
Long-term Video Frame Interpolation via Feature Propagation

Dawit Mureja Argaw In So Kweon
Korea Advanced Institute of Science and Technology

Daejeon, Republic of Korea
{dawitmureja, iskweon77}@kaist.ac.kr

Abstract

Video frame interpolation (VFI) works generally predict
intermediate frame(s) by first estimating the motion between
inputs and then warping the inputs to the target time with
the estimated motion. This approach, however, is not opti-
mal when the temporal distance between the input sequence
increases as existing motion estimation modules cannot ef-
fectively handle large motions. Hence, VFI works perform
well for small frame gaps and perform poorly as the frame
gap increases. In this work, we propose a novel framework
to address this problem. We argue that when there is a large
gap between inputs, instead of estimating imprecise motion
that will eventually lead to inaccurate interpolation, we can
safely propagate from one side of the input up to a reliable
time frame using the other input as a reference. Then, the
rest of the intermediate frames can be interpolated using
standard approaches as the temporal gap is now narrowed.
To this end, we propose a propagation network (PNet) by
extending the classic feature-level forecasting with a novel
motion-to-feature approach. To be thorough, we adopt a
simple interpolation model along with PNet as our full
model and design a simple procedure to train the full model
in an end-to-end manner. Experimental results on several
benchmark datasets confirm the effectiveness of our method
for long-term VFI compared to state-of-the-art approaches.

1. Introduction
Video frame interpolation (VFI) aims at predicting one

or more intermediate frames from a given frame sequence.
Given inputs ⟨xt, xt+n⟩, where n is the frame gap between
the inputs, existing VFI works generally follow two steps.
First, they estimate the motion between xt and xt+n us-
ing off-the-shelf motion estimation modules or by imposing
motion constraints. Then, they warp the inputs to the target
time and synthesize an intermediate frame.

VFI works target temporal super-resolution on a premise
that the frame rate of the input sequence is often al-
ready sufficiently high. We have experimentally verified
this notion by evaluating several state-of-the-art VFI meth-

ods [2, 12, 17, 19, 30] on input sequences sampled at dif-
ferent frame rates. Even though a reasonable performance
decrease is an expected phenomenon, we observed a signif-
icant drop in performance when the frame rate of the input
sequence decreases (see Table 1), highlighting that inter-
polating frames becomes very challenging as the temporal
distance between consecutive frames increases. Moreover,
far less attention has been given to this problem in past lit-
erature as most evaluations have been done on videos with
fixed frame rate (mostly 30 fps). We argue that the main
reason behind this limitation is partly associated with the
working principle of VFI works. If the estimated motion
between inputs is inaccurate, then the interpolated frame
synthesized by time warping the inputs with the estimated
motion will also likely be inaccurate. This is particularly
problematic when the temporal gap between input frames
is large as existing flow or kernel based motion estimation
modules can not effectively handle large motions.

In this work, we tackle the long-term video interpolation
problem and propose a general VFI framework robust to rel-
atively low frame rates. Specifically, when there is a large
gap between input frames, instead of predicting the motion
between the inputs which will likely be imprecise and even-
tually lead to inaccurate interpolation, we conjecture that
we can safely propagate from one side of the input to a re-
liable extent of time using the other input as a useful refer-
ence, i.e. given ⟨xt, xt+n⟩, we propagate up to xt+∆t from
the side of the first input xt and we similarly propagate up
to xt+n−∆t from the side of the second input xt+n, where
∆t is the extent of propagation. This is intuitive because
the intermediate frames in the neighborhood of xt will most
likely depend on xt compared to xt+n, and vice versa. Once
we propagate to a reliable time frame from both sides, the
rest of the intermediate frames between xt+∆t and xt+n−∆t

can be interpolated using existing interpolation approaches
as the temporal gap is now reduced to n− 2∆t.

To this end, we propose a propagation network (PNet)
that predicts future frames by relying more on one of the
inputs while attending the other. We accomplish this by
extending the classic feature-to-feature (F2F) forecasting

3543



[5,8,36,37,43,44] with a novel motion-to-feature (M2F) ap-
proach, where we introduce optical flow as another modal-
ity to guide the propagation of features and to enforce tem-
poral consistency between the propagated features. Unlike
feature supervision which makes a network more dependent
on the semantics of input frames, our motion supervision
allows the network to focus on the motion between inputs
and ensures features are propagated accordingly irrespec-
tive of the contents of the images. Moreover, while most
F2F works focus on predicting task-specific outputs such
as segmentation maps, we perform RGB forecasting by de-
signing a frame synthesis network that reconstructs frames
from the propagated features in a coarse-to-fine manner.

We experimentally show that the proposed PNet can be
used as a plug in module to make existing state-of-the-art
VFI approaches [2, 12, 17, 19, 30] robust particularly when
there is a considerable temporal gap between inputs. To
be thorough, we adopt a light version of SloMo [17] along
with PNet as our full model and devise a simple, yet ef-
fective, procedure to successfully train the full model in
an end-to-end manner. We comprehensively analyze our
work and previous methods on several widely used datasets
[11, 27, 40] and confirm the favorability of our approach.
Moreover, we carry out ablation experiments to shed light
on the network design and loss function choices.

2. Related Works
Video Frame Interpolation. Early conventional meth-
ods [23, 49] relied on the optical flow between inputs and
the given image formation model for synthesizing interme-
diate frames. Recently, several deep network based VFI
approaches have been proposed. While some works [7,
21] directly predict intermediate frames, most existing ap-
proaches embed motion estimation modules in their frame-
work. According to the type of the motion estimation mod-
ule used, VFI works can be broadly categorized as: phase-
based, kernel-based, flow-based and a mix of the last two.
Early phase-based works [25, 26] formulated the temporal
change between the inputs as phase shifts. On the other
hand, kernel-based methods such as AdaConv [31] and Sep-
Conv [30] estimate spatially adaptive 2D and 1D kernels,
respectively. Meanwhile, due to the significant progress
achieved in optical flow estimation research, flow-based in-
terpolation approaches [17, 20, 28, 29, 32, 34, 35, 39, 46, 47]
have grown to be popular. DVF [20] and SloMo [17] esti-
mated flows between input frames and directly warped them
to the target intermediate time while [28, 29, 32, 46] used a
trainable frame synthesis network on the warped frames to
predict the intermediate frame.

