = µH) 0.81 0.18

Table 5. Distance to oracle latent code z∗ = f−1
θ (xθ).

Figure 6. Qualitative evaluation of latent variable sampling, com-
paring our prediction from z = 0 and from z = µH. Generated
poses are color-coded to show large vertex errors in yellow.

pose. In Table 4, we compare our approach, z = µH with the
proposal of ProHMR-HMD [19] which claims z = 0 yields
the most plausible pose. While z = 0 yields a plausible
pose, this experiment shows the existence of a better latent
code, zH that leads to a more plausible pose that has a high
likelihood under the model. This is also shown in Table 5,
where we compute the distance between the oracle latent
code z∗ = f−1

θ (xθ, [xH, β]) to the latent code from our ap-
proach as well as that of [19]. For the sake of completeness,
we also compare our method with an MLP that learns to find
a good latent code given the condition, which we refer to
as z = MLPH in Table 4. In addition to quantitative evalua-
tion, Fig. 6 shows the effect of a proper initial latent code in
generating pose from sparse observation.

We also observed that initial latent variable affects the
quality of predicted poses refined via optimization in ei-
ther the pose space or the latent space, as described in Sec-
tion 4.5. We evaluate this in Fig. 7, where we use flow-
based approaches as a pose prior in the optimization process
and report the MPJPE. Consistent with Table 4, the results
demonstrate that a proper initialization leads to a better per-
formance. Given a fixed optimization budget, our method
reaches a desired error threshold quicker owing to (a) a better
initialization and (b) more reliable likelihood estimates (sup-
ported by results in 3). For instance, even after 50 iterations
of optimization, ProHMR-HMD [19] does not outperform
the solution reached by our approach after 2 optimization
iterations regardless of the (pose or latent) space we opti-
mize in. Finally, we also demonstrate that optimization in
the latent space generally yields lower error compared to
optimization in the pose space, for either model designs.
Partial Hand Visibility. All methods presented assume that
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Figure 7. MPJPE as a function of optimization iteration. As shown
here, ProHMR-HMD requires 50 iterations of optimization in the
latent space to achieve an error on par with our approach with
a proper initial latent code z = µH without any optimization.
Optimizing in the latent space yields lower error compared to
optimizing in the pose space.

head and hand signals are always visible. In practice, one
or both hands may go out of the field of view (FoV); real-
world systems need to be robust to this. To make our model
robust to hands going out of FoV, we fine-tune our model
with random hand masking (p = 0.2) for 10 epochs. The use
of progressive joint masking enables us to use fine-tuning
for this purpose. In Fig. 8, we demonstrate that FLAG can
generate highly plausible poses under partial or no hand
observations3.
Limitations and Future work. While FLAG is capable of
generating highly plausible poses given extremely sparse
observations in the majority of scenarios, it may fail to gen-
erate complex, less common lower-body poses, e.g., martial
arts (examples are provided in the supp. mat.), potentially
because these poses are not very common in the training
dataset. FLAG uses only static pose information; extending
FLAG to consume temporal data is a natural research direc-
tion. We use only HMD signal as the input to the model,
whereas in some AR/VR scenarios, other modalities such as
audio or environment scans may also be available. Although
FLAG aims to find a better latent code to generate a plau-
sible pose, there may still be a considerable gap between
our estimated latent code and the oracle one (see Table 5).
Further exploration in this area may lead to more faithful
and accurate avatar poses.
Societal impact. While current datasets such as AMASS
have a large number of poses, the data comes from 346 sub-
jects who may not represent the true diversity of the global
population. We have more work to do as a community to
represent people of all age groups, and people with disabil-
ities (e.g. wheelchair users, amputees). For anyone with a
body morphology outside of the distribution represented in
the datasets, we should ask: 1) Does the technology work for
them? 2) Can they choose how they want to be represented?

3To get the uncertainty maps in Fig. 8, we generate K poses from
z ∼ N (µH,ΣH) and compute the vertices’ distance of these sampled
poses from the one generated with z = µH.

Figure 8. Qualitative results of FLAG when dealing with partially
visible hands. From left to right, we illustrate the GT, the avatar’s
hand visibility status (black box is visible, gray box is invisible),
uncertainty map on the pose from zH = µH colorized based on the
uncertainty (white is certain, red is uncertain), the pose from µH, fol-
lowed by generated poses starting with samples fromN (µH,ΣH).

There could be negative outcomes from representing an in-
dividual in a way that removes a disability from view, for
example. Mixed reality applications bring the promise of en-
hanced remote collaboration and communication, but there
may also be potential negative societal impacts: misrepresen-
tation including impersonation, further marginalization of
socio-economically disadvantaged groups caused unknow-
ingly or intentionally. Even so, with mindful deployment
of technology and appropriate governance, we remain posi-
tive that realistic human representations can help the world
grow closer without the harmful environmental impact of
long-distance travel.

6. Conclusion
We presented FLAG, a new approach to generate plausi-

ble full body human poses from sparse HMD signals. FLAG
is a conditional flow-based generative model of the 3D hu-
man body from sparse observations; we not only learn a
conditional distribution of 3D human body, but also a prob-
abilistic mapping from the observation to the latent space
from which we generate plausible poses with uncertainty esti-
mates. We show that our approach is both a strong predictive
model, and an efficient pose prior in different optimization
settings, thanks to our latent variable sampling mechanism.
Experimental evaluation and ablation studies demonstrated
that our method outperforms state of the art methods on the
challenging AMASS dataset, requires fewer optimization
iterations and leads to a very low error.
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