DAIN [2] and MEMC-Net [3] combined kernel-based
and flow-based models. AdaCoF [19] proposed a gener-
alized warping module via adaptive collaboration of flows
for VFI. Recently, several works [1,4,6,12,34,35,38,45,48]

F2F

or 

F2F + F2M

𝑥𝑡−𝑛, … , 𝑥𝑡−1, 𝑥𝑡 𝑥𝑡+∆𝑡

𝑥𝑡 , 𝑥𝑡+𝑛

𝑥𝑡+∆𝑡

(a) (b)

Pretrained 

Encoder

Encoder M2F
Frame 

Decoder

Pretrained 

Flow Net
𝐿flow

𝐿frame

Pretrained 

Encoder

𝐿feature

Figure 1. (a) Overview of previous feature-level propagation for-
mulation, (b) Proposed problem formulation.

have focused on addressing the different limitations of the
VFI approaches discussed thus far. However, most existing
works assume that the input sequence frame rate is often al-
ready sufficiently high, hence, long-term VFI has received
far less attention in the past literature. Our work tackles
this problem by proposing a novel framework that combines
frame propagation and interpolation.

Feature Propagation. Feature-to-feature (F2F) forecast-
ing inputs intermediate features of the past frames and an-
ticipates their future counter parts. This approach have been
previously used for action recognition [43], instance seg-
mentation [8, 22, 42] and semantic segmentation [5, 36, 37,
44] tasks. Recently, Šarić et al. [37] proposed a feature-to-
motion (F2M) module to compliment the classic F2F ap-
proach. Previous F2F or F2F + F2M based works use the
encoder part of task-oriented pretrained models (e.g. seman-
tic segmentation) to extract intermediate features of a set of
inputs and use the extracted features to forecast features of
future frame. The forecasting module is trained by opti-
mizing the loss between the forecasted features and the ex-
tracted features of the future frame (see Fig. 1a). During in-
ference, the task-specific output (e.g. segmentation map) is
obtained by feeding the forecasted feature into the decoder
part of the pretrained model.

In this work, we extend feature-level propagation to a rel-
atively unexplored task, i.e. long-term VFI, by presenting a
novel motion-to-feature (M2F) approach. Our approach is
different from previous feature-level propagation methods
in the following aspects. First, we introduce motion (in the
form of optical flow) as another modality to guide the fore-
casting of features and to enforce temporal consistency be-
tween forecasted features. Second, we perform RGB fore-
casting by designing a frame synthesis network that outputs
future frames from forecasted features. The proposed for-
mulation is summarized in Fig. 1b.

3. Methodology
Given a pair of consecutive frames ⟨xt, xt+n⟩ from a

low-frame-rate video, we aim to generate a high quality,
high-frame-rate sequence {xt, xt+1, . . . , xt+n−1, xt+n} by
jointly optimizing interlinked propagation and interpolation
networks in an end-to-end manner. The overview of our
proposed framework is shown in Fig. 2.

3544



Encoder

up.

Anchor 

𝑥𝑡, 𝑥𝑡+𝑛

𝐷𝐺

𝐷𝐿
ො𝑢𝑡+𝑖 𝑖=1

𝑚

𝑢𝑡

𝑢𝑡+𝑛Reference

𝑢𝑡

𝑢𝑡+1

𝑢𝑡+𝑚

𝑢𝑡+𝑛

FFNet

Encoded and 

forecasted features

Anchor 

M2FNet

ො𝑢𝑡+𝑛 −𝑖 𝑖=1
𝑚

𝑢𝑡+𝑛

𝑢𝑡Reference

𝑢𝑡+𝑛

𝑢𝑡+𝑛 −1

𝑢𝑡+𝑛−𝑚

𝑢𝑡

FFNet

Warp

Warp

Frame Decoder

ො𝑥𝑡+1

ො𝑥𝑡+𝑚

INetො𝑥𝑡+𝑚

ො𝑥𝑡+𝑛−𝑚

Propagated 

frames

Encoded and 

forecasted features

ො𝑥𝑡+𝑛−𝑚

ො𝑥𝑡+𝑛−1

Propagated 

frames

ො𝑥𝑡+𝑚+1

ො𝑥𝑡+𝑛−𝑚−1

Interpolated 

frames

Figure 2. Overview of the proposed propagation-interpolation network (P-INet). The propagation network (PNet) consists of an encoder
network for feature extraction, M2FNet to bidirectionally propagate features using the encoded features as anchor and reference features,
FFNet to estimate optical flow between features for motion supervision, and a frame decoder to reconstruct frames from propagated
features. An interpolation network (INet) is used to interpolate the intermediate frames between the end propagated frames.

3.1. Propagation Network (PNet)
We use an encoder-decoder architecture for PNet. First,

we design an encoder network E to extract features from
the input frames ⟨xt, xt+n⟩ in a top-down manner (Eq. (1)).
The encoder is a feed-forward network with 5 convolutional
blocks, each block containing 2 layers of convolution with
kernel size 3 × 3. Except for the first block, features are
downsampled to half of their spatial size and the number of
channels is doubled after each convolutional block.{

ul
t

}k

l=1
= E(xt)

{
ul
t+n

}k

l=1
= E(xt+n) (1)

where l denotes a level in the feature pyramid with a total
of k levels (k = 5 in our experiments) and ul

t denotes an
encoded feature of the first input xt at level l. To propagate
to the frame xt+∆t (from xt side), we first perform feature-
level forecasting using the encoded features of xt and xt+n,
i.e. {u1

t , . . . , u
k
t } and {u1

t+n, . . . , u
k
t+n}, as anchor and ref-

erence features, respectively. We then use a decoder net-
work to reconstruct xt+∆t from the propagated features in
a bottom-up manner.

Motion-to-Feature Forecasting. We design a motion-to-
feature network (M2FNet) to forecast the future counter-
parts of the encoded features. M2FNet takes the anchor
and reference features as inputs and anticipates the mo-
tion to propagate the anchor feature to its future counter-
parts. Then, it transforms the anchor feature according to
the estimated motion. To take the complex motion dynam-
ics between the input frames into account and better ex-

ploit the inter-frame spatio-temporal correlation, we prop-
agate to multiple frames simultaneously. M2FNet has 2
components: global (DG) and local (DL) motion decoders.
DG learns the global motion between the encoded features,
and predicts affine transformation parameters θ[R|T ] to spa-
tially transform the anchor feature to its future counterparts
(see Eq. (2) and Eq. (3)). We use spatial transformer net-
work [16] for for DG.{

θ[Rt+i|Tt+i]

}m

i=1
= Dl

G

(
ul
t || ul

t+n

)
(2){

ûl
t+i

}m

i=1
= transform

(
ul
t,

{
θ[Rt+i|Tt+i]

}m

i=1

)
(3)

where || denotes channel-wise concatenation, m refers to
the number of features (frames) propagated from the an-
chor feature ut and ûl

t+i represents the output of DG at time
step t + i and feature level l. As DG is limited to learning
only non-local motion, in order to capture the locally vary-
ing motion, we further refine the outputs of DG with a local
motion decoder (DL). DL inputs the globally transformed
feature ût+i along with the anchor and reference features,
and outputs the forecasted feature ut+i (see Eq. (4)). DL

has 3 densely connected convolutional layers [13] each with
kernel size 3×3 and stride 1. As the forecasted feature ut+i

is decoded in a coarse-to-fine manner, a residual connection
is built by feeding the the upsampled decoded feature from
previous feature level l + 1 into DL as shown in Eq. (4). A
deconvolution layer of kernel size 4× 4 and stride size 2 is
used to upsample (×2) features.

ul
t+i = Dl

L

(
ûl
t+i || ul

t || ul
t+n || up.(ul+1

t+i )
)

(4)

3545



𝑢𝑡 𝑢𝑡+1 𝑢𝑡+2 𝑢𝑡+𝑚 𝑢𝑡+𝑛

Figure 3. Optical flow estimation pattern when propagating to m
future counterparts.

where i = {1, . . . ,m}, up. stands for upsampling and
ul
t+i is the forecasted feature at level l. In principle, DL can

decode both local and global motions. However, explicitly
modelling global motions with DG is shown to be effective
for the task at hand (see Sec. 5).

Optical Flow Estimation. M2FNet learns to propagate
features via motion supervision. For instance, to ensure that
the forecasted feature ut+i can be reconstructed to xt+i, we
constrain the endpoint error between the flows fxt+i→xt

and
f̂ut+i→ut , which are computed between frames ⟨xt, xt+i⟩
and features ⟨ut, ut+i⟩, respectively. As the ground truth
flow fxt+i→xt

does not exist for real high-speed videos, we
generate a pseudo-ground truth flow using pretrained state-
of-the-art optical flow models [15,41]. To estimate the flow
f̂ut+i→ut , we design a feature flow network (FFNet) which

inputs two sets of features, i.e.
{
ul
t+i

}k

l=1
and

{
ul
t

}k

l=1
,

and regresses a flow in a coarse-to-fine manner. We use the
architecture of the optical flow estimator in PWC-Net [41]
for FFNet. To predict the flow between the anchor feature
ut and a forecasted feature ut+i, we preform the following
steps. First, at each level l, we backwarp the second feature
ul
t (to the first feature ul

t+i) with ×2 upsampled flow from
previous level l + 1 (see Eq. (5)). A correlation layer [10,
14,41] is then used to compute the cost volume between the
first feature ul

t+i and the backwarped feature wl
t+i. The first

feature, the cost volume and the upscaled flow are feed into
FFNet to predict a flow as shown in Eq. (6).

wl
t+i = backwarp

(
ul
t,up.(f̂ l+1

t+i→t)
)

(5)

f̂ l
t+i→t = FFNet

(
ul
t+i⊕corr.(ul

t+i, w
l
t+i)⊕up.(f̂ l+1

t+i→t)
)

(6)
Fig. 3 depicts the flow estimation pattern when propagating
to m future counterparts of the anchor feature ut. We com-
pute several optical flows to ensure that features are prop-
agated by anticipating the complex motion between the in-
put frames and not simply in a linear manner. Specifically,
we estimate the flow between the anchor feature and each
forecasted feature (shown in red in Fig. 3) so that M2FNet
learns to forecast features according to their proximity to
the anchor feature i.e. DG and DL decode smaller motions
for features close to the anchor feature and larger motions
for those further away. We also estimate flow between the

መ𝑓𝑡+𝑚→𝑡
𝑙

𝑢𝑡
𝑙

Concat

෍

𝑗

𝛼𝑗

መ𝑓𝑡+𝑚→𝑡+𝑚−1
𝑙መ𝑓𝑡+𝑚→𝑡+1

𝑙

𝑢𝑡+1
𝑙 𝑢𝑡+𝑚

𝑙 𝑢𝑡+𝑛
𝑙

ො𝑥𝑡+𝑚
𝑙𝐷𝐹

Figure 4. Frame synthesis of x̂t+m at feature level l.

forecasted features themselves (depicted in green) in order
to account for inter-frame motion between propagated fea-
tures. To address any potential ambiguity in the direction
of propagation, we compute the flow between the last fore-
casted feature and the reference feature (shown in blue).

Feature-to-Frame Decoding. The forecasted features
and optical flows are then used to decode frames. For this
purpose, we design a frame decoder (DF ) which regresses
frames from the corresponding forecasted features. When
decoding the current frame, DF incorporates contextual and
temporal information from the past frames via attention
mechanism (see Fig. 4). This is accomplished by warping
the past features into the current time step with the corre-
sponding estimated optical flows and combining the warped
features using attention weights as shown in Eq. (7). The
attention vector (α) is a learnable, one-dimensional weight
parameter with elements initially set to 1. For better recon-
struction of occluded regions in the predicted frames, DF

also uses the anchor and reference features. Like the feature
forecasting and flow estimation steps, frames are decoded
in a coarse-to-fine manner. At each feature level l, DF in-
puts the forecasted feature (ul

t+i), attended past features
(vlt+i), encoded features (ul

t and ul
t+n) and ×2 upscaled

frame predicted from previous level l+ 1 (see Eq. (8)). DF

is composed of 3 densely connected convolutional layers
each with kernel size 3×3 and stride 1, where the last layer
outputs a frame.

vlt+i =

t+i−1∑
j=t

αj .backwarp(ul
j , f̂

l
t+i→j) (7)

x̂l
t+i = Dl

F

(
ul
t+i || vlt+i || ul

t || ul
t+n || up.(x̂l+1

t+i )
)

(8)

3.2. Propagation-Interpolation Network (P-INet)
The proposed propagation network (PNet) can be used

either as a stand-alone model or a plug-in module with ex-
isting VFI works (see Sec. 4). However, we have experi-
mentally observed few trade-offs. First, when the temporal
gap between inputs is small, PNet gives a sub-optimal per-
formance compared to the state-of-the-art VFI approaches.
This is mainly because PNet, by design nature, propagates

3546



Algorithm 1: Training strategy for the P-INet

Input : ⟨xt, xt+n⟩ // n is the frame gap
Output : x̂t+i, where 1 < i < n
Let N be the maximum frame gap in the dataset, M be the upper

limit for small frame gap, and ∆t(n) be a reliable time frame of
propagation which is dependent on n

foreach input sample do
if n ≤ M then // small gap

x̂t+i = INet (xt, xt+n) for all i
else // large gap (M < n ≤ N)

if i ≤ ∆t(n) then // propagate from xt

x̂t+i = PNet (xt, xt+n)
else if ∆t(n) < i < n−∆t(n) then

// propagate and interpolate
x̂t+∆t(n) = PNet (xt, xt+n)

x̂t+n−∆t(n) = PNet (xt+n, xt)

x̂t+i = INet (x̂t+∆t(n), x̂t+n−∆t(n))

else // propagate from xt+n

x̂t+i = PNet (xt+n, xt)

end
end

to future counterparts of the anchor frame by using the other
input as a reference, i.e. it relies more on one of the in-
puts by default. This leads to a performance trade-off since
an interpolation method, intuitively speaking, should evenly
rely on both inputs when there is a small gap between them.
Second, as expected, the quality of frames eventually deteri-
orates as we propagate further away from the anchor frame.
For completeness of the proposed approach, thereby alle-
viating the observed trade-offs, we adopt a light version of
SloMo [17] as an interpolation network (INet) along with
PNet as our full model, i.e. P-INet. The SloMo used in
our work contains 50% fewer weight parameters compared
to the model used in [17]. We train P-INet in an end-to-end
manner by guiding it to propagate, interpolate or propagate
and interpolate depending on the temporal gap between in-
puts and the timestamp of the intermediate frame to be pre-
dicted as summarized in Algo. 1.

We use a bidirectional propagation and interpolation
scheme since it gives us the flexibility to experiment with
long-range temporal gaps. The reliable time frame of prop-
agation ∆t(n) is defined as min(⌈(n−M)/2⌉,M), where
n > M . In other words, PNet adaptively propagates until
the temporal gap between the end propagated frames is less
than or equal to M . As most VFI works conduct experi-
ments at 30 fps by downsampling 240 fps videos (≈ frame
gap of 8) and because our approach uses 3 intervals, we
set M = 8 and N = 24 during training. We experiment
with up to 30 frame gaps during testing to analyze if our
approach extends to even larger gaps (see Sec. 4).

3.3. Loss Functions
We train our network in an end-to-end manner by jointly

optimizing the estimated flows, propagated frames and in-
terpolated frames. To train M2FNet, we compute the end-
point error between the estimated flows and pseudo-ground

truth flows across different levels as shown in Eq. (9). To
propagate to m features, a total of m

2 (m + 1) + 1 flows
are estimated. We also investigate training our network by
selectively optimizing some of the flows (see Sec. 5).

LM2FNet =

m
2 (m+1)+1∑

i=1

k∑
l=1

ωl
1

∣∣f l
i − f̂ l

i

∣∣
2

(9)

where ωl
1 is a flow loss weight coefficient at level l. For

sharp frame decoding, we train PNet with the multi-scale ℓ1
photometric loss. We also use gradient difference loss [24]
(LGDL) between the predicted frames and their ground truth
to mitigate blurry predictions (see Eq. (10)).

LPNet =

m∑
i=1

k∑
l=1

ωl
2

∣∣xl
i − x̂l

i

∣∣
1
+ LGDL(xi, x̂i) (10)

where ωl
2 is a frame loss weight coefficient at level l. We use

the training loss of SloMo discussed in Section 3.3 of [17]
to train INet. We refer the reader to [17] for details. The
total training loss for P-INet is defined as weighted sum of
all losses as shown in Eq. (11).

Ltotal = λ1LM2FNet + λ2LPNet + λ3LINet (11)

4. Experiment
Datasets. Most existing VFI works use Vimeo-90K [46]
dataset which has 51312 triplets, where each triplet con-
tains 3 consecutive video frames. However, as this dataset
is not applicable to train a network for long-term VFI,
we generate a dataset by sampling frames at different fps
from high-speed video datasets. For this purpose, we use
Adobe240 [40], GOPRO [27] and Need-for-Speed (NfS)
[11] datasets, which contain 133, 33 and 100 videos, re-
spectively. These datasets provide 240 fps videos which
capture diverse combination of camera and object motions
in real-world scenarios, and thus are suitable for the task
at hand. A majority of the videos, however, have less than
1000 frames which makes it challenging to extract enough
training samples with large temporal gaps. Hence, instead
of training separately on each dataset, we used a total of 176
videos (103 from Adobe240, 3 from GOPRO and 70 from
NfS) for training. The remaining 90 videos (30 from each
dataset) are used for testing. We prepare train and test sets
by extracting samples with variable length ranging from 9 to
31 consecutive frames in a video. In other words, we sample
video clips at different frame rates in the range of approxi-
mately 30 fps to 8 fps, respectively. Following [46], we re-
size each frame in the dataset to a resolution of 448×256 to
suppress noise and create consistency in size across videos.

Implementation Details. We implement our network in
PyTorch [33] and optimize it using Adam [18] with pa-
rameters β1 , β2 and weight decay fixed to 0.9, 0.999 and
4e − 4, respectively. The loss weight coefficients are set

3547



Table 1. Quantitative comparison at different fps. The numbers in red and blue represent the best and second best results, respectively.

Adobe240 [40] GOPRO [27] NfS [11]

Method 30 fps 15 fps 8 fps 30 fps 15 fps 8 fps 30 fps 15 fps 8 fps

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

SepConv [30] 29.91 0.915 23.94 0.811 19.88 0.707 28.64 0.871 23.23 0.694 19.74 0.560 31.84 0.915 26.73 0.811 23.00 0.707
SloMo [17] 30.03 0.917 24.30 0.818 20.17 0.717 29.03 0.917 23.58 0.818 19.99 0.718 31.83 0.917 26.95 0.818 23.19 0.717
DAIN [2] 30.53 0.924 24.39 0.824 20.21 0.721 29.25 0.924 23.63 0.824 20.18 0.721 32.46 0.924 27.19 0.824 23.36 0.720
AdaCoF [19] 30.14 0.896 24.11 0.741 20.07 0.567 29.05 0.876 23.49 0.701 19.89 0.571 32.28 0.919 27.05 0.819 23.23 0.719
FeFlow [12] 30.48 0.902 24.19 0.737 20.04 0.576 29.30 0.921 23.51 0.822 19.82 0.724 32.42 0.921 27.05 0.822 23.16 0.724

INet 30.30 0.920 24.21 0.819 20.12 0.718 29.17 0.919 23.59 0.821 20.04 0.722 32.03 0.920 26.99 0.822 23.27 0.721
P-INet 30.30 0.920 27.10 0.890 24.00 0.810 29.17 0.919 26.45 0.879 23.90 0.804 32.03 0.920 28.98 0.874 26.23 0.798

Inputs Overlay DAIN [2] AdaCoF [19] FeFlow [12] P-INet GT

Figure 5. Qualitative comparison of our method and state-of-the-art VFI approaches for inputs with large temporal gap.

to ω5 = 0.08, ω4 = 0.04, ω3 = 0.02, ω2 = 0.01 and
ω1 = 0.005 from the lowest to the highest resolution, re-
spectively, for both LM2FNet and LPNet. We train P-INet for
200 epochs with the learning rate initially set to λ = 1e− 4
and gradually decayed by half at 100, 150 and 175 epochs.
For the first 40 epochs, we only train the M2FNet by setting
λ1 = 1, λ2 = 0 and λ3 = 0 to facilitate motion estimation
and feature propagation. For the remaining epochs, we fix
λ1, λ2 and λ3 to 1. We use a mini-batch size of 4 and ran-
domly crop image patches of size 256 × 256 during train-
ing. The pseudo-ground truth optical flows for supervising
M2FNet are computed on-the-fly using FlowNet 2 [15].

4.1. Experimental Results
In this section, we comprehensively analyze our work

and several state-of-the-art VFI approaches for which open
source implementations are available. These include Sep-
Conv [30], SloMo [17], DAIN [2], AdaCoF [19] and Fe-
Flow [12]. For fair comparison, we retrain these models
using our training set by following their official code. We
deploy a multi-frame interpolation training scheme for P-
INet, SloMo [17] and DAIN [2] as it is possible while we
use single-frame interpolation scheme for others. For quan-
titative evaluation, we use PSNR and SSIM metrics.

Temporally Robust VFI. Here, we analyze the robust-
ness of different VFI models for input sequences with dif-
ferent temporal gaps. In Table 1, we compare our approach
and state-of-the-art VFI methods on single frame interpo-
lation of test videos sampled at 3 different frame rates: 30
fps, 15 fps and 8 fps. As can be inferred from Table 1, P-
INet performs competitively for smaller temporal gaps and
significantly better than SOTA approaches for larger tempo-

ral gaps. For instance, our approach outperforms the second
best method, i.e. DAIN [2], by an average margin of of 2.44
dB and 3.51 dB at 15 fps and 8 fps, respectively. Moreover,
the performance gap for DAIN between 30 fps and 8 fps
is 9.50 dB on average. By contrast, the performance gap
for our model is 5.79 dB. This shows the effectiveness of
our approach for low-frame-rate videos. It can also be no-
ticed from Table 1 that the joint training of PNet and INet
is beneficial even for smaller frame gaps. For instance, INet
outperforms SloMo [17] by an average margin of 0.2 dB at
30 fps. In Fig. 5, we qualitatively compare the frames in-
terpolated by our method and SOTA VFI approaches for in-
put samples with large temporal gap. As can be seen from
the figure, our approach interpolates sharper images with
clearer contents compared to other VFI approaches.

PNet with VFI Methods. To highlight the versatility of
the proposed PNet for long-term VFI, we couple PNet
with VFI approaches and perform intermediate frame in-
terpolation for input sequences with relatively large frame
gap ranging from 11 to 30. Following the procedure in
Algo. 1, we first propagate bidirectionally using PNet from
a pretrained P-INet. Then, we interpolate an intermediate
frame between the propagated frames using state-of-the-art
VFI methods [9, 12, 17, 19]. The averaged results on the
3 datasets are plotted in Fig. 6. As can be inferred from
the figure, the cascade models consistently outperform their
vanilla baseline by a notable margin. The qualitative anal-
ysis in Fig. 7 also shows that, when the temporal distance
between the inputs is large, incorporating PNet results in
interpolated frames with more accurate contents compared
to directly using SOTA VFI approaches. The static regions
in Fig. 7 appear slightly less sharp for cascade models most

3548



11 16 21 26 31
frame gap

21

23

25

27

29

PS
NR

 (d
B)

SloMo
PNet + SloMo

11 16 21 26 31
frame gap

21

23

25

27

29

PS
NR

 (d
B)

DAIN
PNet + DAIN

11 16 21 26 31
frame gap

21

23

25

27

29

PS
NR

 (d
B)

AdaCoF
PNet + AdaCoF

11 16 21 26 31
frame gap

21

23

25

27

29

PS
NR

 (d
B)

FeFlow
PNet + FeFlow

Figure 6. Quantitative analysis of PNet with state-of-the-art VFI approaches.

Inputs Overlay FeFlow [12] PNet + FeFlow [12] DAIN [2] PNet + DAIN [2] GT

Figure 7. Qualitative analysis of PNet cascaded with state-of-the-art VFI approaches.

0 4 8 12 16 20 24
time step

22

24

26

28

30

PS
NR

 (d
B)

Adobe240
SloMo
DAIN
P-INet (Ours)

0 4 8 12 16 20 24
time step

22

24

26

28

30

32

PS
NR

 (d
B)

GOPRO
SloMo
DAIN
P-INet (Ours)

0 4 8 12 16 20 24
time step

24

26

28

30

32

PS
NR

 (d
B)

NfS
SloMo
DAIN
P-INet (Ours)

Figure 8. Quantitative analysis of intermediate frames at different time steps for long-term VFI.

likely because the interpolation model uses the output of
PNet as inputs rather than the raw input frames.

Long-term Multi-Frame Interpolation. Beyond evalu-
ating the robustness of VFI approaches at different frame
rates, we analyze the quality of the intermediate frames in-
terpolated during a direct very low fps → very high fps up-
sampling. We perform 10 fps → 240 fps up-conversion in
a single pass and measure the quality of the interpolated
frames at each time step. In Fig. 8, we compare our ap-
proach with SloMo [17] and DAIN [2] since they are also
capable of multi-frame interpolation. As expected, perfor-
mance generally decreases as we move to the middle time
step from both sides. However, it can be noticed from
Fig. 8 that there is a rapid performance drop for SloMo
and DAIN compared to P-INet. For instance, the aver-
age performance range, i.e. the difference between largest
and smallest PSNR values averaged over the 3 datasets, for
SloMo is 8.62 dB. By contrast, the average performance
range for P-INet is 6.11 dB. Instead of interpolating frames
based on pre-computed motion that will likely be inaccu-
rate due to large motion, our model adapts to propagate and
interpolate frames, which explains the significant perfor-

mance gain achieved over state-of-the-art approaches par-
ticularly for central time steps.

Optical Flow. Fig. 9 depicts the feature flows estimated
by our network in comparison with the corresponding
pseudo-ground truth (p-GT) flows. As can be seen from
Fig. 9, our model reasonably anticipates the accurate motion
to propagate features. To further confirm if DG and DL in
the M2FNet properly learned to decode motions for feature
propagation, we quantitatively analyze the optical flows es-
timated between the anchor and the forecasted features. To
purely evaluate the magnitude of motion, we compute the
sum of the absolute value of the estimated flows. In Fig. 10,
we plot a heat map of the magnitude of the estimated flows
(rescaled between 0 & 1) for different temporal gaps, where
zi =

1
2 (
∑

|f̂t+i→t|+
∑

|f̂t+n−i→t+n|). We can infer two
key things from Fig. 10. First, the proximity of the fore-
casted feature to the anchor is directly related to the magni-
tude of the estimated flow, i.e. DG and DL decode smaller
motions for closer features and larger motion for those that
are far. Second, M2FNet is implicitly aware of the relative
temporal distance between inputs, i.e. the magnitude of the
forecasted flows increases for increasing frame gap.

3549



Input (xt ) f̂ (Ours) f (p-GT) Input (xt ) f̂ (Ours) f (p-GT)

Figure 9. Qualitative analysis of the estimated optical flows between features in comparison with the pseudo-ground truth (p-GT) flows.

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
frame gap

i=
8

i=
6

i=
4

i=
2Fl

ow
 m

ag
ni

tu
de

 (z
i)

0.18 0.21 0.23 0.31 0.41 0.48 0.55 0.6 0.66 0.69 0.77 0.83 0.86 0.92 1

0.15 0.18 0.19 0.25 0.32 0.37 0.42 0.46 0.5 0.52 0.58 0.63 0.64 0.69 0.75

0.12 0.14 0.15 0.18 0.23 0.26 0.3 0.32 0.35 0.36 0.4 0.43 0.44 0.47 0.5

0.12 0.12 0.13 0.14 0.16 0.19 0.21 0.21 0.23 0.24 0.27 0.28 0.28 0.3 0.32

Figure 10. Quantitative analysis of the estimated flows.

5. Ablation Studies
Here, we present ablation experiments on different com-

ponents of P-INet. We evaluate the quality of all propa-
gated frames during long-term VFI (10 fps → 240 fps) for
Adobe240 [40] and GOPRO [27] test videos (see Table 2).

Loss Functions. To highlight the importance of using op-
tical flow as a guidance for feature propagation, we fore-
cast features without estimating flows and directly regress
frames from the respective forecasted features, i.e. P-INet
is trained without LM2FNet. A network trained without mo-
tion supervision performed significantly worse compared
to a model trained with motion supervision. We also con-
firmed the contribution of the different groups of flows esti-
mated in Sec. 3. It can be inferred from Table 2 that estimat-
ing optical flows between the forecasted features is crucial
as a network trained without inter-frame motion supervi-
sion (shown in green in Fig. 3) gives a subpar performance.
Moreover, we studied the importance of addressing poten-
tial directional ambiguity by constraining the optical flow
between the end propagated feature and the reference fea-
ture (shown in blue in Fig. 3). As can be seen from Table 2,
training a network without direction supervision results in
a performance decrease of 0.48 dB. We analyze the bene-
fit of the gradient difference loss [24] (LGDL) in mitigating
blurry frame predictions. It can be noticed from Table 2 that
training our model with LGDL improves performance by an
average margin of 0.65 dB.

M2FNet. We examine the importance of global (DG) and
local (DL) motion decoders in M2FNet. First, we only use
DG for decoding motion. This resulted in a subpar network
performance as DG is limited to anticipating only global
motion at a feature-level and the local motion apparent in
the test videos can not be effectively forecasted. In theory,
DL can decode both local and global motions (without the
need to explicitly model global motions with DG) as CNNs
are effective in motion estimation tasks [15, 41]. This is
also empirically evident as a network trained only using DL

gives a competitive performance. However, using DG to
forecast global motions proved to give a considerable per-
formance boost of 0.92 dB.

Table 2. Ablation experiments

Adobe240 [40] GOPRO [27]

Loss Functions PSNR SSIM PSNR SSIM

w/o LM2FNet 25.09 0.730 25.16 0.728
w/o inter-frame motion 25.81 0.776 26.11 0.776
w/o direction supervision 27.13 0.801 27.83 0.806
w/o LGDL 26.97 0.801 27.84 0.813

M2FNet
w/o DL 25.13 0.734 25.71 0.760
w/o DG 26.96 0.801 27.34 0.811

Frame Decoding
only warping ut in Eq. (7) 26.82 0.793 27.41 0.812
excluding vt+i from Eq. (8) 26.03 0.781 26.57 0.789

P-INet 27.70 0.816 28.43 0.843

Frame Decoding. We study the importance of incorporat-
ing features of past frames when decoding the current frame
in PNet. As can be inferred from Table 2, only attending to
the anchor feature (only warping ut in Eq. (7)) when syn-
thesizing frames gives a notably lower performance com-
pared to attending all past features. Moreover, not attend-
ing to any past feature (excluding vt+i from Eq. (8)) during
frame decoding performs significantly worse.

6. Conclusion
Our work introduces a temporally robust VFI framework

by adopting a feature propagation approach. The proposed
motion supervision tailors the network for the task at hand
as it enforces features to be propagated according to the mo-
tion between inputs irrespective of their contents. The adap-
tive cascading of PNet with a simple interpolation back-
bone has significantly improved the interpolation quality for
low frame rate videos as briefly analyzed in Sec. 4.

Limitations. The multi-scale approach along with aggre-
gated motion estimation significantly increases the time
complexity of our model. For instance, during 10 fps →
240 fps up-conversion given an input pair of size 448×256,
SloMo [17] takes 0.32 secs while P-INet takes 3.37 secs.
We experimentally observed failure cases when there is a
fast-moving small object in the foreground of a scene with
a relatively large, dynamic background. In this scenario,
PNet fails to detect and anticipate the motion of such ob-
jects, and instead imitates the input feature during propaga-
tion. This results in temporal jittering artifact in the inter-
polated video. Improving this limitation using a detection
module [47] or an attention mechanism [7] would be an in-
teresting future direction.

3550



References
[1] Dawit Mureja Argaw, Junsik Kim, Francois Rameau, and

In So Kweon. Motion-blurred video interpolation and ex-
trapolation. In AAAI Conference on Artificial Intelligence,
2021. 2

[2] Wenbo Bao, Wei-Sheng Lai, Chao Ma, Xiaoyun Zhang,
Zhiyong Gao, and Ming-Hsuan Yang. Depth-aware video
frame interpolation. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2019. 1, 2, 6, 7

[3] Wenbo Bao, Wei-Sheng Lai, Xiaoyun Zhang, Zhiyong Gao,
and Ming-Hsuan Yang. Memc-net: Motion estimation and
motion compensation driven neural network for video inter-
polation and enhancement. IEEE transactions on pattern
analysis and machine intelligence, 2019. 2

[4] Zhixiang Chi, Rasoul Mohammadi Nasiri, Zheng Liu, Juwei
Lu, Jin Tang, and Konstantinos N Plataniotis. All at once:
Temporally adaptive multi-frame interpolation with ad-
vanced motion modeling. arXiv preprint arXiv:2007.11762,
2020. 2

[5] Hsu-kuang Chiu, Ehsan Adeli, and Juan Carlos Niebles. Seg-
menting the future. IEEE Robotics and Automation Letters,
5(3):4202–4209, 2020. 2

[6] Myungsub Choi, Janghoon Choi, Sungyong Baik, Tae Hyun
Kim, and Kyoung Mu Lee. Scene-adaptive video frame
interpolation via meta-learning. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 9444–9453, 2020. 2

[7] Myungsub Choi, Heewon Kim, Bohyung Han, Ning Xu, and
Kyoung Mu Lee. Channel attention is all you need for video
frame interpolation. In AAAI, 2020. 2, 8

[8] Camille Couprie, Pauline Luc, and Jakob Verbeek. Joint fu-
ture semantic and instance segmentation prediction. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 0–0, 2018. 2

[9] Shengyang Dai and Ying Wu. Motion from blur. In 2008
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 1–8. IEEE, 2008. 6

[10] Philipp Fischer, Alexey Dosovitskiy, Eddy Ilg, Philip
Häusser, Caner Hazırbaş, Vladimir Golkov, Patrick Van der
Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learn-
ing optical flow with convolutional networks. arXiv preprint
arXiv:1504.06852, 2015. 4

[11] Hamed Kiani Galoogahi, Ashton Fagg, Chen Huang, Deva
Ramanan, and Simon Lucey. Need for speed: A bench-
mark for higher frame rate object tracking. arXiv preprint
arXiv:1703.05884, 2017. 2, 5, 6

[12] Shurui Gui, Chaoyue Wang, Qihua Chen, and Dacheng Tao.
Featureflow: Robust video interpolation via structure-to-
texture generation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
14004–14013, 2020. 1, 2, 6, 7

[13] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kil-
ian Q Weinberger. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4700–4708, 2017. 3

[14] Tak-Wai Hui, Xiaoou Tang, and Chen Change Loy. Lite-
flownet: A lightweight convolutional neural network for op-

tical flow estimation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 8981–
8989, 2018. 4

[15] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and
T. Brox. Flownet 2.0: Evolution of optical flow estimation
with deep networks. In IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), Jul 2017. 4, 6, 8

[16] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.
Spatial transformer networks. In Advances in Neural Infor-
mation Processing Systems, 2015. 3

[17] Huaizu Jiang, Deqing Sun, Varun Jampani, Ming-Hsuan
Yang, Erik G. Learned-Miller, and Jan Kautz. Super slomo:
High quality estimation of multiple intermediate frames for
video interpolation. In IEEE Conferene on Computer Vision
and Pattern Recognition, 2018. 1, 2, 5, 6, 7, 8

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method
for stochastic optimization. In International Conference on
Learning Representations, 2015. 5

[19] Hyeongmin Lee, Taeoh Kim, Tae-young Chung, Daehyun
Pak, Yuseok Ban, and Sangyoun Lee. Adacof: Adaptive col-
laboration of flows for video frame interpolation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2020. 1, 2, 6

[20] Ziwei Liu, Raymond A Yeh, Xiaoou Tang, Yiming Liu, and
Aseem Agarwala. Video frame synthesis using deep voxel
flow. In Proceedings of the IEEE International Conference
on Computer Vision, pages 4463–4471, 2017. 2

[21] Gucan Long, Laurent Kneip, Jose M Alvarez, Hongdong Li,
Xiaohu Zhang, and Qifeng Yu. Learning image matching by
simply watching video. In European Conference on Com-
puter Vision, pages 434–450. Springer, 2016. 2

[22] Pauline Luc, Camille Couprie, Yann Lecun, and Jakob Ver-
beek. Predicting future instance segmentation by forecasting
convolutional features. In Proceedings of the European Con-
ference on Computer Vision (ECCV), pages 584–599, 2018.
2

[23] Dhruv Mahajan, Fu-Chung Huang, Wojciech Matusik, Ravi
Ramamoorthi, and Peter Belhumeur. Moving gradients: a
path-based method for plausible image interpolation. ACM
Transactions on Graphics (TOG), 28(3):1–11, 2009. 2

[24] Michael Mathieu, Camille Couprie, and Yann LeCun. Deep
multi-scale video prediction beyond mean square error.
arXiv preprint arXiv:1511.05440, 2015. 5, 8

[25] Simone Meyer, Abdelaziz Djelouah, Brian McWilliams,
Alexander Sorkine-Hornung, Markus Gross, and Christo-
pher Schroers. Phasenet for video frame interpolation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 498–507, 2018. 2

[26] Simone Meyer, Oliver Wang, Henning Zimmer, Max Grosse,
and Alexander Sorkine-Hornung. Phase-based frame inter-
polation for video. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1410–1418,
2015. 2

[27] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), July 2017. 2, 5, 6, 8

3551



[28] Simon Niklaus and Feng Liu. Context-aware synthesis for
video frame interpolation. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages
1701–1710, 2018. 2

[29] Simon Niklaus and Feng Liu. Softmax splatting for video
frame interpolation. In CVPR, 2020. 2

[30] Simon Niklaus, Long Mai, and Feng Liu. Video frame in-
terpolation via adaptive convolution. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 670–679, 2017. 1, 2, 6

[31] Simon Niklaus, Long Mai, and Feng Liu. Video frame inter-
polation via adaptive separable convolution. In Proceedings
of the IEEE International Conference on Computer Vision,
pages 261–270, 2017. 2

[32] Junheum Park, Keunsoo Ko, Chul Lee, and Chang-Su
Kim. Bmbc: Bilateral motion estimation with bilat-
eral cost volume for video interpolation. arXiv preprint
arXiv:2007.12622, 2020. 2

[33] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 5

[34] Tomer Peleg, Pablo Szekely, Doron Sabo, and Omry Sendik.
Im-net for high resolution video frame interpolation. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), June 2019. 2

[35] Fitsum A Reda, Deqing Sun, Aysegul Dundar, Mohammad
Shoeybi, Guilin Liu, Kevin J Shih, Andrew Tao, Jan Kautz,
and Bryan Catanzaro. Unsupervised video interpolation us-
ing cycle consistency. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 892–900,
2019. 2

[36] Josip Šarić, Marin Oršić, Tonći Antunović, Sacha Vražić,
and Siniša Šegvić. Single level feature-to-feature forecasting
with deformable convolutions. In German Conference on
Pattern Recognition, pages 189–202. Springer, 2019. 2

[37] Josip Saric, Marin Orsic, Tonci Antunovic, Sacha Vrazic,
and Sinisa Segvic. Warp to the future: Joint forecast-
ing of features and feature motion. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 10648–10657, 2020. 2

[38] Wang Shen, Wenbo Bao, Guangtao Zhai, Li Chen, Xiongkuo
Min, and Zhiyong Gao. Blurry video frame interpolation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 5114–5123, 2020. 2

[39] Sanghyun Son, Jaerin Lee, Seungjun Nah, Radu Timofte,
and Kyoung Mu Lee. Aim 2020 challenge on video temporal
super-resolution. arXiv preprint arXiv:2009.12987, 2020. 2

[40] Shuochen Su, Mauricio Delbracio, Jue Wang, Guillermo
Sapiro, Wolfgang Heidrich, and Oliver Wang. Deep video
deblurring for hand-held cameras. In IEEE Conference on
Computer Vision and Pattern Recognition, 2017. 2, 5, 6, 8

[41] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
PWC-Net: CNNs for optical flow using pyramid, warping,
and cost volume. In IEEE Conference on Computer Vision
and Pattern Recognition, 2018. 4, 8

[42] Jiangxin Sun, Jiafeng Xie, Jian-Fang Hu, Zihang Lin, Jian-
huang Lai, Wenjun Zeng, and Wei-shi Zheng. Predicting
future instance segmentation with contextual pyramid convl-
stms. In Proceedings of the 27th ACM International Confer-
ence on Multimedia, pages 2043–2051, 2019. 2

[43] Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. An-
ticipating visual representations from unlabeled video. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 98–106, 2016. 2

[44] Suhani Vora, Reza Mahjourian, Soeren Pirk, and Anelia
Angelova. Future segmentation using 3d structure. arXiv
preprint arXiv:1811.11358, 2018. 2

[45] Xiangyu Xu, Li Siyao, Wenxiu Sun, Qian Yin, and Ming-
Hsuan Yang. Quadratic video interpolation. In NeurIPS,
2019. 2

[46] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-
oriented flow. International Journal of Computer Vision,
127(8):1106–1125, 2019. 2, 5

[47] Liangzhe Yuan, Yibo Chen, Hantian Liu, Tao Kong, and
Jianbo Shi. Zoom-in-to-check: Boosting video interpola-
tion via instance-level discrimination. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 12183–12191, 2019. 2, 8

[48] Haoxian Zhang, Yang Zhao, and Ronggang Wang. A flexible
recurrent residual pyramid network for video frame interpo-
lation. In European Conference on Computer Vision, 2020.
2

[49] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,
Simon Winder, and Richard Szeliski. High-quality video
view interpolation using a layered representation. ACM
transactions on graphics (TOG), 23(3):600–608, 2004. 2

3552


